Performance Optimization of
Component-based Data Intensive
Applications

Alan Sussman
Michael Beynon
I Tahsin Kurc

f% Umit Catalyurek
e Joel Saltz
University of Maryland

http:/Aww.cs.umd.edu/projects/adr

I .
[outline

= Motivation

= Approach

= Optimization — Group Instances

= Optimization — Transparent Copies
= Ongoing Work

* MM AR Alan Sussman (als@cs.umd.edu)

‘] Targeted Applications

Pathology

Volume
Rendering

Surface
¥ |Groundwater
Modeling

Satellite
Data Analysis

8 LR
MY LAMLE Alan Sussman (als@cs.umd.edu)

|
JRuntime Environment

Heterogeneous Shared Resources:
= Host level: machine, CPUs, memory, disk storage
= Network connectivity

Many Remote Datasets:

= Inexpensive archival storage clusters (1TB ~ $10k)
= Islands of useful data

= Too large for replication

- AR
MARYLANLE Alan Sussman (als@cs.umd.edu)

Segment
Info.

Service

»
Al Service
DataCutter
A \4
Archival Storage Archival Storage
ystem ystem

Segments: (File,Offset,Size) (File,Offset,Size)

|
JDataCutter

Indexing Service

= Multilevel hierarchical indexes based on spatial indexing
methods - e.g., R-trees
- Relies on underlying multi-dimensional space
- User can add new indexing methods

Filtering Service

m Distributed C++ component framework

= Transparent tuning and adaptation for heterogeneity
= Filters implemented as threads — 1 process per host
Versions of both services integrated into SDSC SRB

“’ MY LARTY Alan Sussman (als@cs.umd.edu)

‘J Indexing - Subsetting

Datasets are partitioned into segments
- used to index the dataset, unit of retrieval

- Spatial indexes built from bounding boxes of all
elements in a segment

Indexing very large datasets

- Multi-level hierarchical indexing scheme

- Summary index files -- for a collection of segments or
detailed index files

- Detailed index files -- to index the individual segments

L3 ALY LANTE Alan Sussman (als@cs.umd.edu) 7

[
. [Filter-Stream Programming (FSP)

Purpose: Specialized components for processing data

= based on Active Disks research [Acharya, Uysal, Saltz: ASPLOS'98],
dataflow, functional parallelism, message passing.

= filters — logical unit of computation

~ high level tasks

- init,process,finalize interface

= streams — how filters communicate & reconstruction)
- unidirectional buffer pipes A facact et)

- uses fixed size buffers (min, good) m

= manually specify filter connectivity
and filter-level characteristics

& i AR LAY Alan Sussman (als@cs.umd.edu) 8

“ Placement

= The dynamic assignment of filters to particular hosts
for execution is placement (or mapping)
= Optimization criteria:
- Communication
= leverage filter affinity to dataset
= minimize communication volume on slower connections
= c0-locate filters with large communication volume
- Computation
= expensive computation on faster, less loaded hosts

ﬁ wERREITY BF
AR LA Alan Sussman (als@cs.umd.edu) 9

|
JFSP: Abstractions

Filter Group

- logical collection of filters to use together
- application starts filter groupinstances

D... (] :QQ
Unit-of-work cycle \
- “work”is application defined (ex: a query) hmgp

- work is appended to running instances

- init(), process(), finalize() called for each work
- process() returns { EndOfWork | EndOfFilter }
- allows for adaptivity

* = ERRLITY OF
AT LAM R Alan Sussman (als@cs.umd.edu) 10

“ Optimization - Group Instances

AW QIO
g [i ES

host1 (2 cpu) host2 (2 cpu) host3 (2 cpu)

Match # instances to environment (CPU capacity, network)

& AT LA Alan Sussman (als@cs.umd.edu) 11

|
JExperiment - Application Emulator

Parameterized dataflow filter

- consume from all inputs |:|—C)<ID:|
- compute h_ PP
- produce to all outputs

Filter

Application emulated:

- process 64 units of work m

- single batch

ﬁ' MARY LAMNT Alan Sussman (als@cs.umd.edu) 12

‘J Instances: Vary Number, Application

I/0 Intensive CPU Intensive
@ 450
Y _a
CIE) B=
o = o
£-
§ 15 E\m
o) 100
s A ddl
o U 1 2 a 8 16 32 64
Number of Filter Group Instances Number of Filter Group Instances

min mean max LR mean B e

Setup: UMD Red Linux cluster (2 processor Pl 450 nodes)
Point: # instances depends on application and environment

L3 ALY LANTE Alan Sussman (als@cs.umd.edu) 13

[
. |Group Instances (Batches)

Eatch u : ----- -F--—-=---- -l e

L e 1 -
L@--.---@--

> ! .

Hast1 (2 cpu) Hast2 (2 cpu)

St3 (2 cpu)

Work issued in instance batches until all complete.
Matching # instances to environment (CPU capacity)

& i AR LAY Alan Sussman (als@cs.umd.edu)

“ Instances: Vary Number, Batch Size

___ CPU Intensive

1 1 =9
50 t 1 450 1 [
a0 1 1 a0 1 :
g = 1 T 2 f
@ 300 T 8 ' 1
g i z I
E= 1] E 20 I
20 1 1 g 20 !
150 I I 150 !
o 1
- | 8w |
o
% I i T 5 i},
0
1 R g 1 °T Tl 2@ 4 8@ 1b@) 2@ 8O
Nurmber of Filter Group Instances Batch Size (Optimal Num Instances)
o min men Mmx Oal W min men BMmx DOal

Setup: (Optimal) is lowest all time
Point: # instances depends on application and environment

= ERREITY
ﬁ' AR LA Alan Sussman (als@cs.umd.edu) 15

|
JAdding Heterogeneity

00

o
.

S ERRLITY G
'h' SAARY LADLE Alan Sussman (als@cs.umd.edu)

OO0

>

0stSMP (8 cpii)

‘ | Optimization - Transparent Copies

FSP Abstraction Q_

» replicate individual filters

= fransparent
- work-balance among copies
- better tune resources to actual filter needs

= Provide “single-stream” illusion
- Multiple producers and consumers, deadlock, flow control
- Invariant: UOW, < UOW,,,

= Problem: filter state

& AT LA Alan Sussman (als@cs.umd.edu) 17

|
JRuntime Workload Balancing

Use local information:
- queue size, send time / receiver acks
= Adjust number of transparent copies

= Demand based dataflow (choice of consumer)
- Within a host - perfect shared queue among copies

- Across hosts
= Round Robin
= Weighted Round Robin

= Demand -Driven sliding window (on buffer consumption rate)

= User-defined

& Ay LANT Alan Sussman (sls@cs.umd ed)

‘ | Experiment — Virtual Microscope

» Clientserver system for interactively visualizing digital slides
Image Dataset (100MB to 5GB per focal plane)
Rectangular region queries, multiple data chunk reply

» Hopkins Linux cluster— 4 1-processor, 1 2-processor PlII-800,
2 80GB IDE disks, 100Mbit Ethernet

= Decompress filter is most expensive, so good candidate for
replication

= 50 queries at various magnifications, 512x512 pixel output

CipGoom~iew

AR AR Alan Sussman (als@cs.umd.edu) 19

[
 Virtual Microscope Results

Response Time (seconds)

R-DC-Z-V \verage | 400x 200x 100x 50x

R-h-h-h-h 2.10 0.38 0.73 1.73 6.95

9-0-0-9 1.49 0.37 0.62 1.27 4.60

02909 115 | 039 | 050 | 095 | 3.41

Na(4)-0(2ra9 1.17 0.39 0.50 0.96 3.50

(

Na(2)-0(2+a-9 1.15 0.37 0.49 0.95 3.43
(‘
(

0(2)-(2}bb 1.68 0.45 0.68 1.27 5.34

dg-ggg 144 | 033 | o058 | 126 | 446
d92) 994 108 | 033] o045] 092 | 324
* MM AR Alan Sussman (als@cs.umd.edu) 20

‘] Experiment - Isosurface Rendering

» UT Austin ParSSim species transport simulation
Single time step visualization, read all data

= Setup: UMD Red Linux cluster (2 processor PIl 450 nodes)
15GB

:: L]
@—O——W
“E/ ~\Ra/ -
read isosurface shade+ merge
aset extraction rasterize Lvie

0.64s 1.64s 11.67s 0.73s =14.68s (sum)
43% 11.2% 79.5% 50% =12.65s (time)
-\;."I‘\.Ilt':’i.l.i II\.IIF Alan Sussman (als@cs.umd.edu) 21

|
JSampIe Isosurface Visualization

V=0.35 V=07

S ERRLITY G
MARYLANLE Alan Sussman (als@cs.umd.edu) 22

‘ | Transparent Copies: Replicate Raster

TTTotE [2ToUES [4TO0ES [8TIOUES |

1 copy of
[Raster

2 copies | 8.16s 570s | 3.88s | 3.24s
OfRaESEr— (337 (22%) (/%) (- 8%)

12.18s | 7325 | 417s | 3.00s

Setup: SPMD style, partitioned input dataset per node
Point: copies of bottleneck filter enough to balance flow

“ MARY AR Alan Sussman (als@cs.umd.edu) 23

|
JExperiment — Resource Heterogeneity

= Isosurface rendering on Red, Blue, Rogue Linux clusters at
Maryland
- Red- 16 2processor PII-450, 256MB, 18GB SCSI disk
- Blue -8 2-processor PlII-550, 1GB, 2-8GB SCSI disk +
1 8-processor PIII-450, 4GB, 2-18GB SCSI disk
- Rogue - 81 processor PIII-650, 128MB, 2-75GB IDE disks
- Red, Blue connected via Gigabit Ethernet, Rogue via 100Mbit
Ethernet
= Two implementations of Raster filter — z-buffer and active
pixels (the one used in previous experiment)

“ MY LARTY Alan Sussman (als@cs.umd.edu) 24

‘ | Experimental setup

32.0MB Z-buffer
15GB 38.6 MB 118 MB 28.5 MB Active Pixel

g L]
() VAR
R)k
read isosurface shade+ merge
dataset _extraction rasterize | view

Active Pixel 0.64s 1.64s 11.67s 0.73s =14.68s
Z-buffer 0.68s 1.65s 9.43s 0.90s =12.66s

Experiment to follow combines R and E filters, since that showed
best performance in experiments not shown

L3 ALY LANTE Alan Sussman (als@cs.umd.edu) 25

| Varying number of nodes

Active Pixel Rendering Z-buffer Rendering

Ponfiguration #Ra 9 1 4 q
rjode rodes rfjodes rjodes rjode rjodes rjodes nodes
RE-Ra-M 0) [nfa p2.7 |48 (29 |[nfa J13 |77 [10.7
(1) 122 |73 |42 |30 107 |79 |79 [115
RE-RaM 2(0) |nfa 7.7 [32 |26 |[nfa [93 105 [19.0
22) 82 |57 |39 |32 [86 |89 117 [208

Only Red nodes used —each one runs 1 RE, 0, 1, or 2 RA, and one runs M

& i AR LAY Alan Sussman (als@cs.umd.edu) 26

‘J Heterogeneous nodes

1 data node |2 data nodes |4 data nodes |8 data nodes

prtwen I on 1o oo

P
D

npn Lwoo

P
©

rR oo

RE- 73| 303057 26| 3.0|44] 30|35] 38| 29|38

P
D

R- 82| 40|42|65| 41| 40|51 41|41) 40| 3742

Active Pixel algorithm on 8-processor Blue node + Red data nodes
Blue node runs 7 Ra or ERacopies and M, Red nodes each run 1 of each except M

= ERREITY
ﬁ' AR LA Alan Sussman (als@cs.umd.edu) 27

|
JSkewed data distribution

= Experimental setup
- 25GB dataset from UT ParSSim (bigger grid than earlier
experiments)

- Hilbert curve declustering onto disks on 2 Blue, 2 Rogue
nodes

- Skew moves part of data from Blue to Rogue nodes

S ERRLITY G
'h' SAARY LADLE Alan Sussman (als@cs.umd.edu) 28

‘ J Skewed data distribution

BalancedwhetvemxelR endering LT ——

e

T

& AT LA Alan Sussman (als@cs.umd.edu) 29

|
JExperimental Implications

Multiple group instances

- Higher utilization of under-used resources

- Reduce application response time

- but ... requires work co-execution tolerance
Transparent copies can help

- Most filter decompositions are unbalanced

- Heterogeneous CPU capacity / load

- but ... requires buffer out-of-order tolerance

ﬁ' MARY LAMNT Alan Sussman (als@cs.umd.edu) 30

‘J Ongoing and Future Work

Ongoing and Future work

- Automated placement, instances, transparent copies
- predictive (cost models)
- adaptive (work feedback)

- Filter accumulator support (partitioning, replication)

- Java filters

- CCA-compliant filters

- Very large datasets — including HDF5 format
- Using storage clusters at UMD and OSU, then

testbed at LLNL

MARY LAY Alan Sussman (als@cs.umd.edu) 31

