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1 Introduction

InterComm is a framework for coupling distributed memory parallel components that enables efficient com-
munication in the presence of complex data distributions. In many modern scientific applications, such
as physical simuations that model phenomena at multiple scales and resolutions, multiple parallel and/or
sequential components need to cooperate to solve a complex problem. These components often use different
languages and different libraries to parallelize their data. InterComm provides abstractions that work across
these differences to provide an easy, efficient, and flexible means to move data directly from one component’s
data structure to another.

The two main abstractions InterComm provides are the distribution, which describes how data is partioned
and distributed across multiple tasks (or processors), and the linearization which provides a mapping from
one set of elements in a distribution to another.

1.1 Distributions

InterComm classifies data distributions into two types, those in which entire blocks of an array are assigned to
tasks, a block decomposition, and those in which individual elements of an array are assigned independently
to a particular task, a translation table. In the case of the former, the data structure required to describe
the distribution is relatively small and can be replicated on each of the participating tasks. In the case of
the latter, there is a one-to-one correspondance between the elements of the array and the number of entries
in the data descriptor, therefore, the descriptor itself is rather large and must be partitioned across the
participating tasks. InterComm provides two primitives for specifying these types of distrubtions (Section
3.2) as well as identifying regions for transfer within these distributions (Section 3.3).

1.2 Linearization

A linearization is the method by which InterComm defines an implicit mapping between the source of a data
transfer distributed by one data parallel library and the destination of the transfer distributed by another
library. The source and destination data elements are each described by a set of regions.

One view of the linearization is as an abstract data structure that provides a total ordering for the data
elements in a set of regions. The linearization for a region is provided by the data parallel library or
application writer.

We represent the operation of translating from the set of regions S4 of A, distributed by 1ibX, to its
linearization, Lg,, by parallel library ¢;,x, and the inverse operation of translating from the linearization
to the set of regions as €l;;X:

Ls, = lipx(Sa)

Sa = lx(Lss)



Moving data from the set of regions S4 of A distributed by 1ibX to the set of regions Sp of B distributed
by library 1ibY can be viewed as a three-phase operation:

1. Lg, = l1ipx(Sa)
2. Ls, = L,

3. Sp =Ly (Lsy)

The only constraint on this three-phase operation is to have the same number of elements in S4 as in Spg,
in order to be able to define the mapping between data elements from the source to the destination.

The concept of linearization has several important properties:

e It does not require the explicit specification of the mapping between the source data and destina-
tion data. The mapping is implicit in the separate linearizations of the source and destination data
structures.

e A parallel can be drawn between the linearization and the marshal/unmarshal operations for the param-
eters of a remote procedure call. Linearization can be seen as an extension of the marshal/unmarshal
operations to distributed data structures.

1.3 Language Interfaces

InterComm supports programs written in both C and Fortran. The functions provided for these languages
are considered the low-level interfaces, as they provide greater flexibilty in defining distributions, but require
a greater amount of attention to detail. In Section 3, the C and Fortran InterComm interfaces are presented.
As a general rule, the Fortran functions are identical to their C counterparts. They only differ when a value
is returned from the C function, in which case this value becomes the last parameter of the Fortran call, or
when dealing with a C pointer type, which has been made to correspond with the integer type in Fortran.
The C interface is specified in intercomm.h.

InterComm also supports programs written in Fortran 90 and C++/P++[1]. The main objective of this
high-level interface is to encapsulate some of the complexity of describing and communicating data between
the local and the remote applications. In Section 4, the C++/P++ and Fortran 90 interfaces are described.

2 Downloading and Installation

The source package, as well as an online copy of this manual and a Programmer’s Reference, can be obtained
from the project website at http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic/.



InterComm depends on PVM]2] for communication, so the first step is to insure that you have a working
and properly configured installation of PVM available. In particular, InterComm will need the environment
variables PVM_ROOT and PVM_ARCH set during configuration.

InterComm uses the GNU Autotools[3] suite for building and installation. Generally, this involves the
sequence of commands:

./configure
make
make install

The configure command takes a number of options, use of the —-help flag will provide a full list of those
available. Options that are specific to InterComm are:

-- with-chaos=DIR

This causes the Chaos[4] extensions to be built (see Section A.1.1). DIR specifies where the Chaos
headers and libraries can be found.

-- with-mbp=DIR

This causes the MultiBlockParti[5] extensions to be built (see Section A.1.2). DIR specifies where
the MultiBlockParti headers and libraries can be found.

-— enable-f77

This causes the Fortran 77 interface to be built (default).

—-- enable-£f90

goth This causes the Fortran 90 interface to be built.

-- with-ppp=DIR

This causes the C++/P++ interface to be built. DIR specifies where the P4+ headers and libraries
can be found.

3 Low-Level Programming Tasks

This section describes how to use the C and Fortran interface for InterComm.



3.1 Initializing the Library

Before InterComm is used to transfer data between, you must first provide the runtime library with infor-
mation regarding the participants. This is done with two calls, IC_Init and IC_Wait.

3.1.1 IC_Init

This function initializes the underlying communication library and creates an internal representation of the
local program for use with other calls into the communication system.

Synopsis
C IC_Program* IC_Init(char* name, int tasks, int rank)

Fortran IC_Init(name, tasks, rank, myprog)
character name(*)
integer tasks, rank, myprog

Parameters
name the externally visible name of the program
tasks the number of tasks used
rank the rank of this task
Return value
an InterComm program data type
Ezxample

IC_Program* myprog;

char* name = ‘‘cmpiexample’’;

int rank, tasks = 4;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
myprog = IC_Init(name, tasks, rank);

3.1.2 IC_Wait

This function contacts a remote program to arrange for subsequent communications. It returns an internal
representation the a remote program for use in data exchanging operations.

Synopsis
C IC_Program™® IC_Wait(char* name, int tasks)



Fortran IC_Wait(name, tasks, prog)
character name(*)
integer tasks, prog

Parameters

name the name of the remote program

tasks the number of tasks used
Return value

an InterComm program data type
Ezxample

IC_Program* prog;

char* name = ‘‘cpvmexample’’;
int tasks = 8;

prog = IC_Wait(name, tasks);

3.1.3 IC_Sync

This function call allows the establishment of a synchronization point between two programs by causing each
to wait until both sides have made a matching call.

Synopsis
C int IC_Sync(IC_Program* myprog, IC_Program* prog)

Fortran IC_Sync(myprog, prog, status)
integer myprog, prog, status

Parameters

myprog the local program

prog the remote program
Return value

status, -1 indicates an error
Ezample

int sts;
sts = IC_Sync(myprog, prog);



3.2 Describing the Data Distribution

InterComm needs information about the distribution across tasks of the data structure, potentially managed
by a data parallel library employed by the application. In most parallel programs manipulating large multi-
dimensional arrays, a distributed data descriptor is used to store the necessary information about the regular
or irregular data distribution (e.g., a distributed array descriptor for MultiBlockParti[5] or a translation table
for Chaos[4]).

As the InterComm functions for moving data require a data descriptor that is meaningful within the context
of InterComm, several functions are provided for describing these two types of distributions. Ideally, these
functions would be used by the data parallel library developers in providing a function for translating from
their descriptor type to the one used by InterComm.

3.2.1 IC_Create_bdecomp_desc

Block decompositions assign entire array sections to particular tasks, allowing for a more compact description
of element locations. This function is used to describe a regular block decomposition.

Synopsis

C IC_Desc* IC_Create_bdecomp_desc(int ndims, int* blocks, int* tasks, int count)
Fortran IC_Create_bdecomp_desc(ndims, blocks, tasks, count, desc)
integer ndims, blocks(*), tasks(*), count, desc

Parameters

ndims the dimension of the distributed array

blocks a three-dimensional array of block bound specifications (see example)

The first dimension of the blocks array corresponds to the number of blocks used to distribute
the array (one per task — see information for the tasks array below). The second dimension
is always two (i.e., each block is represented by two n-dimensional points as a n-dimensional
rectangular box, where n is the number of dimensions of the distributed array for which the
decomposition is being created. Each of the two points represents the corners of the rectangular
box). The third dimension of the blocks array corresponds to n, where again n is the number
of the dimensions of the distributed array for which the decomposition is being created.

tasks the corresponding task assignments for the individual blocks
The k-th block in the blocks array (i.e., blocks[k][z][y]) is held by the k-th task (i.e., tasks[k])

count the number of blocks
Return value
an InterComm array descriptor data type

Ezxample



3.2.2

/* 4 blocks, 2 points, 2-dimensional points */
int blocks[4]1[2][2] = {

{{0,0},{3,3}}, /* block 0 */
{{0,4},{3,7}}, /* block 1 */
{{4,0},{7,3}}, /* block 2 */

3 */

{{4,4},{7,7}> /* block
+;
int tasks[4] = {0,1,2,3};
IC_Descx* desc;

desc = IC_Create_bdecomp_desc(2, &blocks[0][0][0], tasks, 4);

IC_Create_ttable_desc

The translation table is a representation of an arbitrary mapping between data points and tasks in a parallel
program. This information must be explicitly provided to the descriptor defining routine. This descriptor is
distributed, and therefore partial for the current task. This function assigns array elements to tasks using a
given partial map.

Synopsis

C IC_Desc* IC_Create_ttable_desc(int* globals, int* locals, int* tasks, int count)

Fortran IC_Create_ttable_desc(globals, locals, tasks, count, desc)
integer globals, locals(*), tasks(*), count, desc

Parameters

globals an array of global indices
locals the corresponding local indices
tasks a corresponding global index-to-task map

count the number of global indices

Return value

an InterComm array descriptor data type

Example

/* local portion of the global index space */

int globals[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15%};
int locals[16] = {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3};

int tasks[16] = {0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3};
IC_Desc* desc;

desc = IC_Create_ttable_desc(globals, locals, tasks, 16);

10



Since defining an entire block decomposition at once with IC_Create_bdecomp_desc may not be the most
convienent for a particular application, InterComm provides two other methods for iteratively defining a
distribution. Both of these functions operate upon an IC_Tree data type, which is not a complete descriptor,
but a template which may be converted to one when all the partitions have been specified.

3.2.3 IC_Create_bdecomp_tree

This function creates an empty IC_Tree data type with no partitions.

Synopsis
C IC_Tree* IC_Create_bdecomp_tree()

Fortran IC_Create_bdecomp_tree(root)
integer root

Return value
an InterComm partial decomposition data type
Example

IC_Treex* root;
root = IC_Create_bdecomp_tree();

3.2.4 1IC_Section

This function creates a partition that will cut across all dimensions of the global array. Generally, one of
these calls is made for each dimension.

Synopsis

C void IC_Section(IC_Tree* root, int dim, int count, int* indices)

Fortran IC_Section(root, dim, count, indices)
integer root, dim, count, indices(¥*)

Parameters

root a partial decomposition
dim the dimension to partition
count the number of partitions

indices the upper bounding index for each partition

Return value

11



none
Ezxample

int dim = 0, count = 2;
int indices[2] = {5, 103};
IC_Section(root, dim, count, indices);

3.2.5 IC_Partition

This function creates a partition for a particular subtree of the overall distribution allowing for the recursive
creation of irregular decompositions. It returns an array of IC_Tree which are the children of the subtree
partitioned. These children can then in turn be further partitioned.

Synopsis

C IC_Tree* IC Partition(IC_Tree* tree, int dim, int count, int* indices)
Fortran IC_Partition(root, tree, dim, count, indices, partitions)
integer root, tree, dim, count, indices(*), partitions(*)

Parameters

root a partial

tree a partial decomposition
dim the dimension to partition
count the number of partitions

indices the upper bounding index for each partition
Return value

an array of InterComm partial array descriptors
Ezample

int dim, count = 2;

IC_Treex partitionms;

int indices[2];

dim = O;

indices[0] = 5; indices[1] = 10;

partitions = IC_Partition(root, dim, count, indices);
dim = 1;

indices[0] = 4; indices[1] 10;
IC_Partition(&partitions[0], 1, count, indices);
indices[0] = 6; indices[1] = 10;
IC_Partition(&partitions[1], 1, count, indices);

12



3.2.6 IC_Verify_bdecomp_tree

Once all the partitions have been specified for a particular distribution, this function will verify that the
distribution is reasonable and covers the entire global array. It will return a InterComm array descriptor
which can then be used for schedule building and communication.

Synopsis

C IC_Desc* IC_Verify_bdecomp_tree(IC_Tree* root, int ndims, int* size, int* tasks, int count)

Fortran IC_Partition(root, ndims, size, tasks, count, desc)
integer root, ndims, size(*), tasks(*), count, desc

Parameters

root a partial decomposition

ndims the number of dimensions

size the size of the global array

tasks the tasks assignments for each block

count the number of blocks
Return value

an array of InterComm partial array descriptors
Example

IC_Descx* desc;

int size[2] = {10, 10};

int tasks[4] = {0, 1, 2, 3};

desc = IC_Verify_partial_desc(root, 2, size, tasks, 4);

3.3 Defining and Communicating Array Blocks
3.3.1 IC_Create_block region

This function allocates a region (block) designating the data elements for importing or exporting operations.

Synopsis

C IC_Region™ IC_Create_block region(int ndims, int* lower, int* upper, int* stride)

Fortran IC_Create_block_region(ndims, lower, upper, stride, region)
integer ndims, lower(*), upper(*), stride(*), region

Parameters

13



ndims the number of dimensions of the array
lower the lower bounds of the region to be transferred
upper the upper bounds of the region to be transferred

stride the stride of the region to be transferred
Return value

an InterComm region data type
Ezample

int ndims = 3;

int lower[3] = {0,0,0};

int upper[3] = {2,2,2};

int stride([3] = {1,1,1};

IC_Region* region_set[1];

region_set[0] = IC_Create_block_region(ndims, lower, upper, stride);

3.3.2 IC_Create_enum _region

This function allocates a region (enumeration) designating the data elements for importing or exporting
operations.

Synopsis

C IC_Region* IC_Create_enum region(int* indices, int size)

Fortran IC_Create_enum_region(indices, size, region)
integer indices(*), size, region

Parameters

indices a list of global indices

size the number of global indices listed
Return value

an InterComm region data type
Ezample

int indices[10] = {0,1,2,3,4,5,6,7,8,9};

int size = 10;

IC_Region* region_set[1];

region_set[O] = IC_Create_enum_region(indices, size);

14



3.3.3 IC_Compute_schedule

This function creates a communication schedule for transmitting or receiving regions (blocks) of an array.
The types of array descriptors used on either end of the communication determine how and where this
schedule is computed.

Synopsis
C IC_Sched* IC_Compute_schedule(IC_Program* myprog, IC_Program™* prog,
IC Desc* desc, IC_Region™™* region_set, int set_size)

Fortran IC_Compute_schedule(myprog, prog, desc, region_set,
set_size, sched)
integer myprog, prog, desc, region_set(*), set_size, sched

Parameters

myprog the InterComm application descriptor for the local program
prog the InterComm application descriptor for the remote program
desc the InterComm array descriptor
region_set an array of regions describing the data to be communicated
set_size the number of regions in the array

Return value
an InterComm schedule data type

Ezxample

IC_Sched* sched;
sched = IC_Compute_schedule(myprog, prog, desc, region_set, 1);

3.3.4 IC_Send_TYPE

This function is used for sending a set of array regions to a remote application. There is a send function for
each supported TYPE (char, short, int, float, double).

Synopsis

Fortran 90 IC_Send(to, sched, data, tag, status)
Note that the Fortran 90 IC_Send function is polymorphic, i.e., it does not require calling a
particular version depending on the type of the data being received as do the C and Fortran
77 counterparts.

C int IC_Send_char(IC_Program™* to, IC_Sched™ sched, char* data, int tag)

15



Fortran IC_Send_char(to, sched, data, tag, status)
integer to, sched, tag, status
integer*1 data(*)
C int IC_Send_short(IC_Program* to, IC_Sched* sched, short* data, int tag)
Fortran IC_Send_short(to, sched, data, tag, status)
integer to, sched, tag, status
integer*2 data(*)
C int IC_Send_int(IC_Program* to, IC_Sched* sched, int* data, int tag)

Fortran IC_Send_int(to, sched, data, tag, status)
integer to, sched, tag, status
integer data(*)

C int IC_Send_float(IC_Program™* to, IC_Sched* sched, float* data, int tag)

Fortran IC_Send_float(to, sched, data, tag, status)
integer to, sched, tag, status
real data(*)

C int IC_Send_double(IC_Program* to, IC_Sched* sched, double* data, int tag)

Fortran IC_Send_double(to, sched, data, tag, status)
integer to, sched, tag, status
real*8 data(*)

Parameters

to the InterComm application descriptor for the receiving program
sched the InterComm communication schedule

data the local array

tag a message tag for identification purposes
Return value

status, -1 indicates an error
Ezample

int sts, tag;
float* data = &A[0][0][0];
sts = IC_Send_float(prog, sched, data, tag);

3.3.5 IC_Recv_.TYPE

This function is used for receiving a set of regions from a sending process

. There is a receive function for
each supported TYPE.

Synopsis

16



Fortran 90 IC_Recv(from, sched, data, tag, status)
Note that the Fortran 90 IC_Recv function is polymorphic, i.e., it does not require calling a
particular version depending on the type of the data being received as do the C and Fortran
77 counterparts.

C int IC_Recv_char(IC_Program* from, IC_Sched* sched, char* data, int tag)

Fortran IC_Recv_char(from, sched, data, tag, status)
integer from, sched, tag, status
integer*1 data(*)

C int IC_Recv_short(IC_Program* from, IC_Sched* sched, short* data, int tag)

Fortran IC_Recv_short(from, sched, data, tag, status)
integer from, sched, tag, status
integer*2 data(*)

C int IC_Recv_int(IC_Program* from, IC_Sched* sched, int* data, int tag)

Fortran IC_Recv_int(from, sched, data, tag, status)
integer from, sched, tag, status
integer data(*)

C int IC_Recv_float(IC_Program* from, IC_Sched* sched, float* data, int tag)

Fortran IC_Recv_float(from, sched, data, tag, status)
integer from, sched, tag, status
real data(*)

C int IC_Recv_double(IC_Program* from, IC_Sched* sched, double* data, int tag)

Fortran IC_Recv_double(from, sched, data, tag, status)
integer from, sched, tag, status
real*8 data(*)

Parameters

from the sending program
sched the communication schedule
data the local array

tag a message tag
Return value

status, -1 indicates error
Ezxample

int sts, tag;

float data[500] [500] [500];

tag = 99;

sts = IC_Recv_float(prog, sched, data, tag);

17



3.4 Releasing Library Resources
3.4.1 IC_Free_program

This function releases memory used for holding an InterComm application descriptor and disconnects it from
the underlying communication infrastructure.

Synopsis

C void IC_Free_program(IC_Program* prog)

Fortran IC_Free_program(prog)
integer prog

Parameters

prog an InterComm data type representing a remote program
Return value

none
Ezample

IC_Free_program(prog) ;

3.4.2 IC_Free_desc

This function releases memory user for holding an InterComm array descriptor.

Synopsis

C void IC_Free_desc(IC_desc* desc)

Fortran IC_Free_desc(desc)
integer desc

Parameters

desc an InterComm distributed array descriptor
Return value

none
Ezxample

IC_Free_desc(desc);

18



3.4.3 IC_Free_region

This function is used to release memory for holding an InterComm region descriptor.

Synopsis

C void IC_Free_region(IC_region* region)

Fortran IC_Free_region(region)
integer region

Parameters

region an InterComm region descriptor representing an array block
Return value

none
Ezample

IC_Free_region(region);

3.4.4 IC_Free_sched

This function releases memory for holding an InterComm communication schedule.

Synopsis

C void IC_Free_sched(IC_Sched* sched)

Fortran IC_Free_sched(sched)
integer sched

Parameters

sched an InterComm communication schedule
Return value

none
Ezxample

IC_Free_sched(sched);
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3.4.5 IC_Quit

Shuts down the communication subsystem and frees the local program data structure.

Synopsis

C int IC_Quit(IC_Program* myprog)
Fortran IC_Quit(myprog, status)

integer myprog, status
Parameters
myprog the local program
Return value
status, -1 indicates an error
Ezxample

int sts;
sts = IC_Quit(myprog);

4 High-Level Programming Tasks

In some cases, the utilization of InterComm can be much simplified by relying on a few higher-level function
calls. The functions described in Section 3 provide a generic way for initializing and finalizing InterComm,
for defining array decompositions, for establishing communication between a pair of programs, among other
tasks. On the other hand, many applications can make use of a simplified interface that encapsulates most
of InterComm complexities. However, this high-level API, albeit being simpler, does not provide as much
flexibility as the low-level interface. For example, in order to use the high-level interface array distributions
must comply to a few canonical distributions as we will describe later in this document. The high-level API
is available for C4++ programs relying on the P4+ library and also for sequential Fortran 90 programs.

4.1 Creating Endpoints

The high-level API relies on the concept of a communication endpoint. The endpoint is an abstraction that
corresponds to a communication channel between a pair of programs that need to exchange arrays or array
sections. The establishment of a communication endpoint is the first step to ensure that data can flow
between a pair of programs.

20



4.1.1 EndPoint(Constructor)

Synopsis
C++ IC_EndPoint::IC_Endpoint(const char* endpointName, const unsigned mynproc,
const unsigned onproc, const unsigned myao, const unsigned oao, int& status)

Fortran 90 ic_endpointconstructor(icce, endpointName, mynproc, onproc, myao, oao, status)
ic_obj icce
character, (len=*) endpointName
integer mynproc, onproc, myao, oao, status
Parameters

icce returns a handle to the InterComm communication endpoint descriptor

endpointName the name for the endpoint

This must be in the format first program : second program (e.g., simulationl:simulation?2).
The Fortran 90 version requires explicitly appending a CHAR(0) to the end of the string.

mynproc the number of processors used by the local program
onproc the number of processors used by the remote (the other) program

myao the array ordering used by the local program
The valid inputs for this parameter are IC_ROW_MAJOR and IC_COLUMN_MAJOR.

oao the array ordering used by the remote (the other) program
The valid inputs for this parameter are IC_ROW_MAJOR and IC_COLUMN_MAJOR.

status returns the result of the endpoint creation operation
This result should always be checked to ensure that the endpoint is in sane state. In case of
success, status is set to IC_OK.

Return value

The C++ call is a C++ constructor call. The Fortran version returns a reference to the endpoint
in its icce parameter. Both calls return the status of the operation in the status parameter.

Ezample
C++:

IC_EndPoint right_left_ep("right:left",1,1,
IC_EndPoint::IC_COLUMN_MAJOR,IC_EndPoint::IC_COLUMN_MAJOR,ic_err);

Fortran 90:
type(ic_obj) :: icce

call ic_endpointconstructor(icce,’left:right’//CHAR(0),1,1,
IC_COLUMN_MAJOR,IC_COLUMN_MAJOR,ic_err)
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4.2 Communicating Array Sections

Once the communication endpoint is created, the two applications can start exchanging data, by exporting
and importing arrays or arrays subsections.

4.2.1 ExportArray
Synopsis

C++ IC_EndPoint::exportArray(const intArray& array, int& status)

Fortran 90 ic_exportarray(icce, array, status)
ic_obj icce
integer, dimension (:) array
integer status
C++ IC_EndPoint::exportArray(const floatArray&s array, int& status)
Fortran 90 ic_exportarray(icce, array, status)
ic_obj icce
real, dimension (:) array
integer status
C++ IC_EndPoint::exportArray(const doubleArray& array, int& status)

Fortran 90 ic_exportarray(icce, array, status)
ic_obj icce
double precision, dimension (:) array
integer status
Parameters

icce the exporting InterComm communication endpoint handle
array the array or array section to be transfered

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation is correctly performed regardless of the type of the array elements.

status returns the result of the export operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is C++ wvoid method invokation. The Fortran version also does not return a value.
Both calls return the status of the operation by setting the status parameter.

Ezample
C++:
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doubleArray DOUBLES(10,10);
Index I(3,6), J(1,4);
right_left_ep.exportArray(DOUBLES(J,I),ic_err);

Fortran 90:

double precision, dimension (10,10) :: DOUBLES
call ic_exportarray(icce,DOUBLES(2:5,4:9),ic_err);

4.2.2 ImportArray

Once an application starts exporting data, the other (remote) application is supposedly importing data.

Synopsis

C++ IC_EndPoint::importArray(const intArray& array, int& status)
Fortran 90 ic_importarray(icce, array, status)

ic_obj icce

integer, dimension (:) array

integer status
C++ IC_EndPoint::importArray(const floatArray& array, int& status)
Fortran 90 ic_importarray(icce, array, status)

ic_obj icce

real, dimension (:) array

integer status
C++ IC_EndPoint::importArray(const doubleArray& array, int& status)
Fortran 90 ic_.importarray(icce, array, status)

ic_obj icce

double precision, dimension (:) array

integer status

Parameters

icce the importing InterComm communication endpoint handle

array the array or array section to be received

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation will be correctly performed regardless of the type of the array elements.

status returns the result of the import operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value
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The C++ call is C++ wvoid method invokation. The Fortran version also does not return a value.
Both calls return the status of the operation in the status parameter.

Example

C++:

floatArray FLOATS(10);
Index 1(3,6);
right_left_ep.importArray(FLOATS(I),ic_err);

Fortran 90:

real, dimension (10) :: FLOATS
call ic_importarray(icce,FLOATS(2:5),ic_err);

4.3 Termination

When the pair of applications reach a point where data is no longer being exchanged, both applications are
expected to destroy their end of the communication endpoint to ensure a clean shutdown of InterComm and
also of the underlying communication infrastructure.

4.3.1 EndPoint(Destructor)
Synopsis
C++ IC_EndPoint::” IC_Endpoint()

Fortran 90 ic_endpointdestructor(icce)
ic_obj icce

Parameters
icce the InterComm endpoint to be shutdown
Return value

Note that the C++ call is an object destructor. It need not be called explicitly. In reality, the
destructor is automatically called for deallocating communication endpoint objects statically created.
The application writer is supposed to invoke the delete C++ operator to ensure that the destructor
properly finalizes InterComm.

Ezxample
C++:
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IC_EndPoint* right_left_ep = new IC_EndPoint("right:left",1,1,
IC_EndPoint::IC_COLUMN_MAJOR,IC_EndPoint::IC_COLUMN_MAJOR,ic_err);
delete right_left_ep; // indirectly invoking the object destructor

Fortran 90:

type(ic_obj) :: icce
call ic_endpointdestructor(icce)

4.4 Error Codes

All the high-level InterComm calls with the exception of the destructor call returns the status of the operation.
For successful operations IC_OK is returned. For unsuccessful operations, a variety of error codes can be
returned. A list of all possible return values is seen in Table 1.

InterComm provides an auxiliary function to help application developers handle erroneous operations. The
following function call/method invokation can be employed to print out a message stating the nature of the
error condition:

4.4.1 PrintErrorMessage
Synopsis

C++ IC_EndPoint::printErrorMessage(const char* msg, int& status)

Fortran 90 ic_printerrormessage(msg, status)
character (len=%*) msg
integer status

Parameters

msg an error message

This string will precede the actual text corresponding to the error code. For the Fortran 90
call the string must have a CHAR(0) as the last character.

status the error code for which the error message will be printed out
Return value

The C++ call is C++ wvoid method invokation. The Fortran version also does not return a value.
The function prints out a message warning the user that the error code is invalid, if status does not
hold any of the values displayed in Table 1.

Ezxample
C++:

right_left_ep.printErrorMessage("API call failed",ic_err);
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l Error Condition | Error Message

IC_OK no error

IC_GENERIC_ERROR generic error

IC_INVALID_NDIM invalid number of array dimensions

IC_.CANT_ALLOC_REGION can’t allocate InterComm array regions

IC_CANT_GET_DA_DESCRIPTOR can’t obtain distributed array descriptor

IC_.CANT_COMPUTE_COMM_SCHEDULE | can’t compute communication schedule

IC_.COMM_FAILURE communication (send/recv) failure

IC_INVALID_ENDPOINT_.NAME invalid endpoint name

IC_INITIALIZATION_FAILURE local program initialization failed

IC_.CANT_CONNECT_.TO_REMOTE can’t connect to remote program

IC_PVM_ERROR PVM error

IC_MPI_LERROR MPI error

IC_POINTER_TABLE_ERROR internal pointer translation table error — possibly
too many InterComm descriptors (regions, distri-
butions, etc) have been defefined

Table 1: InterComm high-level APT errors

Fortran 90:

call printErrorMessage(’API call failed’//CHAR(O),ic_err);

5 Compilation and Program Startup

This section contains some very basic guidelines for compiling and running coupled InterComm applications.
More detailed information for a particular platform can be gleaned from examining the generated Makefiles
in the examples directory of the distribution.

5.1 Compiling

The following example commands show the libraries needed for an InterComm application written in one
of the supported languages. The compiler names used are chosen to be generic, they may be different for a
particular system or communication library (i.e. MPI).

cc -o cexample cexample.c -1IC -lgpvm3 -1lpvm3

£77 -o fexample fexample.f -1ICf77 -1IC -1lfpvm3 -lgpvm3 -lpvm3

c++ -o pppexample pppexample.cpp —-1ICppp -1IC -lgpvm3 -1lpvm3 -1Ppp -1Ppp_static
£f90 -o f90example f90example.f90 -1ICf90 -1IC -1lfpvm3 -lgpvm3 -lpvm3
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Depending on your compiler you may need to link in the math library (-1m) as well.

Use of the MultiBlockParti or Chaos descriptor translation functions requires linking additional libraries,
(-1ICmbp and -1ICchaos, respectively).

5.2 Running

InterComm depends upon PVM for inter-program communication, so the first step for any successful coupling
is to start the PVM daemon on all the target machines. For this particular example, it is assumed that there
is no scheduler or access constraints for the hosts on which the programs will run and that these hosts have
been listed in a file called hosts.

echo ‘‘quit’’ | pvm hosts

mpirun -np 4 cexample
mpirun -np 8 fexample
echo ‘‘halt’’ | pvm

More complicated scenarios for starting the virtual machine are outside of the scope of this docuement and
are best handled by consulting the PVM docuementation. However, some scripts for working around the
constraints of IBM’s LoadLeveler[7] scheduler can be found in the scripts directory.

A Utility Functions

The following sections provide utility functions for interfacing with external libraries.

A.1 Descriptor Translation Functions
A.1.1 IC_Translate parti_descriptor

If support for MultiBlockParti is enabled during configuration (Section 2), inclusion of the header file
mbp2bdecomp.h will allow the use a translation function for converting MultiBlockParti DARRAY descrip-
tors to InterComm block decomposition descriptors.

Synopsis
C IC_Desc* IC_Translate_parti_descriptor(DARRAY™* darray)

Fortran IC_Translate_parti_descriptor(darray, desc)
integer darray, desc
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Parameters

darray a MultiBlockParti distributed array descriptor
Return value

an InterComm array descriptor data type
Ezxample

DARRAY* darray;
IC_Desc* desc;

/* ...create DARRAY using MultiBlockParti calls... */
desc = IC_Translate_parti_desciptor(darray);

A.1.2 IC_Translate_chaos_descriptor

If support for Chaos is enabled during configuration (Section 2), inclusion of the header file chaos2ttable.h
will allow the use of a translation function for converting Chaos TTABLE descriptors to InterComm translation
table descriptors.

Synopsis
C IC_Desc* IC_ Translate_chaos_descriptor(TTABLE* ttable)

Fortran There is no Fortran interface to Chaos
Parameters

ttable a Chaos translation table descriptor
Return value

an InterComm array descriptor data type
Ezxample

TTABLE* ttable;
IC_Descx* desc;

/* ...create TTABLE using Chaos calls... */
desc = IC_Translate_chaos_desciptor(ttable);
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B Example Code

There are several example programs in the example directory of the distribution. They demonstrate the
basic InterComm functionality needed to couple a pair of parallel programs. There are examples written
in both C and Fortran, each using either PVM or MPI to acheive parallelism. The files in this directory
include:

e Makefile

This builds the various codes and can be used as a template for other InterComm projects.

e cpvmexample.c
This code uses a translation table type data distribution and is meant to communicate with either
the fpvmexample or the cmpiexample.

e fpvmexample.f
This code uses a block decomposition data distribution and is meant to communicate with either
the fmpiexample or the cpvmexample.

e cmpiexample.c
This code uses a block decomposition data distribution and is meant to communicate with either
the cpvmexample or the fmpiexample.

e fmpiexample.f

This code uses a translation table type data distribution and is meant to communicate with either
the cmpiexample or the fpvmexample.

B.1 Wave Equation

The code in the WaveEquation directory illustrates how one can couple multiple applications using Inter-
Comm’s high-level interface. In this example, a 2-D wave equation simulation was broken into two halves in
the x-axis domain. Because of the split grid and the periodic boundary conditions, they have to exchange
data, which is accomplished by an Interpolator class (that, in the future, will be able to manipulate the
data and the grid as well). This class uses a communication endpoint. In this prototype, there are two
implementations for a communication endpoint: plain files - files are created, read from, and written to
(good for debugging purposes) - and InterComm.
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