
Very Large Dataset Access and
Manipulation:

Active Data Repository (ADR)
and

DataCutter

Joel Saltz
Alan Sussman

Tahsin Kurc
University of Maryland, College Park

and
Johns Hopkins Medical Institutions

http://www.cs.umd.edu/projects/adr

Research Group

• University of Maryland
• Charlie Chang
• Renato Ferreira
• Mike Beynon
• Henrique Andrade

• Johns Hopkins Medical Institutions
• Umit Catalyurek

Irregular Multi-dimensional Datasets

• Spatial/multi-dimensional multi-scale,
multi-resolution datasets

• Applications select portions of one or more
datasets

• Selection of data subset makes use of spatial
index (e.g., R-tree, quad-tree, etc.)

• Data not used “as-is”, generally preprocessing
is needed - often to reduce data volumes

Querying Irregular
Multi-dimensional Datasets

• Irregular datasets
• Think of disk-based unstructured meshes, data structures

used in adaptive multiple grid calculations, sensor data
• indexed by spatial location (e.g., position on earth, position of

microscope stage)

• Spatial query used to specify iterator
• computation on data obtained from spatial query
• computation aggregates data - resulting data product size

significantly smaller than results of range query

Application Scenarios

• Ad-hoc queries, data products from satellite
sensor data

• Sensor data, fluid dynamics and chemistry
codes to predict condition of waterways (e.g.
Chesapeake bay simulation) and to carry out
petroleum reservoir simulation

• Predict materials properties using electron
microscope computerized tomography sensor
data

Application Scenarios (cont.)

• Browse or analyze (multi-resolution) digitized
slides from high power light or electron
microscopy
• 1-50 GBytes per digitized slide - 1000’s of slides per day

per hospital
• Post-processing, analysis and visualization of

data generated by large scientific simulations

Processing Remotely Sensed Data
NOAA Tiros-N
w/ AVHRR sensor

AVHRR Level 1 DataAVHRR Level 1 Data
• As the TIROS-N satellite orbits, the
Advanced Very High Resolution Radiometer (AVHRR)
sensor scans perpendicular to the satellite’s track.
• At regular intervals along a scan line measurements
are gathered to form an instantaneous field of view
(IFOV).
• Scan lines are aggregated into Level 1 data sets.

A single file of Global Area
Coverage (GAC) data
represents:
• ~one full earth orbit.
• ~110 minutes.
• ~40 megabytes.
• ~15,000 scan lines.

One scan line is 409 IFOV’s

Longitude

L
at

itu
de

Spatial Irregularity
AVHRR Level 1B NOAA-7 Satellite 16x16 IFOV blocks.

Specify portion of raw
sensor data corresponding
to some search criterion

Output grid onto
which a projection
is carried out

Typical Query

O ← Output dataset, I ← Input dataset

A ← Accumulator (intermediate results)

[SI, SO] ← Intersect(I, O, Rquery)

foreach oe in SO do

read oe

ae ← Initialize(oe)

foreach ie in SI do

read ie

SA ← Map(ie) ∩ SO

foreach ae in SA do

 ae ← Aggregate(ie, ae)

foreach ae in SO do

 oe ← Output(ae)

write oe

Application Processing Loop

Active Data Repository (ADR)

• Set of services for building parallel databases of
multi-dimensional datasets
• enables integration of storage, retrieval and processing of

multi-dimensional datasets on parallel machines.
• can maintain and jointly process multiple datasets.
• provides support and runtime system for common

operations such as
• data retrieval,
• memory management,
• scheduling of processing across a parallel machine.

• customizable for various application specific processing.

Active Data Repository
• Front-end: the interface between clients and back-

end. Provides services:
• for clients to connect to ADR,
• to query ADR to get information about already registered

datasets and user-defined methods,
• to create ADR queries and submit them.

• Back-end: data storage, retrieval, and processing.
• Distributed memory parallel machine, with multiple disks

attached to each node
• Customizable services for application-specific processing
• Internal services for data retrieval, resource management

Dataset
Service

Attribute Space
Service

Data Aggregation
Service

Indexing
Service

Query Execution
Service

Query Planning
Service

Query Interface
Service

Query Submission
Service

Front End

Application Front End

Query Client 2
(sequential)

Results

Client 1
(parallel)

Architecture of Active Data Repository

Back End

ADR Internal Services
• Query interface service

• receives queries from clients and validates a query

• Query submission service
• forwards validated queries to back end

• Query planning service
• determines a query plan to efficiently execute a set of

queries based on available system resources

• Query execution service
• manages system resources and executes the query plan

generated.

• Handling Output
• Write to disk, or send to the client using Unix sockets, or Meta-

Chaos (for parallel clients).

ADR Customizable Services
• Developed as a set of modular services in C++

• customization via inheritance and virtual functions

• Attribute space service
• manages registration and use of multi-dimensional attribute

spaces, and mapping functions

• Dataset service
• manages datasets loaded into ADR and user-defined

functions that iterate through data items

• Indexing service
• manages various indices for datasets loaded into ADR

• Data aggregation service
• manages user-defined functions to be used in aggregation

operations

Datasets in Active Data Repository

• ADR expects the input datasets to be partitioned
into data chunks.

• A data chunk, unit of I/O and communication,
• contains a subset of input data values (and associated points

in input space)
• is associated with a minimum bounding rectangle, which

covers all the points in the chunk.

• Data chunks are distributed across all the disks in
the system.

• An index has to be built on minimum bounding
rectangles of chunks

Loading Datasets into ADR
• A user

• should partition dataset into data chunks
• can distribute chunks across the disks, and provide

an index for accessing them
• ADR, given data chunks and associated

minimum bounding rectangles in a set of
files
• can distribute data chunks across the disks using a

Hilbert-curve based declustering algorithm,
• can create an R-tree based index on the dataset.

Loading Datasets into ADR

Disk Farm

• Partition dataset into data
chunks -- each chunk
contains a set of data
elements

• Each chunk is associated
with a bounding box

• ADR Data Loading Service
• Distributes chunks across

the disks in the system
• Constructs an R-tree index

using bounding boxes of the
data chunks

Active Data Repository -- Customization
• Indexing Service:

• Index lookup functions that return data chunks
given a range query.

• ADR provides an R-tree index as default.
• Dataset Service:

• Iterator functions that return input elements (data
value and associated point in input space) from a
retrieved data chunk

• Attribute Space Service:
• Projection functions that map a point in input space

to a region in output space

Active Data Repository -- Customization

• Data Aggregation Service:
• Accumulator Functions to create and tile the accumulator

to hold intermediate results
• Aggregation functions to aggregate input elements that

map to the same output element.
• Output functions to generate output from intermediate

results.

Query Execution in Active Data
Repository

• An ADR Query contains a reference to
• the data set of interest,
• a query window (a multi-dimensional bounding box in

input dataset’s attribute space),
• default or user defined index lookup functions,
• user-defined accumulator,
• user-defined projection and aggregation functions,
• how the results are handled (write to disk, or send back

to the client).
• ADR handles multiple simultaneous active

queries

Query Execution in ADR
• Query execution phases:

• Query Planning: Find local data blocks that intersect the
query. Create in-core data structures for intermediate
results (accumulators).

• Local Reduction: Retrieve local data blocks, and perform
mapping and aggregation operations.

• Global Combine: Merge intermediate results across
processors.

• Output Handling: Create final output. Write results to disk,
or send them back to the client.

• Each query goes though the phases
independent of other active queries

ADR Back-end Processing

Index lookup

Generate query plan
Aggregate local input

data into output

Combine partial
output results

Send output to clients
query

Initialize output

Client

Output Handling
Phase

Local Reduction Phase

Global Combine
Phase

ADR Back-end Processing

Initialization Phase

Current Active Data Repository
Applications

• Bays and Estuaries Simulation System
• Water contamination studies
• Hydrodynamics simulator is coupled to chemical transport

simulator
• Virtual Microscope

• a data server for digitized microscopy images
• browsing, and visualization of images at different

magnifications
• Titan

• a parallel database server for remote sensed satellite data

FLOW CODE

CHEMICAL TRANSPORT
CODE

Simulation
Time

POST-PROCESSING
(Time averaging, projection)

Hydrodynamics output
(velocity,elevation)
on unstructured grid

Grid used by
chemical
transport code

(Parallel Program)

(Parallel Program)

* Locally conservative projection
* Management of large amounts of data

Visualization

Bays and Estuaries Simulation System

ADR Back End
Dataset
Service

Attribute Space
Service

Data Aggregation
Service

Indexing
Service

Query Execution
Service

Query Planning
Service

Query Interface
Service

Query Submission
Service

Front End

Application Front End

Chemical Transport Code
(UT-TRANS)

Projection Code
(UT-PROJ)

Hydrodynamics Flow Code
(PADCIRC)

Time steps

Visualization

* Chemical Transport Grid
* Flux values on the faces

Hydrodynamics output
(velocity, elevation)
on unstructured grid

Query:
* Time period
* Number of steps
* Input grid
* Post-processing function
 (Time Averaging)

* Time averaged velocity and elevation
 values at grid points
* Results returned using Meta-Chaos

FLOW CODE Partition

into chunks

 POST-PROCESSING
 (Time averaging)

Register

TRANSPORT CODE

Attribute
spaces of
simulators,
mapping function

Chunks loaded to
disks Index created

Bays and Estuaries Simulation System
(Data Loading/Customization)

Dataset
Service

Attribute Space
Service

Data Aggregation
Service

Indexing
Service

Dataset
Service

Attribute Space
Service

Data Aggregation
Service

Indexing
Service

* Input and output attribute spaces are registered
 - Input Attribute Space: grid points, time steps
 - Output Attribute Space: grid points
* Mapping functions to map input points to output points are
 registered.

* An Iterator function is registered
 - understands data structure of a chunk
 - returns input points and data values stored in the chunk

* Functions to read index metadata, to search/return the chunks
 that intersect the query window are registered.

* Functions
 - to define output or intermediate data structure (accumulator)
 - to iterate over output elements
 - to aggregate input data values with output data values (for time
 averaging)
 - to create final output from intermediate data structure
 are registered.

Bays and Estuaries Simulation System

Initial Oil Spill

Oil spill after 30 time steps (1.9 hours)

Experimental Results

• ADR back-end was run on 8 nodes (with 2 local disks per node) of an
IBM SP2.

• A 2D grid that models Galveston bay with 2113 grid points.
• A dataset of 8 days of hydrodynamics simulator output (using

simulation time steps of 15 seconds).
• Data set was partitioned into data blocks, each of which is 128

Kbytes, and contains 33 grid points and 323 time steps. A total of
9152 blocks.

• Data blocks declustered across all the disks.
• Meta-Chaos was used for sending results from ADR to simulation

code.

Experimental Results

Query Total Query Planning Local Reduction Global Combine Output Handling
9000 1.35 0.56 0.43 0.03 0.33
4500 1.00 0.42 0.23 0.02 0.33
2250 0.90 0.35 0.15 0.03 0.37
1125 0.85 0.38 0.10 0.03 0.34
225 0.84 0.38 0.08 0.03 0.35

An end-to-end 2-hour oil spill simulation takes 300 secs. using chemical
transport step of 225 secs. (i.e., averaging over 15 hydrodynamics steps)

Query Interface
Service

Query Submission
Service

Front-end

Virtual Microscope Front-end

Dataset
Service

Attribute Space
Service

Data Aggregation
Service

Indexing
Service

Query Execution
Service

Query Planning
Service

Back-end

Client

Client Client Client

. . .

Query:
* Slide number
* Focal plane
* Magnification
* Region of interest

Image blocks

Virtual Microscope

Virtual Microscope Client

VM Performance

• Running on 8 back-end nodes, 1 disk/node
• Input data size = 72 MB (357 data blocks)

0.36

1.38
1.39

1.86

0

0.5

1

1.5

2

2.5

3

3.5

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

VM ADR

others

comp

Titan - Satellite Data Processing

Example: Satellite Data Processing

Attribute Space
Service

Data Aggregation
Service

Indexing
Service

Dataset
Service

* Register attribute spaces
 - lat/lon/time, Goodes projection, etc.
* Register mapping functions between attribute spaces

* Partition IFOVs into data chunks
* Register iterator functions to return IFOVs from chunks

* Build an R-tree to index the IFOV chunks
* Use lat/lon/time of IFOV chunks as bounding rectangles

* Register functions to:
 - Initialize the output image
 - Compute vegetation index of an output pixel with a
 given IFOV
 - Select clearest vegetation index out of a set of IFOVs

Satellite Data Processing
Performance

• Running on 14 SP-2 RS6000/390 nodes, 4 disks/node

0

20

40

60

80

100

120

qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

)

Australia
65MB

Africa
191MB

South
America
155MB

North
America
375MB

global
1.6GB

Titan

ADR

Global Query Breakdown

104.3 107.9

80

90

100

110

120

qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

)

Titan ADR

others

comm

comp

Average input data size read per back-end node = 114 MB

