Databases and Systems Software for Multi-Scale Problems

Joel Saltz

University of Maryland College Park Computer Science Department Johns Hopkins Medical Institutions Pathology Department NPACI

Vision

- Multi-petabyte distributed data collections
 - sensor measurements, scientific simulations, media archives
- Subset and filter
 - load small subset of data into disk cache or client
- Tools to support on-demand data product generation, interactive data exploration

Overview

- Application Domain: Multi-scale Data Intensive Applications
- Overview of System Software Architecture
- Active Data Repository -- Design and Query Planning
- Overview of Performance Engineering Methodology
- Conclusions

Application Scenarios

Processing Remotely Sensed Data

NOAA Tiros-N w/ AVHRR sensor

AVHRR Level 1 Data

As the TIROS-N satellite orbits, the Advanced Very High Resolution Radiometer (AVHRR) sensor scans perpendicular to the satellite's track.
At regular intervals along a scan line measurements

are gathered to form an *instantaneous field of view* (IFOV).

• Scan lines are aggregated into Level 1 data sets.

A single file of *Global Area Coverage* (GAC) data represents:

- ~one full earth orbit.
- ~110 minutes.
- ~40 megabytes.
- ~15,000 scan lines.

One scan line is 409 IFOV's

Spatial Irregularity

AVHRR Level 1B NOAA-7 Satellite 16x16 IFOV blocks.

Processing

- Characterize changes in land cover
- Assimilate into weather and climate models
- Assimilate into ecological models
- Visualize
- Identify structures, vehicles

Pathology Application Domain

- Automated capture of, and immediate worldwide access to all Pathology case material
 - light microscopy, electrophoresis (PEP, IFE), blood smears, cytogenetics, molecular diagnostic data,clinical laboratory data.
- Slide data -- .5-10 GB (compressed) per slide --Johns Hopkins alone generates 500,000 slides per year
- Digital storage of 10% of slides in USA -- 50 petabytes per year

Virtual Microscope Client

Computations

- Screen for cancer
- Categorize images for associative retrieval
 - which images look like this unknown specimen
- Visualize and explore dataset
- 3-D reconstruction

Coupled Ground Water and Surface Water Simulations

Computations

- Spread of pollutants
- Chemical and biological reactions in waterways
- Estimate spread of contamination in ground and surface water
- Best and worst case oil production scenarios (history matching)

Database Couples Programs (Coupling of Flow Codes with Environmental Quality Codes)

* Storage, retrieval, processing of multiple datasets from different flow codes

Attributes common to these applications

Common Themes

- Spatial/multidimensional multi-scale, multi-resolution datasets
- Multiple spatio-temporal queries
- Complex preprocessing
- Dataset exploration or program coupling

Querying Irregular Multidimensional Datasets

- Irregular datasets
 - Think of *disk based* unstructured meshes, data structures used in adaptive multiple grid calculations
 - indexed by spatial location
 - Iterator specified by spatial query
 - computation aggregates data data product size smaller than results of range query

Typical Query

Output grid onto which a projection is carried out

Specify portion of raw sensor data corresponding to some search criterion

Overview

- Application Domain: Multi-scale Data Intensive Applications
- Overview of System Software Architecture
- Active Data Repository -- Design and Query Planning
- Overview of Performance Engineering Methodology
- Conclusions

Components of System Software Architecture

- Spatial Queries and filtering on distributed data collections
 - Spatial subset and filter (ADR')
 - Load disk caches with subsets of huge multi-scale datasets
- Toolkit for producing data product servers
 - C++ toolkit targets SP, clusters
 - Compiler front end
 - extension of inspector/executor

Generating Data Subsets

Current ADR' Architecture

Future ADR' Architecture

- Proxy processes (disklets) filter data as it is extracted from tertiary storage
- File segment partitioned into chunks, disklets extract necessary data from each chunk
- Early data filtering reduces data movement and data transfer costs
- Can be generalized to extend beyond filtering --
 - Uysal has developed algorithms that use fixed amount of scratch memory to carry out selects, sorts, joins, datacube operations

Database operations supported by Disklet Algorithms

- SQL select + aggregate
- SQL group-by [Graefe Comp Surveys'93]
- External sort [NowSort SIGMOD'97]
- Datacube [PipeHash SIGMOD'96]
- Frequent itemsets [eclat- SPAA'97]
- Sort-merge join
- Materialized views [SIGMOD'96,PDIS'96]

Overview

- Application Domain: Multi-scale Data Intensive Applications
- Overview of System Software Architecture
- Active Data Repository -- Design and Query Planning
- Overview of Performance Engineering Methodology
- Conclusions

Database Software Active Data Repository

- Optimized associative access and processing of multiresolution disk based data structures
- User-defined projection and aggregation functions
- Targets *parallel and distributed architectures* that have been configured to support high I/O rates
- Modular services implemented in C++
- Satellite sensor data; Virtual Microscope Server, Bay and Estuary Simulation

Typical Query

Output grid onto which a projection is carried out

Input dataset (e.g. raw sensor data)

Architecture of Active Data Repository

Cstjtin

Water Contamination Studies

Loading Grids into ADR

- Partition grid into data chunks -- each chunk contains a set of volume elements
- Each chunk is associated with a bounding box
- ADR Data Loading Service
 - Distributes chunks across the disks in the system (e.g., using Hilbert curve based declustering)
 - Constructs an R-tree index using bounding boxes of the data chunks

Disk Farm

Water Contamination Studies **Output Grid** TRANSPORT CODE **POST-PROCESSING** Query: * Time period (Projection) * Input grid * Output grid Post-processing function (Time Averaging) **Query Interface Query Planning Query Execution Service** Service Service **ADR** Attribute Space **Data Aggregation Data Loading Indexing Service** Service Service Service

Executing Queries

- Very large input, output datasets
- Clustered/declustered across storage units (Analysis of clustering, declustering algorithms -- PhD B. Moon)
- Datasets partitioned into "chunks"
 - Each chunk has associated minimum bounding rectangle
- Processing involves
 - spatial queries
 - user defined projection, aggregation functions
 - accumulator used to store partial results
 - accumulator tiled
- Spatial index used to identify locations of all chunks

Query Execution

- For each accumulator tile:
 - Initialization -- allocate space and initialize
 - Local Reduction -- input data chunks on each processor's local disk -- aggregate into accumulator chunks
 - Global Combine -- partial results from each processor combined
 - Output Handling -- create new dataset, update output dataset or serve to clients

Query Planning Strategies

- Fully replicated accumulator strategy
 - Partition accumulator into tiles
 - Each tile is small enough to fit into single processor's memory
 - Accumulator tile is replicated across processors
 - Input chunks living on disk attached to processor P is accumulated into tile on P
 - Global combine employs accumulation function to merge data from replicated tiles

Query Planning Strategies

- Sparsely replicated accumulator strategy
 - Sparse data structures are used in chunk accumulation
- Distributed Accumulator Strategy
 - Partition accumulator between processors
 - Single processor "owns" accumulator chunk
 - Carry out all accumulations on processor that owns chunk

Studies to evaluate query processing strategies

- Projection of 3-D datasets onto 2-D grid
- Query windows of various sizes directed at synthetic datasets with uniform, skewed data distributions
- Sparse replicated accumulator wins when there is a high degree of fan-in -- communication can be saved by local accumulation of multiple chunks
- Distributed accumulator wins when there is a low degree of fan-in
 - avoids overhead arising from computation and datastructure manipulations arising from both local accumulation and subsequent combining stage
 - minor decrease in I/O due to bigger tiles

							+						-											-	,	_				-	
ł.	-				,		1	F 3					5			ł								5			ŧ		•	1	
-		•			÷				-						÷	-		4										1	-		
2	1	-	4										1	ŧ				-	ļ		ţ,				ţ.	_			+		
		-		di.			Γ.		-	Đ,				Į.	•				ł				-						_	-	
	_	. 1	Z.							ł		-			۰.			-	-	+	•	ł				2		-		-	
-					-	-									+		•	• •	14			-						•			
					-					1	•					ł.		•			•		ł	ł		. 1	- 1	•	-	2	
		_		-		-		L			5					-					_	•			-	-		+			
						-				÷		-			1		1							1		1	-			+	-
-	•				-		-				-	2	5				Ģ	54		-		+		ς.,		Υ.		+			
			Ē	2	-	•	12				- 4	5		5			Ζ,	1			-						-			-	
	_		-		-			12		εŤ.	1	1	52	27		.5	Ŧ_,	H	-5	1	77			₹.			Υ.		-		-
-			-				-			-5	÷.	ġ.		⁻	2	-		2	5	-	Ē	Ę.			-	- 1				-	
	ţ,	_ =			_				6	2)	5		-2	÷.,			- 1		- 1			12				_				•	
			-		-	•		1	R		ہے:	÷		•	•		÷			-	-14	μĐ	-	1		-				-	-
		_				-			1	2		2							٦e	£		1				-		-		_	
						-			5	1	<u> </u>	÷.,.	1						i.	- •		. ⁻ -	6							1	-
	-			_	-		-			Υ.	17	÷.	-		÷.,	1		-			-	5		ţ.			-				-
	ŧ					-		17		È,	-1			÷,	•				7	2						-	ŧ				
		۰.					- 1				4	÷۳	L,	1	17		5		-		1			5	-	2			-		
	+	•					-	Г		E.	Ċ.	ę.,		in.	5	<u> </u>	ч.		1	\sim	2					-				1	
					•	-	-	-		É,	E.		$\overline{\mathcal{X}}$	÷	2	15			5	65	ΞĒ.						-				
			_										13		É.	2	25	F.]	- E					-					•		_
	-	-				-				-		Ξ.	-	-						5				•	-	-				-	
								-			- 7								-				-	•			-				
											-		-		-	+	-			÷.	-		-				<u>ر مع</u>	•	٠		-
	_	-					_					•					-					8		÷		4					
								-	-							-											-		-		-
			- 1			-															-					-				-	
				-		<u> </u>			-					-	•	-							-	-							
					-		-										-											-			

Effect of Accumulator Strategy on Performance

Conclusion

- ADR, ADR' support several applications
- Plans to incorporate as part of NPACI data handling infrastructure
- Challenges:
 - Scaling up
 - Efficient querying and and processing in very large data collections
 - High level language interface -- ADR as database extender
 - Extend past irregular compilation and interprocedural analysis work to generate optimized queries

Research Group

- Alan Sussman, Tahsin Kurc, Charlie Chang, Renato Ferraria, Mustafa Uysal --University of Maryland
- Work done in collaboration with National Partnership for Applied Computational Infrastructure