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‘ ] Targeted Applications

Pathology

Volume
Rendering

Surface
¥ |Groundwater
Modeling

Satellite
Data Analysis
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JRuntime Environment

Heterogeneous Shared Resources:
= Host level: machine, CPUs, memory, disk storage
= Network connectivity

Many Remote Datasets:

= Inexpensive archival storage clusters (1TB ~ $10k)
= Islands of useful data

= Too large for replication
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JDataCutter

Indexing Service

= Multilevel hierarchical indexes based on spatial indexing
methods - e.g., R-trees
- Relies on underlying multi-dimensional space
- User can add new indexing methods

Filtering Service

m Distributed C++ component framework

= Transparent tuning and adaptation for heterogeneity
= Filters implemented as threads — 1 process per host
Versions of both services integrated into SDSC SRB
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‘J Indexing - Subsetting

Datasets are partitioned into segments
- used to index the dataset, unit of retrieval

- Spatial indexes built from bounding boxes of all
elements in a segment

Indexing very large datasets

- Multi-level hierarchical indexing scheme

- Summary index files -- for a collection of segments or
detailed index files

- Detailed index files -- to index the individual segments
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[
. [Filter-Stream Programming (FSP)

Purpose: Specialized components for processing data

= based on Active Disks research [Acharya, Uysal, Saltz: ASPLOS'98],
dataflow, functional parallelism, message passing.

= filters — logical unit of computation

~ high level tasks

- init,process,finalize interface

= streams — how filters communicate & reconstruction )
- unidirectional buffer pipes A facact et )

- uses fixed size buffers (min, good) m

= manually specify filter connectivity
and filter-level characteristics
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“ Placement

= The dynamic assignment of filters to particular hosts
for execution is placement (or mapping)
= Optimization criteria:
- Communication
= leverage filter affinity to dataset
= minimize communication volume on slower connections
= c0-locate filters with large communication volume
- Computation
= expensive computation on faster, less loaded hosts
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|
JFSP: Abstractions

Filter Group

- logical collection of filters to use together
- application starts filter groupinstances

D... (] :QQ
Unit-of-work cycle \
- “work”is application defined (ex: a query) hmgp

- work is appended to running instances

- init(), process(), finalize() called for each work
- process() returns { EndOfWork | EndOfFilter }
- allows for adaptivity
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“ Optimization - Group Instances
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host1 (2 cpu) host2 (2 cpu) host3 (2 cpu)

Match # instances to environment (CPU capacity, network)
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|
JExperiment - Application Emulator

Parameterized dataflow filter

- consume from all inputs |:|—C)<ID:|
- compute h_ PP
- produce to all outputs

Filter

Application emulated:

- process 64 units of work m

- single batch
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‘J Instances: Vary Number, Application
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Setup: UMD Red Linux cluster (2 processor Pl 450 nodes)
Point: # instances depends on application and environment
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[
. |Group Instances (Batches)
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Hast1 (2 cpu) Hast2 (2 cpu)

St3 (2 cpu)

Work issued in instance batches until all complete.
Matching # instances to environment (CPU capacity)
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“ Instances: Vary Number, Batch Size

___ CPU Intensive
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Setup: (Optimal) is lowest all time
Point: # instances depends on application and environment
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JAdding Heterogeneity
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‘ | Optimization - Transparent Copies

FSP Abstraction Q_

» replicate individual filters

= fransparent
- work-balance among copies
- better tune resources to actual filter needs

= Provide “single-stream” illusion
- Multiple producers and consumers, deadlock, flow control
- Invariant: UOW, < UOW,,,

= Problem: filter state
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JRuntime Workload Balancing

Use local information:
- queue size, send time / receiver acks
= Adjust number of transparent copies

= Demand based dataflow (choice of consumer)
- Within a host - perfect shared queue among copies

- Across hosts
= Round Robin
= Weighted Round Robin

= Demand -Driven sliding window (on buffer consumption rate)

= User-defined

& Ay LANT Alan Sussman (sls@cs.umd ed)




‘ | Experiment — Virtual Microscope

» Clientserver system for interactively visualizing digital slides
Image Dataset (100MB to 5GB per focal plane)
Rectangular region queries, multiple data chunk reply

» Hopkins Linux cluster— 4 1-processor, 1 2-processor PlII-800,
2 80GB IDE disks, 100Mbit Ethernet

= Decompress filter is most expensive, so good candidate for
replication

= 50 queries at various magnifications, 512x512 pixel output

CipGoom~iew
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[
 Virtual Microscope Results

Response Time (seconds)

R-DC-Z-V \verage | 400x 200x 100x 50x

R-h-h-h-h 2.10 0.38 0.73 1.73 6.95

9-0-0-9 1.49 0.37 0.62 1.27 4.60

02909 115 | 039 | 050 | 095 | 3.41

Na(4)-0(2ra9 1.17 0.39 0.50 0.96 3.50

(

Na(2)-0(2+a-9 1.15 0.37 0.49 0.95 3.43
(‘
(

0(2)-(2}bb 1.68 0.45 0.68 1.27 5.34

dg-ggg 144 | 033 | o058 | 126 | 446
d92) 994 108 | 033 ] o045 ] 092 | 324
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‘ ] Experiment - Isosurface Rendering

» UT Austin ParSSim species transport simulation
Single time step visualization, read all data

= Setup: UMD Red Linux cluster (2 processor PIl 450 nodes)
15GB

:: L]
@—O——W
“E/ ~\Ra/ -
read isosurface shade+  merge
aset  extraction rasterize Lvie

0.64s 1.64s 11.67s 0.73s  =14.68s (sum)
43% 11.2% 79.5% 50%  =12.65s (time)
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|
JSampIe Isosurface Visualization

V=0.35 V=07
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‘ | Transparent Copies: Replicate Raster

TTTotE [2ToUES [4TO0ES [8TIOUES |

1 copy of
[Raster

2 copies | 8.16s 570s | 3.88s | 3.24s
OfRaESEr— (337 (22%) (/%) (- 8%)

12.18s | 7325 | 417s | 3.00s

Setup: SPMD style, partitioned input dataset per node
Point: copies of bottleneck filter enough to balance flow
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|
JExperiment — Resource Heterogeneity

= Isosurface rendering on Red, Blue, Rogue Linux clusters at
Maryland
- Red- 16 2processor PII-450, 256MB, 18GB SCSI disk
- Blue -8 2-processor PlII-550, 1GB, 2-8GB SCSI disk +
1 8-processor PIII-450, 4GB, 2-18GB SCSI disk
- Rogue - 81 processor PIII-650, 128MB, 2-75GB IDE disks
- Red, Blue connected via Gigabit Ethernet, Rogue via 100Mbit
Ethernet
= Two implementations of Raster filter — z-buffer and active
pixels (the one used in previous experiment)
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‘ | Experimental setup

32.0MB Z-buffer
15GB 38.6 MB 118 MB 28.5 MB Active Pixel

g L]
() VAR
R )k
read isosurface shade+  merge
dataset _extraction rasterize | view

Active Pixel  0.64s 1.64s 11.67s 0.73s  =14.68s
Z-buffer 0.68s 1.65s 9.43s 0.90s =12.66s

Experiment to follow combines R and E filters, since that showed
best performance in experiments not shown
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| Varying number of nodes

Active Pixel Rendering  Z-buffer Rendering

Ponfiguration #Ra 9 1 4 q
rjode rodes rfjodes rjodes rjode rjodes rjodes nodes
RE-Ra-M 0) [nfa p2.7 |48 (29 |[nfa J13 |77 [10.7
(1) 122 |73 |42 |30 107 |79 |79 [115
RE-RaM  2(0) |nfa 7.7 [32 |26 |[nfa [93 105 [19.0
22) 82 |57 |39 |32 [86 |89 117 [208

Only Red nodes used —each one runs 1 RE, 0, 1, or 2 RA, and one runs M
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‘J Heterogeneous nodes

1 data node |2 data nodes |4 data nodes |8 data nodes

prtwen I on 1o oo

P
D

npn Lwoo

P
©

rR oo

RE- 73| 303057 26| 3.0|44] 30|35] 38| 29|38

P
D

R- 82| 40|42|65| 41| 40|51 41|41) 40| 3742

Active Pixel algorithm on 8-processor Blue node + Red data nodes
Blue node runs 7 Ra or ERacopies and M, Red nodes each run 1 of each except M

= ERREITY
ﬁ' AR LA Alan Sussman (als@cs.umd.edu) 27

|
JSkewed data distribution

= Experimental setup
- 25GB dataset from UT ParSSim (bigger grid than earlier
experiments)

- Hilbert curve declustering onto disks on 2 Blue, 2 Rogue
nodes

- Skew moves part of data from Blue to Rogue nodes
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‘ J Skewed data distribution

BalancedwhetvemxelR endering LT ——

e

T
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JExperimental Implications

Multiple group instances

- Higher utilization of under-used resources

- Reduce application response time

- but ... requires work co-execution tolerance
Transparent copies can help

- Most filter decompositions are unbalanced

- Heterogeneous CPU capacity / load

- but ... requires buffer out-of-order tolerance
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‘J Ongoing and Future Work

Ongoing and Future work

- Automated placement, instances, transparent copies
- predictive (cost models)
- adaptive (work feedback)

- Filter accumulator support (partitioning, replication)

- Java filters

- CCA-compliant filters

- Very large datasets — including HDF5 format
- Using storage clusters at UMD and OSU, then

testbed at LLNL
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