
Application Emulators
and

Interaction with Simulators
Tahsin M. Kurc

 Computer Science Department,
University of Maryland,

College Park, MD

Application Emulators

Exhibits computational and access patterns that resemble
patterns observed in the real application
Provides a parameterized model of the application
A simplified version
A suite of programs

Why do we need application emulators?
• Trace from actual run

– It is obtained for a single instance of application and machine
configuration

– It is static, it cannot reflect dynamic nature of application
• Running full application on simulator

– It complicates the task of simulator unnecessarily
– Execution of real application requires real data
– Scaling real application for large scale machines may not be possible

• Application emulator
– It is parameterized, not specific to a single instance of

application/machine configuration.
– It is a program, it can model dynamic nature of application.
– Level of abstraction can be controlled, it simplifies task of simulator
– It does not require real data, can be scaled for large machines

Data-intensive Scientific Applications
Suite

Titan
– Satellite data processing
– peer-to-peer

Pathfinder
– Satellite data processing
– client-server (separate IO and Compute nodes)

Virtual Microscope
– Microscope image database server
– data server (multiple simultaneous queries), peer-to-peer

Titan: Input Data Structure
Satellite Data
– Satellite orbits earth in polar orbit
– Each element (IFOV) is associated with a position (in longitude-

latitude) and time of recording

Input data is partitioned into data-blocks
– Unit of I/O and communication is a data-block
– Each block contains same number of input elements
– Spatial extent of each block varies
– More overlapping blocks near poles

Data is distributed across disks for I/O parallelism
– Minimax algorithm (Moon et al. 1996) for declustering

Remotely Sensed Data
NOAA Tiros-N
w/ AVHRR sensor

AVHRR Level 1 DataAVHRR Level 1 Data
• As the TIROS-N satellite orbits, the
Advanced Very High Resolution Radiometer (AVHRR)
sensor scans perpendicular to the satellite’s track.
• At regular intervals along a scan line measurements
are gathered to form an instantaneous field of view
(IFOV).
• Scan lines are aggregated into Level 1 data sets.

A single file of Global Area
Coverage (GAC) data
represents:
• ~one full earth orbit.
• ~110 minutes.
• ~40 megabytes.
• ~15,000 scan lines.

One scan line is 409 IFOV’s

Spatial Irregularity
AVHRR Level 1B NOAA-7 Satellite 16x16 IFOV blocks

Longitude

L
at

itu
de

Titan: Output Data Structure

2D image

Partitioned into equal size rectangles among processors

Each processor is responsible for processing of blocks that
map onto its region

Titan: Processing Loop
While (not done) do
 Issue reads
 Issue receives
 Poll reads
 if (some reads completed) then
 Map data-block to output data
 if (mapped to other processors)
 Issue sends to those processors
 if (mapped to myself)
 Enqueue for processing
 Poll receives
 if (data-block received)
 Enqueue for processing
 Poll sends
 Process a data-block
end while

not done when there are
 * reads yet to be issued
 * pending reads
 * receives yet to be issued
 * pending receives
 * pending sends
 * blocks yet to be processed

Processing Loop
* All communication and IO are non-blocking operations
* There are dependencies between operations on a data-block

DISK READ
MESSAGE SEND MESSAGE RECEIVE

COMPUTE

MESSAGE SEND MESSAGE RECEIVE

COMPUTE

COMPUTE

Life cycle of a data-block

An Emulator for Titan

Input Data Structure
– I/O, Communication, Computation patterns

Output Data Structure (Work load partitioning)
– Communication, Computation patterns

Processing Loop
– I/O, Communication, Computation patterns

An Emulator for Titan

Description of the machine
– number of processors and disks
– machine description file (for Petasim)

Input Data Structure
– Controlled generation of data-blocks using functions
– Parameterized generation of blocks

• number of blocks
• size of a block

– Simple block-cyclic distribution of blocks to disks

F1 F2

An Emulator for Titan
Generation of Input data-blocks

F2

An Emulator for Titan

• Output Data Structure
– Represented by a 2D rectangle
– Parameterized 2D processor mesh

• number of processors in x and y dimensions
• Processing Loop

– Retain non-blocking nature of operations
– Retain dependencies between operations on a block
– Parameterization of some operations

• number of maximum pending reads, receives
• number of blocks processed per iteration of loop

– Each block is assumed to take the same amount of time
• computation time of a block can be changed

Comparison of Real Application and Emulator

Titan, 10-day data, total number of operations

Real IO Emul.
IO

Real
Comm.

Emul
Comm.

Real
Comp.

Emul
Comp.

World

North America

South America

Africa

Titan, 60-day data, total number of operations

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

Real IO Emul.
IO

Real
Comm.

Emul
Comm.

Real
Comp.

Emul
Comp.

nu
m

be
r o

f o
pe

ra
tio

ns

Comparison of Real Application and Emulator

Execution times, 10-day data

World North
America

South
America

Africa

Real

Emulation

Execution times, 60-day data

0

200

400

600

800

1000

1200

World North
America

South
America

Africa

Ti
m

e
(s

ec
s)

Interaction with Simulators

• Tightly-coupled Simulation

– Similar to running on real machine
• a thread is created for each application emulator process
• emulator performs calls to simulator API for

– initiating I/O, communication, and computation operations (events)
– checking their completion

– Simulator schedules emulator threads to ensure correct logical
order of operations

– Emulator and simulator interacts for each event (e.g., disk read
request)

– Emulator keeps track of dependencies between operations

Interaction with Simulators
Tightly-coupled simulation is not suitable for simulating large scale

machines

Number of emulator threads increases with increasing number of
processors
– Scheduling these threads becomes very costly

Message and I/O tables for outstanding non-blocking operations
become very large
– Need for large memory to store these tables
– Very costly to manage these tables

Each emulator thread has to keep track of non-blocking operations
– Needs its local data structures (tables) for these operations
– Replicates the work of simulator.

Interaction with Simulators

Loosely-coupled Simulation
– Idea: Embed application processing loop into simulator

• Dependency information of processing loop is embedded in the
simulator

– Emulator and simulator interacts in distinct phases called “epochs”
• Emulator sends a set of events (for a set of blocks) to the simulator
• Simulator processes these events
• Simulator asks for another set of events from emulator

– One simulator thread and one emulator thread

Interaction with Simulators
(Modeling Dependencies: Work Flow Graphs)

DISK READ

MESSAGE RECEIVE COMPUTE
MESSAGE SEND MESSAGE RECEIVE COMPUTE

COMPUTE

DISK READ SENDCOMPUTE

Titan

Pathfinder

Virtual Microscope

I/O nodes
Compute Nodes

MESSAGE SEND
DISK READ

MESSAGE RECEIVE COMPUTE
MESSAGE SEND MESSAGE RECEIVE COMPUTE
MESSAGE SEND

Interaction with Simulators

No dependencies between operations
– in sets in different epochs
– on different data-blocks

For each block in a set for each processor, emulator passes to simulator
– disk id

• indicates a read operation from that disk

– length of the block
• used to estimate I/O and communication time

– list of consumers
• indicates communication (sends and receives)

– computation time of the block

Comparison of Simulation Models

Accuracy comparison of Tightly-Couple Simulation
(TC-SIM) and Loosely-Coupled Simulation (LC-SIM)

Emulator Data set IBM SP2 TC-SIM LC-SIM
Execution Predicted Predicted

 Time Time Time
Titan 9K blocks 113 105 (7%) 100 (12%)
 27K blocks 347 322 (7%) 306 (12%)
Pathfinder 9K blocks 166 153 (8%) 149 (10%)
 27K blocks 497 467 (6%) 452 (9%)
Virtual Microscope 5K blocks (200 queries) 127 122 (4%) 119 (6%)
 7.5K blocks (400 queries) 243 236 (3%) 234 (4%)

Comparison of Simulation Models

Predicted execution time and simulation time for TC-SIM and LC-SIM
All results are in seconds for Maryland IBM SP2

 TC-SIM TC-SIM LC-SIM LC-SIM
Emulator Dataset P Predicted Simulation Predicted Simulation

Execution Time Execution Time
 27K blocks 32 211 3426 182 6
Titan 55K blocks 64 285 13154 217 14
 110K blocks 128 604 116224 420 28
 55K blocks 32 551 11595 496 22
Pathfinder 110K blocks 64 718 30446 579 57
 220K blocks 128 1020 97992 881 126

500 K blocks 32 135 7155 118 4
Virtual Microscope 1000K blocks 64 145 14097 126 8

2000K blocks 128 158 37534 138 17

Conclusions

Emulators for Data-intensive scientific applications
– Simple and parameterized model of applications
– Enables performance prediction studies on large scale machines

Loosely-coupled simulation
– Enables the simulation of large scale machines

