DataCutter

Joel Saltz
Alan Sussman
Tahsin Kurc
University of Maryland, College Park
and

Johns Hopkins Medical Institutions
http://www.cs.umd.edu/projects/adr

I
DataCutter

A suite of Middleware for subsetting and filtering
multi-dimensional datasets stored on archival
storage systems

e Subsetting through Range Queries

« a hyperbox defined in the multi-dimensional space
underlying the dataset

e items whose multi-dimensional coordinates fall into the
box are retrieved.

I
DataCutter

 Restricted processing (filtering/aggregations)
through Filters

e to reduce the amount of data transferred to the client

« filters can run anywhere, but intended to run near (i.e.,
over local area network) storage system

* based on filter-stream programming model -- to optimize
use of limited resources, such as memory and disk space

Cllent Fllterlng Serwce /
Interface Serwce Fllter Filter }

Segment \ |ndex|ng
Info.
Service

Data }
Access Service

DataCutter / \

Archival Storage Archival Storage
System System

Segments:. (File,Offset,Size) (File,Offset,Size)

. 1
DataCutter Architecture

e Client Interface Service
 Manages client connections and client requests

 Manages data and information flow between
different services

* Indexing Service

* Two-level hierarchical indexing -- summary and
detailed index files

e Customizable --
» Default R-tree index
« User can add new indexing methods

. 1
DataCutter Architecture

* Filtering Service
 Manages filters (registered in the system)
e Users can add/run new filters

e Data Access Service

 Manages storage/retrieval of data from the tertiary
storage

* Low level system dependent I/O operations

DataCutter -- Subsetting

 Datasets are partitioned into segments
e used to index the dataset, unit of retrieval

* Indexing very large datasets
« Multi-level hierarchical indexing scheme

« Summary index files -- to index a group of
segments or detailed index files

* Detailed index files -- to index the segments

e
DataCutter -- Filters

e Filters

o Specialized user program to process data
(segments) before returning them to the client

e Filter-stream programming model

e Originally developed for Active Disks environment
(Acharya, Uysal, and Saltz)

« Based on stream abstraction
A stream denotes a supply of data
e Streams deliver data in fixed size buffers
e Communication of a filter with its environment is
restricted to its input and output streams

* init, process, finalize interface

A Motivating Scenario

Sample Application:

generate 3D reconstructed
view

from new set of sensor
readings

compare features with
reference db

Grid Configuration:

remote data server - reference
db

sensor host - large raw
readings

parallel computation farm
available

3D reconstruction
computationally
Intensive

Reference DB

feature list

/

@

\Data Server

o @)

Raw Dataset

sensor readings

9

Computation Farm

)

@)

Client PC

A Motivating Scenario (2)

Application :

Il processrelevant raw readings
/Il gener ate 3D view

// compute features of 3D view

// find similar featuresin referencedb
/Il display new view and similar cases

(View result)

<3D recong:':on)\

(Extract ref >

A

(Extract raw>

* Reference DB

Raw Dataset

Reference DB

feature list

|

~
(Extract ref)

Data Server

|

Sensor

Raw Dataset

sensor readings

|

Computation Farm

3D reconstruction)}

(View result)
Client PC

Filters

e Filters
e communicate with other filters only using streams
e cannot change stream endpoints

« are allowed to pre-disclose dynamic allocation of
memory/scratch space in init phase, before
processing phase

 Advantages
 |ocation independence
» easier scheduling of resources
o filter stop and restart is defined explicitly in model

T
Placement

« The dynamic assignment of filters to
particular hosts for execution is placement
(mapping)

e Optimization criteria:

« Communication
 leverage filter affinity to dataset

e minimize communication volume on slower connections
» co-locate filters with large communication volume

o Computation
e expensive computation on faster, less loaded hosts

e
Restructuring Process

Application
V Target Configuration

Decompose

: !

|| o
'

Placement / Schedule «

!

Execute Application

I
Software Infrastructure

 Prototype implementation of filter framework
« C++ language binding
 manual placement
e wide-area execution service
e one thread for each instantiated filter

Filter Framework

class MyFilter : public AS_Filter _Base {
public:
int init(int argc, char *argv[) { ... };
Int process(stream_t st){ ... };
int finalize(void) { ... };

}

e
Filter Connectivity / Placement

[filter A]
outs = stream1 stream3
[filter .B] [placement]
ins = streaml1 A = hostl.cs.umd.edu
outs = stream? B = host2.cs.umd.edu
[filter.C] C = host3.cs.umd.edu
NS = stream? stream3

stream3

streamtream2

Execution Service

1. Read

(Filter lib W

Application
Console

Specs

Filter/Stream

2272.222.222.227

Placement

m 3. Exec

Directory

name host port

kkkk kkkk kkkk

kkkk kkkk kkkk

J 2. Query
—>

[Directory Daemon]

dir.cs.umd.edu:6000

[AppExec Daemon]

% EXEC

(Filter lib \
filter A

Application

hostl.cs.umd.edu

[AppExec Daemon]

% EXEC

(Filter lib \
filter B

Application

host2.cs.umd.edu

[AppExec Daemon]

% EXEC

(Filter lib \

Application

host3.cs.umd.edu

.]
Related Work

Application AppLeS Client/Server
Level Sockets
P n HPC++
rol\g/lraénTHI g Legion DataCutter NetSolve,
0deis DSMIMPIIRPC || javarMI, Ninf
Harmony DCOM
Infrastructure NWS CORBA
Services SRB Globus Condor
DPSS Pool
Resource Grid available User specified ldle
Level Resources Resources RESOUIces

Integrating DataCutter with the
Storage Resouce Broker

e
Storage Resource Broker (SRB)

 Middleware between clients and storage
resources

e Remote Access to storage resources.
e Various types :
* File Systems - UNIX, HPSS, UniTree, DPSS (LBL).
* DB large objects - Oracle, DB2, lllustra.
« Uniform client interface (API).

e
Storage Resource Broker (SRB)

« MCAT - MetaData Catalog

o Datasets (files) and Collections (directories) - inodes and
more.

e Storage resources
« User information - authentication, access privileges, etc.

o Software package

o Server, client library, UNIX-like utilities, Java GUI

» Platforms - Solaris, Sun OS, Digital Unix, SGI Irix, Cray
T90.

-]
SRB/DataCutter - Prototype Implementation

o Support for Range Queries

e Creation of indices over data sets (composed set
of data files)

e Subsetting of data sets

« Search for files or portions of files that intersect a given
range query
» Restricted filter operations on portions of files
(data segments) before returning them to the
client (to perform filtering or aggregation to reduce
data volume)

SRB/DataCutter System

Range Query

Resource

Storage Resource Broker (SRB)

[Indexing

. } DataCutter
Service

Filtering Service

| Filter | [Filter |

Application
Meta-data

DB2, Oracle, lllustra, ObjectStore HPSS, UniTree UNIX, ftp
Distributed Storage Resources

S
SRB/DataCutter Client Interface

 Creating and Deleting Index

Int sfoCreatelndex(srbConn * conn, sfoClass class, int catType,
char *inlndexName, char * outlndexName,
char *resourceName)

Int sfoDeletelndex(srbConn * conn, sfoClass class, int catType,
char *indexName)

SRB/DataCutter Client Interface

 Searching Index -- R-tree index

typedef struct {
int dim; /* bounding box dimensions */
double *min; /* minimum in each dimension */
double *max; /* maximum in each dimension */
} sfoMBR; /* Bounding box structure */

typedef struct {
sSfoMBR segmentMBR; /* bounding box of the segment */
char *objID; /* object in SRB that contains the segment */

char *collectionName; /* collection where object is stored */
unsigned int offset; /* offset of the segment in the object */
unsigned int size; [* size of segment */

} segmentinfo; /* segment meta-data information */

typedef struct {
int segmentCount; /* number of segments returned */
segmentinfo *segments; /* segment meta-datainformation */
int continuelndex; /* continuation flag */

} indexSearchResult; /* search result structure */

S
SRB/DataCutter Client Interface

o Searching Index -- R-tree index

Int sfoSearchlndex(srbConn * conn, sfoClass class,
char *indexName, void * query,
IndexSearchResult * myresult,
Int maxSegCount)

typedef struct {

int dim;

double *min, * max;
} rangeQuery;

Int sfoGetM oreSearchResult(srbConn * conn, int continuel ndex,
IndexSearchResult * myresult,
Int maxSegCount)

e
Applying Filters

typedef struct {
segmentinfo seginfo; /* info on segment data buffer after filter oper. */
char *segment; /* segment data buffer after filter isapplied */
} segmentDataq;

typedef struct {
Int segmentDataCount; /* #segments in segmentData array */
segmentData * segments, [* segmentData array */
Int continuel ndex; [* continuation flag */

} filterDataResult;

e
Applying Filters

Int sfoA pplyFilter(srbConn * conn, sfoClass class, char * hostName,
int filterlD, char *filterArg,
Int NuMOfInputSegments,
segmentInfo * inputSegments,
filterDataResult * myresult,
Int maxSegCount)

Int sfoGetM orekilterResult(srbConn * conn, int continuelndex,
filterDataResult * myresult,
Int maxSegCount)

e
Application: Virtual Microscope

* Interactive software emulation of high power light
microscope for processing/visualizing image datasets

 3-D Image Dataset (100MB to 5GB per focal plane)
* Client-server system organization
 Rectangular region queries, multiple data chunk reply

e pipeline style processing

9 oo

Virtual Microscope Client

VM Application using SRB/DataCutter
~ R
read]~

Wide Area

[Indexing] Network
_SRB/DataCutter / Distributed Collection of Workstations
/ \ 3
1T B R T
80 Q@ © |
Distributed Storage Resources
Local Area Network

[]
- read image chunks I
- convert jpeg image chunks
into RGB pixels

- clip image to query boundaries
- sub-sample to the required
magnification

stitch image pieces together
and display image

