A Manual for InterComm
Version 1.6

Norman Lo, II-Chul Yoon, Jae-Yong Lee, Christian Hansen,
Henrique Andrade, Guy Edjlali, Alan Sussman
Department of Computer Science
University of Maryland
College Park, MD 20742
{normanlo ,iyoon, jylee,chansen,edjlali,hcma, als}@cs .umd . edu

June 4, 2007



Contents

1 Introduction 2
1.1 Distributions . . . . . . . L 2
1.2 Linearization . . . . . . . . . . . 2
1.3 Language Interfaces . . . . . . . . . . . e 3
1.4 Guidelines for using the APT . . . . . . .. . . 4

2 Downloading and Installation 4

3 Low-Level Programming Tasks 5
3.1 Inmitializing the Library . . . . . . . . . . . . e 5

311 ICnit . . . . oo e 5
3.1.2 IC_Wait . . . . o e 6
3.1.3 ICSync . . .o 7
3.2 Describing the Data Distribution . . . . . .. ... ... . oL oo 7
3.2.1 IC_Create.bdecomp.desc . . . . . . . . . . . . e 7
3.2.2 IC_Create_ttable-desc . . . . . . . . .. .. ... 8
3.2.3 IC_Createbdecomp.tree . . . . . . . . . . . . 9
3.24 TC_Section . . . . . . . . . e e 10
3.2.5 IC_Partition . . . . . . . . . e 10
3.2.6 IC_Verify_bdecomp_tree . . . . . . . . . . . . 11
3.3 Defining and Communicating Array Blocks . . . . .. ... ... oL 12
3.3.1 IC._Createblockregion . . . . . . . . . . . . i 12
3.3.2 IC Createenum.region . . . . . . . . . . . oL e e 13
3.3.3 IC_Computeschedule . . . .. . .. . . . . .. . ... e 14
3.34 ICSend TYPE . . . . . . 14



335 ICRecv.TYPE . . . . . e 15

3.3.6 IC_Bcastlocal TYPE . . . . . . . . . 17
3.3.7 ICRecvlocal TYPE . . . . . . o . . e 18

3.4 Releasing Library Resources . . . . . . . . . . . . . e 19
3.4.1 IC_Freeprogram . . . . . . . . .. o vttt e 19
3.4.2 IC_Freedesc . . . . . . . . e e 20
3.4.3 IC_Freeregion . . . . . . . . . e 20
344 IC_Freessched . . . . . . . e 21
345 ICQuit . . . . oo 21

4 Low-Level XJD-based Programming Tasks 22
4.1 Imitializing the Library . . . . . . . . . . . L 22
4.1.1 IClnitialize . . . . . . . . . . e 22

4.2 Describing the Data Distribution . . . . . . ... .. .. oL oo 23
4.3 Defining and Communicating Array Blocks . . . . . . ... ... o L oo 23
4.3.1 IC_Register_region . . . . . . . . . . . e e 23
4.3.2 IC_Commitregion . . . . . . . . . . e 24
4.3.3 ICExport . . . . . . e 24
4.3.4 ICImMpPOrt . . . . . . . e e 25
4.3.5 IC Bcastlocal . . . . . . .. . e 25
4.3.6 ICRecvlocal . . . . . . . . . e 26

4.4 Releasing Library Resources . . . . . . . . . . . . e 27
4.4.1 IC_Finalize . . . . . . . . e 27

5 High-Level Programming Tasks 28
5.1 Creating Endpoints . . . . . . . . . . L 28



5.1.1 EndPoint(Constructor) . . . . . . . . . . 28

5.2 Communicating Array Sections . . . . . . . . . . . 29
5.2.1 ExportArray . . . ... . 29
5.2.2 TImportArray . . . . . . .. e 30
5.2.3 Broadcast Array . . . . ... 32
5.2.4 Receive Broadcast Array . . . . . . . ... 33

5.3 Termination . . . . . . . . .. e 34
5.3.1 EndPoint(Destructor) . . . . . . . . ... 34

54 Error Codes . . . . . . . L e 35
5.4.1 PrintErrorMessage . . . . . . . ... e 35

High-Level XJD-based Programming Tasks 36

6.1 Creating EndpointSet . . . . . . . . .. 37
6.1.1 EndPointSet(Constructor) . . . . . . . . . . L 37

6.2 Registering and committing arrays . . . . . . .. . Lo oL 38
6.2.1 RegisterArray . . . . . . ... 38
6.2.2  CommitArrays . . . . . . . . . e 39

6.3 Communicating Array Sections . . . . . . . . . .. 40
6.3.1 ExportArray . . . . . ... e 40
6.3.2 ImportArray . . . . . . .. 41
6.3.3 Broadcast Array . . . . ... e 42
6.3.4 Receive Broadcast Array . . . . . . . . ... e 43

6.4 Termination . . . . . . . .. oL e e e e 44
6.4.1 EndPointSet(Destructor) . . . . . . . . . ... 45

6.5 Error Codes . . . . . . . . L e 45
6.5.1 PrintErrorMessage . . . . . . . .. Lo e 45



Compilation and Program Startup
7.1 Compiling . . . . . . . e e e

7.2 Running . . . . . ..

Utility Functions

A.1 Descriptor Translation Functions . . . . . . . . . . . ... .. ...
A.1.1 IC_Translate_parti_-descriptor . . . . . . . . . . .. . ...
A.1.2 IC_Translate_chaos_descriptor . . . . . . . . . . . . .. .

XML Job Description and HPCALE

B.1 XML Job Description . . . . . . . . . .. e
B.1.1 Component . . . . . .. .. e e e
B.1.2 Connection . . . . . . . . e

B.2 High-Performance Computing Application Launching Environment (HPCALE) . . . . . . ..

Example Code
C.1 Wave Equation . . . . . . . . . . . . e

C.2 Rainbow . . . . . . . e



1 Introduction

InterComm is a framework for coupling distributed memory parallel components that enables efficient com-
munication in the presence of complex data distributions. In many modern scientific applications, such
as physical simuations that model phenomena at multiple scales and resolutions, multiple parallel and/or
sequential components need to cooperate to solve a complex problem. These components often use different
languages and different libraries to parallelize their data. InterComm provides abstractions that work across
these differences to provide an easy, efficient, and flexible means to move data directly from one component’s
data structure to another.

The two main abstractions InterComm provides are the distribution, which describes how data is partioned
and distributed across multiple tasks (or processors), and the linearization which provides a mapping from
one set of elements in a distribution to another.

1.1 Distributions

InterComm classifies data distributions into two types, those in which entire blocks of an array are assigned to
tasks, a block decomposition, and those in which individual elements of an array are assigned independently
to a particular task, a translation table. In the case of the former, the data structure required to describe
the distribution is relatively small and can be replicated on each of the participating tasks. In the case of the
latter, there is a one-to-one correspondance between the elements of the array and the number of entries in the
data descriptor, therefore, the descriptor itself can be large and must be partitioned across the participating
tasks. InterComm provides two primitives for specifying these types of distrubtions (Section 3.2), as well as
primitives to identify regions (sub-arrays) to transfer within these distributions (Section 3.3).

1.2 Linearization

A linearization is the method by which InterComm defines an implicit mapping between the source of a data
transfer distributed by one data parallel program and the destination of the transfer distributed by another
program. The source and destination data elements are each described by a set of regions.

One view of the linearization is as an abstract data structure that provides a total ordering for the data
elements in a set of regions. The linearization for a region is provided by a data parallel library or directly
by the application writer.

We represent the operation of translating from the set of regions S4 of A, distributed by 1ibX, to its
linearization, Lg,, by parallel library ¢;,x, and the inverse operation of translating from the linearization
to the set of regions as €l;;X:

Ls, = lipx(Sa)

Sa = lx(Lss)



Moving data from the set of regions S4 of A distributed by 1ibX to the set of regions Sp of B distributed
by library 1ibY can be viewed as a three-phase operation:

1. Lg, = l1ipx(Sa)
2. Ls, = L,

3. Sp =Ly (Lsy)

The only constraint on this three-phase operation is to have the same number of elements in S4 as in Spg,
in order to be able to define the mapping between data elements from the source to the destination.

The concept of linearization has several important properties:

e It does not require the explicit specification of the mapping between the source data and destina-
tion data. The mapping is implicit in the separate linearizations of the source and destination data
structures.

e A parallel can be drawn between the linearization and the marshal/unmarshal operations for the param-
eters of a remote procedure call. Linearization can be seen as an extension of the marshal/unmarshal
operations to distributed data structures.

1.3 Language Interfaces

InterComm supports programs written in both C and Fortran77. The functions provided for these languages
are considered the low-level interfaces, as they provide great flexibilty in defining distributions, but require a
large amount of attention to detail. In Section 3, the C and Fortran77 InterComm interfaces are presented.
As a general rule, the Fortran functions are identical to their C counterparts. They only differ when a value
is returned from the C function, in which case this value becomes the last parameter of the Fortran call, or
when dealing with a C pointer type, which has been made to correspond with the integer type in Fortran.
The C interface is specified in the intercomm.h source file in the InterComm software distribution.

InterComm also supports programs written in Fortran90 and C++/P++[2]. The main objective of this
high-level interface is to encapsulate some of the complexity of describing and communicating data between
the local and the remote applications. In Section 5, the C++4/P++ and Fortran90 interfaces are described.

In addition to those interfaces, InterComm versions 1.5 and above provide a new interface, available with
both low-level and high-level interfaces that employs an XML Job Description (XJD) to further decouple
implementations of separate programs that communicate with InterComm, as will be further described in
Sections 4 and 6.



1.4 Guidelines for using the API

In total, InterComm defines three types of API - low-level, high-level and XJD-based, and they provide
different levels of granularity for handling InterComm program behavior. The low-level programming API,
described in Section 3, provides the finest control over program behavior for initializing and finalizing In-
terComm, and for defining and handling regions in different programs. The high-level programming API,
described in Section 5 is an encapsulation of the low-level programming API that provides simplified in-
terfaces for C++, relying on the P4++ parallel array class library, and for sequential Fortran90 programs.
The low-level XJD-based programming API, described in Section 4 is another encapsulation of the low-level
programming API that provides simplified interfaces for C and Fortran77 programs, and is described in
Section 4. The XJD-based programming APT is distinctive in that an XML Job Description (XJD) is used
to create connections between InterComm programs, to enable different programs to communicate with each
other with each program only specifying its side of the communication (an import or export operation),
and not specifying anything about the program(s) on the other side of the communication operation. An
XJD-based high-level API corresponding to the original InterComm high-level API is described in Section 6.

2 Downloading and Installation

The source package, as well as an online copy of this manual and a Programmer’s Reference, can be obtained
from the project website at http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic/.

InterComm depends on PVM [3] for interprocess communication, so the first step is to insure that you have
a working and properly configured installation of PVM available. In particular, InterComm will need the
environment variables PVM_ROOT and PVM_ARCH set during configuration.

InterComm uses the GNU Autotools [4] suite for building and installation. Generally, this involves the
sequence of commands:

./configure
make
make install

The configure command takes a number of options; use of the —-help flag will provide a full list of those
available. Options that are specific to InterComm are:

-- with-chaos=DIR
This causes the Chaos [5] extensions to be built (see Section A.1.1). DIR specifies where the Chaos
headers and libraries can be found.

-- with-mbp=DIR

This causes the MultiBlock Parti [6] extensions to be built (see Section A.1.2). DIR specifies where
the MultiBlockParti headers and libraries can be found.



—-- with-ppp=DIR
This causes the C+4/P++ interface to be built. DIR specifies where the P++ headers and libraries
can be found.

-— enable-f77
This causes the Fortran 77 interface to be built (default).

-- enable-£f90
This causes the Fortran 90 interface to be built.

—-- enable-tests
This causes the test scripts to be built to ensure the installation is successful.

-- enable-mpi
This causes the distribution test cases using MPI to be built (default).
If ——with-ppp=DIR is used, this will be enabled automatically.

—-- enable-debug
This causes debug statements to be shown while using InterComm to help find the source of bugs and
other program problems.

3 Low-Level Programming Tasks

This section describes how to use the C and Fortran interfaces for InterComm.

3.1 Initializing the Library

Before InterComm is used to transfer data between programs, each program must first provide the runtime
library with information regarding the programs participating in the communication. This is done with two
calls, IC_Init and IC_Wait.

3.1.1 IC_Init

This function initializes the underlying communication library and creates an internal representation of the
local program for use with other calls into the communication system.

Synopsis

C IC_Program* IC_Init(char* name, int tasks, int rank)

Fortran IC_Init(name, tasks, rank, myprog)
character name(*)
integer tasks, rank, myprog



Parameters

name the externally visible name of the program
tasks the number of tasks used

rank the rank of this task

Return value

an InterComm program data type
Ezxample

IC_Program* myprog;

char* name = ‘‘cmpiexample’’;

int rank, tasks = 4;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
myprog = IC_Init(name, tasks, rank);

3.1.2 IC_Wait

This function contacts a remote program to arrange for subsequent communications. It returns an internal
representation of the remote program for use in data exchange operations.

Synopsis
C IC_Program* IC_Wait(char* name, int tasks)

Fortran IC_Wait(name, tasks, prog)
character name(*)
integer tasks, prog

Parameters

name the name of the remote program

tasks the number of tasks used
Return value

an InterComm program data type
Erample

IC_Program* prog;

char* name = ‘‘cpvmexample’’;
int tasks = 8;

prog = IC_Wait(name, tasks);



3.1.3 IC_Sync

This function call allows the establishment of a synchronization point between two programs by causing each
to wait until both sides have made a matching call.

Synopsis

C int IC_Sync(IC_Program* myprog, IC_Program* prog)

Fortran IC_Sync(myprog, prog, status)
integer myprog, prog, status

Parameters

myprog the local program

prog the remote program
Return value

status, -1 indicates an error
Ezample

int sts;
sts = IC_Sync(myprog, prog);

3.2 Describing the Data Distribution

InterComm needs information about the distribution across tasks of a data structure, managed either by
the application programmer or by a data parallel library employed by the application. In most parallel
programs manipulating large multidimensional arrays, a distributed data descriptor is used to store the
necessary information about the regular or irregular data distribution (e.g., a distributed array descriptor
for MultiBlock Parti [6] or a translation table for Chaos [5]).

As the InterComm functions for moving data require a data descriptor that is meaningful within the context
of InterComm, several functions are provided for describing these two types of distributions. Ideally, these
functions would be used by a data parallel library developer to provide a function that translates from their
data descriptor specification to the one used by InterComm. Such translation functions are provided for
MultiBlock Parti, Chaos and P++ in the InterComm distribution (see Section A).

3.2.1 IC_Create_bdecomp_desc

Block decompositions assign entire array sections to particular tasks (processes), allowing for a compact
description of array element locations. This function is used to describe a regular block decomposition.

10



Synopsis

C IC_Desc* IC_Create_bdecomp_desc(int ndims, int* blocks, int* tasks, int count, int arrayOrder)

Fortran IC_Create_bdecomp_desc(ndims, blocks, tasks, count, desc, arrayOrder)
integer ndims, blocks(*), tasks(*), count, dese, arrayOrder

Parameters

ndims the dimension of the distributed array

blocks a three-dimensional array of block bound specifications (see example)

The first dimension of the blocks array corresponds to the number of blocks used to distribute
the array (one per task — see information for the tasks array below). The second dimension
is always two (i.e., each block is represented by two n-dimensional points as an n-dimensional
rectangular box, where n is the number of dimensions of the distributed array for which the
decomposition is being created. Each of the two points represents the corners of the rectangular
box). The third dimension of the blocks array corresponds to n, where again n is the number
of the dimensions of the distributed array for which the decomposition is being created.

tasks the corresponding task assignments for the individual blocks, starting from 0 in both C and
Fortran

The k-th block in the blocks array (i.e., blocks[k][z][y]) is held by the k-th task (i.e., tasks[k])

count the number of blocks

arrayOrder the order (IC_ ROW_MAJOR or IC.COLUMN_MAJOR) of the distributed array
Return value

an InterComm array descriptor data type. NULL or negative value means error
Ezxample

/* 4 blocks, 2 points, 2-dimensional points */
int blocks[4][2][2] = {
{{0,0},{3,3}}, /* block 0 */
{{0,4},{3,7}}, /* block 1 */
{{4,0},{7,3}}, /* block 2 */
{{4,4},{7,7}} /* block 3 %/
};
int tasks([4] = {0,1,2,3%};
IC_Descx* desc;

desc = IC_Create_bdecomp_desc(2, &blocks[0][0][0], tasks, 4, IC_ROW_MAJOR);
3.2.2 1IC_Create_ttable_desc

The translation table is a representation of an arbitrary mapping between data elements and tasks in a
parallel program. This information must be explicitly provided to this routine defining the descriptor. The

11



descriptor is distributed, and therefore partial for a given task. This function assigns array elements to tasks
using a given partial map.

Synopsis

C IC_Desc* IC_Create_ttable_desc(int* globals, int* locals, int* tasks, int count)

Fortran IC_Create_ttable_desc(globals, locals, tasks, count, desc)
integer globals, locals(*), tasks(*), count, desc

Parameters

globals an array of global indices
locals the corresponding local indices
tasks a corresponding global index-to-task map, starting from 0 in both C and Fortran

count the number of global indices
Return value

an InterComm array descriptor data type
Ezxample

/* local portion of the global index space */

int globals[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
int locals[16] = {0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3};

int tasks[16] = {0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3};
IC_Desc* desc;

desc = IC_Create_ttable_desc(globals, locals, tasks, 16);

Since defining an entire block decomposition at once with IC_Create_bdecomp_desc may not be very con-
venient for a particular application, InterComm provides two additional methods for iteratively defining a
distribution. Both of these functions operate upon an IC_Tree data type, which is not a complete descriptor,
but a template which may be converted to one when all the partitions assigned to tasks have been specified.

3.2.3 IC_Create_bdecomp_tree
This function creates an empty IC_Tree data type with no partitions.

Synopsis

C IC_Tree* IC_Create_bdecomp_tree()

Fortran IC_Create_bdecomp_tree(root)
integer root

12



Return value

an InterComm partial decomposition data type

Ezxample

IC_Tree* root;
root = IC_Create_bdecomp_tree();

3.2.4 1IC_Section

This function creates a partition that will cut across all dimensions of the global array. Generally, one of
these calls is made for each dimension and the order of calls needs to be from 1st to nth dimension.

Synopsis

C void IC_Section(IC_Tree* root, int dim, int count, int* indices)

Fortran IC_Section(root, dim, count, indices)
integer root, dim, count, indices(¥*)

Parameters

root a partial decomposition
dim the dimension to partition, starting from 0 in both C and Fortran
count the number of partitions

indices the upper bounding index for each partition

Return value

none

Ezample

3.2.5

int dim = 0, count = 2;
int indices[2] = {5, 10};
IC_Section(root, dim, count, indices);

IC_Partition

This function creates a partition for a particular subtree of the overall distribution, allowing for the recursive
creation of irregular block decompositions. It returns an array of IC_Tree, which are the children of the
subtree partitioned. These children can then in turn be further partitioned.

Synopsis

13



C IC_Tree* IC_Partition(IC_Tree* root, int dim, int *block, int count, int* indices)

Fortran IC_Partition(root, dim, block, count, indices)
integer root, dim, block(*), count, indices(*)

Parameters

root a partial decomposition

dim the dimension to partition, starting from 0 in both C and Fortran
block the way of traversing to the subtree to be partitioned on

count the number of partitions

indices the upper bounding index for each partition
Return value

an array of InterComm partial array descriptors
Ezample

IC_Tree *root;

int indices[2];

int dim = 0, count=2;

int *blockO = NULL; // since no partitions yet

int block1[1];

int block2[2];

indices[0] = 5; indices[1] = 10;

IC_Partition(root, dim, blockO, count, indices);

dim = 1;

indices[0] = 4; indices[1] = 10;

block1[0] = 0; // parition on first child on first dimension
IC_Partition(root, dim, blockl, count, indices);

indices[0] = 6; indices[1] = 10;

block1[0] = 1;

IC_Partition(root, dim, blockl, count, indices);

dim = 2;

indices[0] = 3; indices[1] = 10;

block2[0] = 0; block2[1] = 1;

//partition on first child on first dimension, second child on second dimension
IC_Partition(root, dim, block2, count, indices);

3.2.6 IC_Verify_bdecomp_tree

Once all the partitions have been specified for a particular distribution, this function will verify that the
distribution covers the entire global array and that no array element is assigned to multiple partitions. It
returns an InterComm array descriptor that can then be used for schedule building and communication
operations.

14



Synopsis

C IC_Desc* IC_Verify_bdecomp_tree(IC_Tree* root, int ndims, int* size, int* tasks, int count, int
arrayOrder)

Fortran IC_Verify_bdecomp_tree(root, ndims, size, tasks, count, desc, arrayOrder)
integer root, ndims, size(*), tasks(*), count, desc, arrayOrder

Parameters

root a partial decomposition

ndims the number of dimensions

size the size of the global array

tasks the task assignment for each block, start from 0 for both C and Fortran
count the number of blocks

arrayOrder the order (IC_ROW_MAJOR or ICCCOLUMN_MAJOR) of the array

Return value
a complete InterComm array descriptor
Ezample

IC_Desc* desc;

int size[2] = {10, 103};

int tasks([4] = {0, 1, 2, 3};

desc = IC_Verify_bdecomp_tree(root, 2, size, tasks, 4, IC_ROW_MAJOR);

3.3 Defining and Communicating Array Blocks

3.3.1 IC_Create_block region

This function allocates a region (block or sub-array) designating the data elements for subsequent data
communication operations.

Synopsis

C IC_Region™ IC_Create_block region(int ndims, int* lower, int* upper, int* stride)

Fortran IC_Create_block region(ndims, lower, upper, stride, region)
integer ndims, lower(*), upper(*), stride(*), region

Parameters

ndims the number of dimensions of the array

lower the lower bounds of the region to be transferred

15



upper the upper bounds of the region to be transferred

stride the strides of the region to be transferred
Return value

an InterComm region data type
Ezample

int ndims = 3;

int lower[3] {0,0,0};

int upper[3] = {2,2,2};

int stride[3] = {1,1,1};

IC_Regionx* region_set[1];

region_set[0] = IC_Create_block_region(ndims, lower, upper, stride);

3.3.2 IC_Create_enum_region

This function allocates a region (enumerated one element at a time) designating the data elements for
importing or exporting operations.

Synopsis

C IC_Region* IC_Create_enum _region(int* indices, int size)

Fortran IC_Create_enum region(indices, size, region)
integer indices(*), size, region

Parameters

indices an array of global indices

size the number of global indices enumerated
Return value

an InterComm region data type
Ezample

int indices[10] = {0,1,2,3,4,5,6,7,8,9};

int size = 10;

IC_Region* region_set[1];

region_set[0] = IC_Create_enum_region(indices, size);

16



3.3.3 IC_Compute_schedule

This function creates a communication schedule for communicating regions (blocks/sub-arrays) of an array.
The types of array descriptors used on either end of the communication determine how and where this
schedule is computed.

Synopsis
C IC_Sched* IC_Compute_schedule(IC_Program* myprog, IC_Program™* prog,
IC Desc* desc, IC_Region™™* region_set, int set_size)

Fortran IC_Compute_schedule(myprog, prog, desc, region_set,
set_size, sched)
integer myprog, prog, desc, region_set(*), set_size, sched

Parameters

myprog the InterComm application descriptor for the local program
prog the InterComm application descriptor for the remote program
desc the InterComm array descriptor
region_set an array of regions describing the data to be communicated
set_size the number of regions in the array

Return value
an InterComm schedule data type

Ezxample

IC_Sched* sched;
sched = IC_Compute_schedule(myprog, prog, desc, region_set, 1);

3.3.4 IC_Send_TYPE

This function is used for sending a set of array regions to a remote application. There is a send function for
each supported basic data TYPE (char, short, int, float, double).

Synopsis

Fortran 90 IC_Send(to, sched, data, tag, status)
Note that the Fortran 90 IC_Send function is polymorphic, i.e., it does not require calling a
particular version depending on the type of the data being received as do the C and Fortran
77 counterparts.

C int IC_Send_char(IC_Program™* to, IC_Sched™ sched, char* data, int tag)

17



Fortran IC_Send_char(to, sched, data, tag, status)
integer to, sched, tag, status
integer*1 data(*)
C int IC_Send_short(IC_Program* to, IC_Sched* sched, short* data, int tag)
Fortran IC_Send_short(to, sched, data, tag, status)
integer to, sched, tag, status
integer*2 data(*)
C int IC_Send_int(IC_Program* to, IC_Sched* sched, int* data, int tag)

Fortran IC_Send_int(to, sched, data, tag, status)
integer to, sched, tag, status
integer data(*)

C int IC_Send_float(IC_Program™* to, IC_Sched* sched, float* data, int tag)

Fortran IC_Send_float(to, sched, data, tag, status)
integer to, sched, tag, status
real data(*)

C int IC_Send_double(IC_Program* to, IC_Sched* sched, double* data, int tag)

Fortran IC_Send_double(to, sched, data, tag, status)
integer to, sched, tag, status
real*8 data(*)

Parameters

to the InterComm application descriptor for the receiving program

sched the InterComm communication schedule

data (pointer to) the local array

tag a message tag for identifying this communication operation
Return value

status, -1 indicates an error

Ezample

int sts, tag;
float* data = &A[0][0][0];
sts = IC_Send_float(prog, sched, data, tag);

3.3.5 IC_Recv_.TYPE

This function is used for receiving a set of regions from a sending program. There is a receive function for
each supported basic data TYPE.

Synopsis

18



Fortran 90 IC_Recv(from, sched, data, tag, status)
Note that the Fortran 90 IC_Recv function is polymorphic, i.e., it does not require calling a
particular version depending on the type of the data being received as do the C and Fortran
77 counterparts.

C int IC_Recv_char(IC_Program* from, IC_Sched* sched, char* data, int tag)

Fortran IC_Recv_char(from, sched, data, tag, status)
integer from, sched, tag, status
integer*1 data(*)

C int IC_Recv_short(IC_Program* from, IC_Sched* sched, short* data, int tag)

Fortran IC_Recv_short(from, sched, data, tag, status)
integer from, sched, tag, status
integer*2 data(*)

C int IC_Recv_int(IC_Program* from, IC_Sched* sched, int* data, int tag)

Fortran IC_Recv_int(from, sched, data, tag, status)
integer from, sched, tag, status
integer data(*)

C int IC_Recv_float(IC_Program* from, IC_Sched* sched, float* data, int tag)

Fortran IC_Recv_float(from, sched, data, tag, status)
integer from, sched, tag, status
real data(*)

C int IC_Recv_double(IC_Program* from, IC_Sched* sched, double* data, int tag)

Fortran IC_Recv_double(from, sched, data, tag, status)
integer from, sched, tag, status
real*8 data(*)

Parameters

from the sending program
sched the communication schedule
data (pointer to) the local array

tag a message tag identifying this communication operation
Return value

status, -1 indicates error
Ezxample

int sts, tag;

float data[500] [500] [500];

tag = 99;

sts = IC_Recv_float(prog, sched, data, tag);

19



3.3.6 IC_Bcast_local TYPE

This function broadcasts a data block located in a single sender task (the one making this call) to all tasks in
the receiving program. Since the underlying message passing system broadcast function is used directly to
perform the communication, no communication schedule is necessary. Correct use of this function requires
that it must be invoked by ezxactly one task in the sending program. There is a broadcast function for each
supported basic data TYPE.

Synopsis

Fortran 90 IC_Bcast_local(to, data, nelems, tag, status)
Note that the Fortran 90 IC_Bcast_local function is polymorphic, i.e., it does not require calling
a particular version depending on the type of the data being received, as do the C and Fortran
77 counterparts.

C int IC_Beast_local_char(IC_Program* to, char* data, int nelems, int tag)

Fortran IC_Bcast_local _char(to, data, nelems, tag, status)
integer to, nelems, tag, status
integer®*1 data(*)

C int IC_Beast_local_short(IC_Program* to, short* data, int nelems, int tag)

Fortran IC_Bcast_local_short(to, data, nelems, tag, status)
integer to, nelems, tag, status
integer*1 data(*)

C int IC_Bceast_local_int(IC_Program* to, int* data, int nelems, int tag)

Fortran IC_Bcast_local int(to, data, nelems, tag, status)
integer to, nelems, tag, status
integer*1 data(*)

C int IC_Beast_local float(IC_Program* to, float* data, int nelems, int tag)

Fortran IC_Bcast_local float(to, data, nelems, tag, status)
integer to, nelems, tag, status
integer*1 data(*)

C int IC_Beast_local_double(IC_Program* to, double* data, int nelems, int tag)

Fortran IC_Bcast_local_ double(to, data, nelems, tag, status)
integer to, nelems, tag, status
integer*1 data(*)

Parameters

to the receiving program
data (pointer to) the local array
nelems the number of elements in the local array

tag a message tag used to identify this communication operation

20



Return value
status, -1 indicates error
Ezxample

IC_Program* partner

int tag=99, nelems=10;

float data[10];

IC_Bcast_local_float(partner, data, nelems, tag);

3.3.7 IC_Recv_local_ TYPE

This function is used to receive a data block broadcast from a task in a partner program. Since the underlying
message passing system broadcast function is used directly to perform the communication, no communication
schedule is necessary. Correct use of this function requires that it must be invoked by all tasks in the receiving
program. There is a receive function for each supported basic data TYPE.

Synopsis

Fortran 90 IC_Recv_local(from, data, nelems, tag, status)
Note that the Fortran 90 IC_Recv_local function is polymorphic, i.e., it does not require calling
a particular version depending on the type of the data being received as do the C and Fortran
77 counterparts.

C int IC_Recv_local_char(IC_Program* from, char* data, int nelems, int tag)

Fortran IC_Recv_local_char(from, data, nelems, tag, status)
integer from, nelems, tag, status
integer®*1 data(*)

C int IC_Recv_local_short(IC_Program* from, short* data, int nelems, int tag)

Fortran IC_Recv_local_short(from, data, nelems, tag, status)
integer from, nelems, tag, status
integer*1 data(*)

C int IC_Recv_local_int(IC_Program™* from, int* data, int nelems, int tag)

Fortran IC_Recv_local int(from, data, nelems, tag, status)
integer from, nelems, tag, status
integer®*1 data(*)

C int IC_Recv_local _float(IC_Program* from, float* data, int nelems, int tag)

Fortran IC_Recv_local float(from, data, nelems, tag, status)
integer from, nelems, tag, status
integer*1 data(*)

C int IC_Recv_local_double(IC_Program* from, double* data, int nelems, int tag)

21



Fortran IC_Recv_local_ double(from, data, nelems, tag, status)
integer from, nelems, tag, status
integer*1 data(*)

Parameters

from the sending program
data (pointer to) the local array
nelems the number of elements in the local array

tag a message tag used to identify this communication operation
Return value

status, -1 indicates error
Ezxample

IC_Program* partner

int tag=99, nelems=10;

float datal10];

IC_Recv_local_float(partner, data, nelems, tag);

3.4 Releasing Library Resources
3.4.1 IC_Free_program

This function releases memory used for holding an InterComm application descriptor and disconnects the
program from the underlying communication infrastructure.

Synopsis

C void IC_Free_program(IC_Program* prog)

Fortran IC_Free_program(prog)
integer prog

Parameters

prog an InterComm data type representing a partner program
Return value

none
Ezample

IC_Free_program(prog) ;

22



3.4.2 1IC_Free_desc

This function releases memory used for an InterComm array descriptor.

Synopsis

C void IC_Free_desc(IC_desc* desc)

Fortran IC_Free_desc(desc)
integer desc

Parameters

desc an InterComm distributed array descriptor
Return value

none
Ezample

IC_Free_desc(desc);

3.4.3 1IC_Free_region

This function is used to release memory for holding an InterComm region descriptor.

Synopsis

C void IC_Free_region(IC_region* region)

Fortran IC_Free_region(region)
integer region

Parameters

region an InterComm region descriptor representing an array block
Return value

none
Ezxample

IC_Free_region(region);

23



3.4.4 1IC_Free_sched

This function releases memory for holding an InterComm communication schedule.

Synopsis

C void IC_Free_sched(IC_Sched* sched)

Fortran IC_Free_sched(sched)
integer sched

Parameters

sched an InterComm communication schedule
Return value

none
Ezample

IC_Free_sched(sched);

3.4.5 IC_Quit

Shuts down the InterComm communication subsystem and frees the local program data structure.

Synopsis

C int IC_Quit(IC_Program* myprog)

Fortran IC_Quit(myprog, status)
integer myprog, status

Parameters

myprog the local program
Return value

status, -1 indicates an error
Example

int sts;
sts = IC_Quit(myprog);

24



4 Low-Level XJD-based Programming Tasks

This section describes how to use the C and Fortran interfaces that employ an XML Job Description (XJD).
This interface makes an InterComm program more like a component by utilizing an externally defined XJD.
The XJD describes programs and connections between programs, using program and region names (identified
by strings) that are defined by each InterComm program. The XJD provides the configuration information
needed to allow programs to communicate with each other, thereby making each program independent from
the programs it communicates with, potentially increasing the potential for program reuse. For detailed
information on the format of the XJD, see Appendix B.

4.1 Initializing the Library
4.1.1 IC_Initialize

This function initializes the underlying communication library and creates the internal representation of the
programs and regions, parsing the given XML Job Description (XJD) This function essentially encapsulates
the functionality of the IC_Init, IC_Wait and IC_Sync described in Section 3, using the XJD file to supply
the required information about other programs this one is connected to.

Synopsis

C IC_XJD* IC Initialize(char* progname, int rank, char*xjdname, int* status)

Fortran IC_Initialize(progname, rank, xjdname, xjd_id, status)
character, (len=*) progname
character, (len=*) xjdname
integer rank, xjd_id, status

Parameters

progname my program name
rank my rank

xjdname XJD file name

xjd_id id of the IC_XJD maintained by InterComm (Fortran 77)

status status, if negative indicates an error
Return value

a pointer to an IC_XJD datatype, to contain program and region information
Ezample

IC_XJD* xjd;

int rank, *status;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

xjd = IC_Initialize(‘‘myprog’’, rank, ‘‘./example.xjd’’, status);

25



4.2 Describing the Data Distribution

The data distribution operations ares the same as for the low-level programming APT described in Section 3.2.

4.3 Defining and Communicating Array Blocks

The low-level programming API described in Section 3.3 is used to describe array blocks. In addition,
this section describes the functions required to register the created array blocks, so that InterComm can
automatically build communication schedules for those regions as required by the connection specification
in the XJD file, and allow the user to subsequently transfer regions between programs using InterComm.

4.3.1 IC_Register_region

Register detailed information on a set of regions (a set of array blocks) into the InterComm internal repre-
sentation.

Synopsis
C int IC_Register_region(IC_XJD* xjd, IC_Region** rgnset, int set_size, char* set_name, IC_Desc*
desc, void* local_data, int* status)

Fortran IC_Register_region(xjd, rgnset, set_size, set_name, desc, localdata, status)
integer xjd, rgnset, set_size
character, (len=*) set_name
integer desc
void* localdata
integer status

Parameters

xjd the InterComm descriptor for programs and regions, returned from the call to IC_Initialize
rgnset an array of regions describing the data to be communicated

set_size the number of regions in the array

set_name name of the region set (a string)

desc the InterComm global array descriptor

localdata pointer to the local data array

status status, if negative indicates an error
Return value
none

Ezample

26



int* status;

IC_Region* rgnset[2];

float* data = &A[0][0][0];

IC_Register_region(xjd, rgnset, 2, ‘‘rgnsetl’’, desc, data, status);

4.3.2 IC_Commit_region

Informs InterComm that all regions have been defined, so that communication schedules can be built for all
the connections this program participates in, and store the schedules into the internal program representation.

Synopsis
C void IC_Commit_region(IC_XJD* xjd, int* status)

Fortran IC_Commit_region(xjd, status)
integer xjd, status

Parameters
xjd the InterComm program descriptor for programs and regions
status status, if negative indicates an error

Return value
none

Ezxample

int* status;
sts = IC_Commit_region(xjd, status);

4.3.3 IC_Export

Export a region. Note that this function does not need the destination program name, as is needed for
the low-level API described in Section 3, since that comes from the connection information in the XJD file,
acquired by InterComm in the call to IC_Initialize. InterComm exports the specified region into one or more
destination programs as specified in the XJD. If the XJD does not specify any connections for the specified
region, so that no program will import the region, the function becomes a no-op.

Synopsis
C int IC_Export(IC_XJD* xjd, char* rgnset_name)

Fortran IC_Export(xjd, rgnset_name, status)
integer xjd, status
character(*) rgnset_name

27



Parameters

xjd the InterComm program descriptor for programs and regions

rgnset_name name of the region set (a string)
Return value

status, -1 indicates error
Ezxample

IC_Export(xjd, ‘‘rgnsetl’’);

4.3.4 IC_Import

Import a region. This function also does not need the source program name for the import operation, as for
IC_Export, since that is specified in the XJD file. If no connection is specified for the imported region in the
XJD, an error will be reported.

Synopsis

C int IC Import(IC_XJD* xjd, char* rgnset_name)

Fortran IC_Import(xjd, rgnset_name, status)
integer xjd, status
character(*) rgnset_name

Parameters

xjd the InterComm program descriptor for programs and regions

rgnset_name name of the region set
Return value

status, -1 indicates error
Ezample

IC_Import(xjd, ‘‘rgnsetl’’);

4.3.5 IC_Bcast_local

Broadcast a memory block to all partner program processes. Strictly speaking, the memory block is different
from a normal region, which is defined as part of a distributed array in all processes of a program. However,
the block must be named in the XJD file, and have commtype IazN in the XJD. In that way, InterComm
can determine the partner program associated with the broadcast. Broadcast communication for the block
does not need a communication schedule, so the user does not need to register the block. Note that only one

28



process (the process with rank 0) in the sender program performs the broadcast, while all processes in the
receiver program perform the corresponding receive operation. As IC_Export does, InterComm broadcasts
the specified region into one or more destination programs as specified in the XJD. If the XJD does not
specify any connections for the specified region, so that no program will receive the region, the function
becomes a no-op.

Synopsis

C int IC_Beast local(IC_XJD* xjd, char* rgnset_name, void* data, int nelems)

Fortran IC_Bcast_local(xjd, rgnset_name, data, nelems, status)
integer xjd, nelems, status
character(*) rgnset_name
void* data

Parameters

xjd the InterComm application descriptor for programs and regions
rgnset_name name of the region set
data pointer to the memory block to broadcast

nelems the number of elements in the block
Return value

status, -1 indicates error
Ezxample

int* status;
int becast[1] = {10};
IC_Bcast_local(xjd, ‘rgnsetl’’, bcast, 1);

4.3.6 IC_Recv_local

Receive a memory block from a process in a partner program. Strictly speaking, the memory block is
different from a normal region, which is defined as part of a distributed array in all processes of a program.
However, the block must be named in the XJD file, and have commtype IzN. In that way, InterComm can
determine the partner program associated with the broadcast. Broadcast communication for the block does
not need a communication schedule, so the user does not need to register the block. Note that only one
process in the sender program performs the broadcast, while all processes in the receiver program perform
the corresponding receive operation. If no connection is specified for the received region in the XJD, an error
will be reported.

Synopsis

C int IC_Recv_local(IC_XJD* xjd, char* rgnset_name, void* data, int nelems)

29



Fortran IC_Recv_local(xjd, rgnset_name, data, nelems, status)
integer xjd, nelems, status
character(*) rgnset_name
void* data

Parameters

xjd the InterComm application descriptor for programs and regions
rgnset_name name of the region set
data pointer to the memory block to receive into

nelems the number of elements in the block
Return value

status, -1 indicates error
Ezxample

int brecv[10];
IC_Recv_local(xjd, ‘‘rgnsetl’’, brecv, 10);

4.4 Releasing Library Resources

4.4.1 IC_Finalize

Release the allocated memory for the internal representation of programs and regions.

Synopsis

C void IC_Finalize(IC_XJD* xjd, int* status)

Fortran IC_Finalize(xjd, status)
integer xjd, status

Parameters

xjd the InterComm application descriptor for programs and regions

status status, if negative indicates an error
Return value

status, if negative indicates an error
Ezample

int* status;
IC_Finalize(xjd, status);

30



5 High-Level Programming Tasks

In some cases, the utilization of InterComm can be simplified by relying on a few higher-level function calls.
The functions described in Section 3 provide a generic way for initializing and finalizing InterComm, for
defining array decompositions, and for establishing communication between a pair of programs, among other
tasks. On the other hand, some applications can make use of a simplified interface that encapsulates most
of the complexities of InterComm. However, this high-level API, albeit simpler, does not provide as much
flexibility as the low-level interface. For example, in order to use the high-level interface, array distributions
must be one of a small number canonical distributions that will be described in this section. The high-level
API is available for C++ programs relying on the P++4 library and also for sequential Fortran 90 programs.

5.1 Creating Endpoints

The high-level API relies on the concept of a communication endpoint. The endpoint is an abstraction that
corresponds to a communication channel between a pair of programs that need to exchange entire arrays or
array sections. The establishment of a communication endpoint is the first step to ensure that data can flow
between a pair of programs.

5.1.1 EndPoint(Constructor)
Synopsis
C++ IC_EndPoint::IC_Endpoint(const char* endpointName, const unsigned mynproc,

const unsigned onproc, const unsigned myao, const unsigned oao, int& status)

Fortran 90 ic_endpoint_constructor(icce, endpointName, mynproc, onproc, myao, oao, status)
ic_obj icce
character, (len=*) endpointName
integer mynproc, onproc, myao, oao, status
Parameters

icce returns a handle to the InterComm communication endpoint descriptor

endpointName the name for the endpoint

This must be in the format first program : second program (e.g., simulationl:simulation?2).
The Fortran 90 version requires explicitly appending a CHAR(0) to the end of the string.

mynproc the number of processes used by the local program
onproc the number of processes used by the remote (the other) program

myao the array ordering used by the local program
The valid inputs for this parameter are IC_ROW_MAJOR and IC_COLUMN_MAJOR.

oao the array ordering used by the remote (the other) program
The valid inputs for this parameter are IC_ROW_MAJOR and IC_COLUMN_MAJOR.

31



status returns the result of the endpoint creation operation

This result should always be checked to ensure that the endpoint is in a sane state. In case of
success, status is set to IC_OK.

Return value

The C++ call is a C++ constructor call. The Fortran version returns a reference to the endpoint
in its icce parameter. Both calls return the status of the operation in the status parameter.

Ezample

C++:

IC_EndPoint right_left_ep("right:left",1,1,
IC_EndPoint::IC_COLUMN_MAJOR,IC_EndPoint::IC_COLUMN_MAJOR,ic_err);

Fortran 90:
type(ic_obj) :: icce

call ic_endpoint_constructor(icce,’left:right’//CHAR(O),1,1,
IC_COLUMN_MAJOR,IC_COLUMN_MAJOR,ic_err)

5.2 Communicating Array Sections

Once the communication endpoint is created, the two applications can start exchanging data, by exporting
and importing arrays or arrays subsections.

5.2.1 ExportArray

Synopsis

C++ IC_EndPoint::exportArray(const intArray& array, int msgtag, int& status)

Fortran 90 ic_export_array(icce, array, msgtag, status)
ic_obj icce
integer, dimension (:) array
integer msgtag
integer status

C++ IC_EndPoint::exportArray(const floatArrayé& array, int msgtag, int& status)

Fortran 90 ic_export_array(icce, array, msgtag, status)
ic_obj icce
real, dimension (:) array
integer msgtag
integer status

C++ IC_EndPoint::exportArray(const doubleArray& array, int msgtag, int& status)

32



Fortran 90 ic_export_array(icce, array, msgtag, status)
ic_obj icce
double precision, dimension (:) array
integer msgtag
integer status

Parameters
icce the exporting InterComm communication endpoint handle

array the array or array section to be transfered

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation is correctly performed regardless of the type of the array elements.

msgtag the message tag for exporting a region set
status returns the result of the export operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is a C4++ void method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation by setting the status parameter.

Ezxample

C++:
doubleArray DOUBLES(10,10);
Index I(3,6), J(1,4);
int msgtag = 2001;
right_left_ep.exportArray(DOUBLES(J,I), msgtag, ic_err);

Fortran 90:

double precision, dimension (10,10) :: DOUBLES
integer msgtag
call ic_export_array(icce,DOUBLES(2:5,4:9), msgtag, ic_err);

5.2.2 ImportArray
If one application is exporting data, the other (remote) application is importing data.
Synopsis

C++ IC_EndPoint::importArray(const intArray& array, int msgtag, int& status)

33



Fortran 90 ic_import_array(icce, array, msgtag, status)

ic_obj icce

integer, dimension (:) array

integer msgtag

integer status
C++ IC_EndPoint::importArray(const floatArray& array, int msgtag, int& status)
Fortran 90 ic_import_array(icce, array, msgtag, status)

ic_obj icce

real, dimension (:) array

integer msgtag

integer status
C++ IC_EndPoint::importArray(const doubleArray& array, int msgtag, int& status)
Fortran 90 ic_import_array(icce, array, msgtag, status)

ic_obj icce

double precision, dimension (:) array

integer msgtag

integer status

Parameters

icce the importing InterComm communication endpoint handle
array the array or array section to be received

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation will be correctly performed regardless of the type of the array elements.

msgtag the message tag for importing a region set
status returns the result of the import operation
This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.
Return value

The C++ call is a C++ wvoid method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation in the status parameter.

Ezample
C++:

floatArray FLOATS(10);

Index I1(3,6);

int msgtag = 2001;
right_left_ep.importArray(FLOATS(I), msgtag, ic_err);

Fortran 90:

real, dimension (10) :: FLOATS
integer msgtag
call ic_import_array(icce,FLOATS(2:5), msgtag, ic_err);

34



5.2.3 Broadcast Array

Broadcast a local array to all processes of the other (remote) application. This method broadcast an array
by directly invoking the message passing system broadcast API underlying all InterComm data movement
calls. Thus a communication schedule is unnecessary.

Synopsis

C++ IC_EndPoint::bcastLocal Array(const intArray& array, int nelems, int msgtag, int& status)
Fortran 90 ic_bcast_local_array(icce, array, nelems, msgtag, status)
ic_obj icce
integer, dimension (:) array
integer nelems, msgtag
integer status
C++ IC_EndPoint::bcastLocal Array(const float Array& array, int nelems, int msgtag, inté& status)
Fortran 90 ic_bcast_local_array(icce, array, nelems, msgtag, status)
ic_obj icce
real, dimension (:) array
integer nelems, msgtag
integer status
C++ IC_EndPoint::bcastLocal Array(const doubleArray& array, int nelems, int msgtag, int& sta-
tus)
Fortran 90 ic_bcast_local_array(icce, array, nelems, msgtag, status)
ic_obj icce
double precision, dimension (:) array
integer nelems, msgtag
integer status

Parameters

icce the broadcasting InterComm communication endpoint handle

array the local array or array section to broadcast

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation will be correctly performed regardless of the type of the array elements.

nelems the number of elements in the array
msgtag the message tag for importing a region set

status returns the result of the import operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is a C++ wvoid method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation in the status parameter.

35



Ezxample
C++:

floatArray FLOATS(10);
right_left_ep.bcastLocalArray(FLOATS, 10, 2006, ic_err);

Fortran 90:

real, dimension (10) :: FLOATS
call ic_bcast_local_array(icce, FLOATS, 10, 2006, ic_err);

5.2.4 Receive Broadcast Array

Receive a broadcast array from a (remote) application. This method receives an array by invoking the
message passing system receive API underlying all InterComm data movement calls. Thus a communication
schedule is unnecessary.

Synopsis

C++ IC_EndPoint::recvLocal Array(const intArray& array, int nelems, int msgtag, inté& status)

Fortran 90 ic_recv_local_array(icce, array, nelems, msgtag, status)
ic_obj icce
integer, dimension (:) array
integer nelems, msgtag
integer status

C++ IC_EndPoint::recvLocal Array(const floatArray& array, int nelems, int msgtag, int& status)
Fortran 90 ic_recv_local_array(icce, array, nelems, msgtag, status)

ic_obj icce

real, dimension (:) array

integer nelems, msgtag

integer status
C++ IC_EndPoint::recvLocalArray(const doubleArray& array, int nelems, int msgtag, int& status)
Fortran 90 ic_recv_local_array(icce, array, nelems, msgtag, status)

ic_obj icce

double precision, dimension (:) array

integer nelems, msgtag

integer status

Parameters

icce the broadcasting InterComm communication endpoint handle

36



array the local array or array section to broadcast

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation will be correctly performed regardless of the type of the array elements.

nelems the number of elements in the array
msgtag the message tag for importing a region set

status returns the result of the import operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is a C++ wvoid method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation in the status parameter.

Ezample
C++:

floatArray FLOATS(10);
right_left_ep.recvLocalArray(FLOATS, 10, 2006, ic_err);

Fortran 90:

real, dimension (10) :: FLOATS
call ic_recv_local_array(icce, FLOATS, 10, 2006, ic_err);

5.3 Termination

When the pair of applications reach a point where data is no longer being exchanged, both applications are
expected to destroy their end of the communication endpoint to ensure a clean shutdown of InterComm and
also of the underlying communication infrastructure.

5.3.1 EndPoint(Destructor)

Synopsis
C++ IC_EndPoint::” IC_Endpoint()

Fortran 90 ic_endpoint_destructor(icce)
ic_obj icce

Parameters
icce the InterComm endpoint to be shutdown

Return value

37



Note that the C++ call is an object destructor. It need not be called explicitly. In reality, the
destructor is automatically called for deallocating communication endpoint objects statically created.
The application should invoke the delete C++ operator to ensure that the destructor properly
finalizes InterComm.

Ezxample
C++:

IC_EndPoint* right_left_ep = new IC_EndPoint("right:left",1,1,
IC_EndPoint::IC_COLUMN_MAJOR,IC_EndPoint::IC_COLUMN_MAJOR,ic_err);
delete right_left_ep; // indirectly invoking the object destructor

Fortran 90:

type(ic_obj) :: icce
call ic_endpoint_destructor(icce)

5.4 Error Codes

All the high-level InterComm calls, with the exception of the destructor call, return the status of the opera-
tion. For successful operations IC_OK is returned. For unsuccessful operations, a variety of error codes can
be returned. A list of all possible return values is shown in Table 1.

InterComm provides an auxiliary function to help application developers handle erroneous operations. The
following function call/method invocation can be employed to print out a message stating the nature of the
error condition:

5.4.1 PrintErrorMessage
Synopsis

C++ IC_EndPoint::printErrorMessage(const char* msg, int& status)

Fortran 90 ic_print_error_message(msg, status)
character (len=%*) msg
integer status

Parameters

msg an error message

The msg string will precede the text for the error code. For the Fortran 90 call the string must
have a CHAR(0) as the last character.

status the error code for which the error message will be printed out

Return value

38



l Error Condition | Error Message

IC_OK no error

IC_GENERIC_ERROR generic error

IC_INVALID_NDIM invalid number of array dimensions

IC_.CANT_ALLOC_REGION can’t allocate InterComm array regions

IC_.CANT_GET_DA_DESCRIPTOR can’t obtain distributed array descriptor

IC_.CANT_COMPUTE_COMM_SCHEDULE | can’t compute communication schedule

IC_.COMM_FAILURE communication (send/recv) failure

IC_INVALID_ENDPOINT_.NAME invalid endpoint name

IC_INITIALIZATION_FAILURE local program initialization failed

IC_.CANT_CONNECT_.TO_REMOTE can’t connect to remote program

IC_PVM_ERROR PVM error

IC_MPI_LERROR MPI error

IC_POINTER_TABLE_ERROR internal pointer translation table error — possibly
too many InterComm descriptors (regions, distri-
butions, etc) have been defefined

Table 1: InterComm high-level APT errors

The C++ call is C++ wvoid method invocation. The Fortran version also does not return a value.
The function prints out a message warning the user that the error code is invalid, if status does not
hold any of the values displayed in Table 1.

Ezxample
C++:
right_left_ep.printErrorMessage("API call failed",ic_err);

Fortran 90:

call ic_print_error_message(’API call failed’//CHAR(0),ic_err);

6 High-Level XJD-based Programming Tasks

The high-level API described in Section 5 provides a simplified interface that encapsulates InterComm
complexities, and it allows users to transfer any array or subarray at any program execution point. However,
it makes programs strongly tied each other, and therefore they must be rewritten to be coupled with other
programs.

In this section, we describes an XJD-based high-level APT that keeps the simplicity of the high-level APT and
also utilizes the XJD (XML Job Description) to componentize a program with an externally visible program

39



name and data port names, and to allow the programs to exchange data as described for the low-level XJD-
based API in Section 4. Using this API, an InterComm program can register arrays and import/export the
arrays between pairs of programs.

However, this API has same constraints that the High-level API in Section 5 has. In addition, all arrays
in a program must be registered and committed before the actual data import/export calls can be used to
move data between the programs. The XJD-based high-level API is available for C++ programs relying on
the P4+ library and also for sequential Fortran 90 programs.

6.1 Creating EndpointSet

The XJD-based high-level API utilizes the concept of an endpointset. It encapsulates multiple endpoints,
which a program takes part in as an exporter or importer for each array. Through the information provided
by a given XJD to run a set of coupled programs, multiple endpoints are established for each program
depending on how many programs it exchanges data with.

6.1.1 EndPointSet(Constructor)
Synopsis

C++ IC_EndPointSet::IC_EndPointSet(const char* xjdfile, const char® compname, int& status)

Fortran 90 ic_endpointset_constructor(icepset, xjdfile, compname, status)
ic_obj icepset
character, (len=*) xjdfile
character, (len=*) compname
integer status

Parameters

icepset a handle to the set of endpoints
xjdfile the XJD file name

The Fortran 90 version requires explicitly appending a CHAR(0) to the end of the string.
compname my program name

status returns the result of the set creation operation

This result should always be checked to ensure that the set is in a sane state. In case of success,
status is set to IC_OK.

Return value

The C++ call is a C++ constructor call. The Fortran version returns a reference to the set in its
icepset parameter. Both calls return the status of the operation in the status parameter.

Ezample
C++:

40



IC_EndPointSet icepset("test.xjd", "compl", ic_err);
Fortran 90:

type(ic_obj) :: icepset
call ic_endpointset_constructor(icepset,’test.xjd’//CHAR(O), &
>compl’//CHAR(0), ic_err)

6.2 Registering and committing arrays

After communication endpoints are created, the regions to communicate between programs must be registered
and committed before data communication.

6.2.1 RegisterArray

Synopsis

C++ IC_EndPointSet::register Array(const char* arrname, const intArray& array, int& status)

Fortran 90 ic_register_array(icepset, arrname, array, status)
ic_obj icepset
character, (len=*) arrname
integer, dimension(:) array
integer status
C++ IC_EndPointSet::register Array(const char* arrname, const floatArray& array, inté& status)
Fortran 90 ic_register_array(icepset, arrname, array, status)
ic_obj icepset
character, (len=*) arrname
real, dimension(:) array
integer status

C++ IC_EndPointSet::register Array(const char®* arrname, const doubleArray& array, int& status)

Fortran 90 ic_register_array(icepset, arrname, array, status)
ic_obj icepset
character, (len=*) arrname
double, dimension(:) array
integer status

Parameters

icepset the handle to the set of endpoints

arrname the array name (this string must be used in the XJD)
The Fortran 90 version requires explicitly appending a CHAR(0) to the end of the string.

41



array the array or array section to be transferred

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation is correctly performed regardless of the type of the array elements.

status returns the result of the array registration operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is a C++ wvoid method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation by setting the status parameter.

Ezxample

C++:

floatArray FLOATS(10);
Index I1(3,6);
epset.registerArray("arrayl", FLOATS(I), ic_err);

Fortran 90:

real, dimension (10) :: FLOATS
call ic_register_array(icepset, ’arrayl’//CHAR(0), FLOATS(2:6), ic_err)

6.2.2 CommitArrays

This method will generate the communication schedules for all registered arrays. After registering all arrays
necessary for a program, the arrays must be committed by invoking this method.

Synopsis
C++ IC_EndPointSet::commitArrays(int& status)

Fortran 90 ic_commit_arrays(icepset, status)
ic_obj icepset
integer status

Parameters

icepset a handle to the set of endpoints

status returns the result of the set creation operation

This result should always be checked to ensure that the set is in a sane state. In case of success,
status is set to IC_OK.

Return value

42



The C++ call is a C++ wvoid method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation by setting the status parameter.

Ezxample
C++:

epset.commitArrays(ic_err);

Fortran 90:

ic_commit_arrays(icepset, ic_err)

6.3 Communicating Array Sections

Once the communication endpoint is created and all arrays are registered and committed, the two applications
can start exchanging data, by exporting and importing arrays.

6.3.1 ExportArray
Synopsis

C++ IC_EndPointSet::exportArray(const char®* arrname, int& status)

Fortran 90 ic_export_array(icepset, arrname, status)
ic_obj icepset
integer, dimension (:) array
integer status

Parameters

icepset a handle to the set of endpoints

arrname the array name
The Fortran 90 version requires explicitly appending a CHAR(0) to the end of the string.

status returns the result of the export operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is C++ woid method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation by setting the status parameter.

Ezample
C++:

43



epset.exportArray("arrayl", ic_err);
Fortran 90:

call ic_export_array(icepset, ’arrayl’//CHAR(O), ic_err)

6.3.2 ImportArray
Synopsis

C++ IC_EndPointSet::importArray(const char* arrname, int& status)

Fortran 90 ic_import_array(icepset, arrname, status)
ic_obj icepset
integer, dimension (:) array
integer status

Parameters

icepset a handle to the set of endpoints

arrname the array name
The Fortran 90 version requires explicitly appending a CHAR(0) to the end of the string.

status returns the result of the export operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is a C++ wvoid method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation by setting the status parameter.

Ezample
C++:

epset.importArray("arrayl", ic_err);
Fortran 90:

call ic_import_array(icepset, ’arrayl’//CHAR(O), ic_err)

44



6.3.3 Broadcast Array

Broadcast a local array to all processes of another (remote) application. This method broadcasts an array
by directly invoking the message passing system broadcast API underlying all InterComm data movement
calls. Thus a communication schedule is unnecessary.

Synopsis

C++ IC_EndPointSet::bcastLocal Array(const char® arrname, const intArray& array, int nelems,
int& status)

Fortran 90 ic_bcast_local_array(icepset, arrname, array, nelems, status)
ic_obj icepset
character, (len=*) arrname
integer, dimension(:) array
integer nelems
integer status

C++ IC_EndPointSet::bcastLocal Array(const char* arrname, const floatArray& array, int nelems,
int& status)

Fortran 90 ic_bcast_local array(icepset, arrname, array, nelems, status)
ic_obj icepset
character, (len=*) arrname
real, dimension(:) array
integer nelems
integer status
C++ IC_EndPointSet::bcastLocal Array(const char* arrname, const doubleArray& array, int nelems,
int& status)
Fortran 90 ic_bcast_local_array(icepset, arrname, array, nelems, status)
ic_obj icepset
character, (len=*) arrname
double, dimension(:) array
integer nelems
integer status

Parameters

icepset the handle to the set of endpoints

arrname the array name (this string must be used in the XJD)
The Fortran 90 version requires explicitly appending a CHAR(0) to the end of the string.

array the array or array section to be transferred

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation is correctly performed regardless of the type of the array elements.

nelems the number of elements in the array

45



status returns the result of the array registration operation
This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is a C4++ void method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation by setting the status parameter.

Example

C++:

floatArray FLOATS(10);
epset.bcastlocalArray("arrayl", FLOATS, 10, ic_err);

Fortran 90:

real, dimension (10) :: FLOATS
call ic_bcast_local_array(icepset, ’arrayl’//CHAR(0), FLOATS, 10, ic_err)

6.3.4 Receive Broadcast Array

Receive a broadcast array from a (remote) application. This method receives an array by invoking the
message passing system receive API underlying all InterComm data movement calls. Thus a communication
schedule is unnecessary.

Synopsis

C++ IC_EndPointSet::recvLocal Array(const char* arrname, const intArray& array, int nelems,
int& status)

Fortran 90 ic_recv_local_array(icepset, arrname, array, nelems, status)
ic_obj icepset
character, (len=*) arrname
integer, dimension(:) array
integer nelems
integer status

C++ IC_EndPointSet::recvLocal Array(const char* arrname, const floatArray& array, int nelems,
int& status)

Fortran 90 ic_recv_local_array(icepset, arrname, array, nelems, status)
ic_obj icepset
character, (len=*) arrname
real, dimension(:) array
integer nelems
integer status

46



C++ IC_EndPointSet::recvLocal Array(const char* arrname, const doubleArray& array, int nelems,
int& status)

Fortran 90 ic_recv_local array(icepset, arrname, array, nelems, status)
ic_obj icepset
character, (len=*) arrname
double, dimension(:) array
integer nelems
integer status

Parameters

icepset the handle to the set of endpoints

arrname the array name (this string must be used in the XJD)
The Fortran 90 version requires explicitly appending a CHAR(0) to the end of the string.

array the array or array section to be transferred

The C++ method and the Fortran 90 function call are both polymorphic, which means that
the operation is correctly performed regardless of the type of the array elements.

nelems the number of elements in the array

status returns the result of the array registration operation

This result should always be checked to ensure that the operation was correctly performed. In
case of success, status is set to IC_OK.

Return value

The C++ call is a C++ wvoid method invocation. The Fortran version also does not return a value.
Both calls return the status of the operation by setting the status parameter.

Example

C++:

floatArray FLOATS(10);
epset.recvlocalArray("arrayl", FLOATS, 10, ic_err);

Fortran 90:

real, dimension (10) :: FLOATS
call ic_recv_local_array(icepset, ’arrayl’//CHAR(0), FLOATS, 10, ic_err)

6.4 Termination

After a program completes all communication with other programs, it must destroy all endpoints to ensure
a clean termination of InterComm.

47



6.4.1 EndPointSet(Destructor)
Synopsis
C++ IC_EndPointSet::” IC_EndpointSet()

Fortran 90 ic_endpointset_destructor(icepset)
ic_obj icepset

Parameters
icepset a handle to the set of endpoints
Return value

Note that the C++ call is an object destructor. It need not be called explicitly. The destructor is
automatically called for deallocating communication endpoints for the statically created endpoint
set.

Ezxample

C++:

IC_EndPointSet epset("test.xjd","compl", ic_err);
delete epset; // indirectly invoking the object destructor

Fortran 90:

type(ic_obj) :: icepset
call ic_endpointset_destructor(icepset)

6.5 Error Codes

All the XJD-based high-level InterComm calls, with the exception of the destructor call, return the status
of the operation. For successful operations IC_OK is returned. For unsuccessful operations, a variety of error
codes can be returned. In addition to the errors define for the high-level API described in Table 1, Table 2
shows additional errors defined for the XJD-based high-level API.

InterComm provides an auxiliary function to help application developers handle erroneous operations. The
following function call/method invocation can be employed to print out a message stating the nature of the
error condition.

6.5.1 PrintErrorMessage
Synopsis

C++ IC_EndPointSet::printErrorMessage(const char® msg, int& status)

48



l Error Condition | Error Message
IC_EPSET_INIT_FAILURE failure to initialize EndPointSet from XJD

IC_ARRAY_REGISTER_FAILURE | failure to register an array
IC_COMMIT_ARRAY _FAILURE failure to commit the registered arrays

Table 2: InterComm XJD-based high-level API errors

Fortran 90 ic_print_error_message(msg, status)
character (len=*) msg
integer status

Parameters

msg an error message
This string will precede the actual text corresponding to the error code. For the Fortran 90
call the string must have a CHAR(0) as the last character.

status the error code for which the error message will be printed out

Return value

The C++ call is a C++ void method invocation. The Fortran version also does not return a value.
The function prints out a message warning the user that the error code is invalid, if status does not

hold any of the values displayed in Table 1.

Ezample
C++:

ep.printErrorMessage ("API call failed", ic_err);

Fortran 90:

call ic_print_error_message(’API call failed’//CHAR(0), ic_err)

7 Compilation and Program Startup

This section contains some very basic guidelines for compiling and running coupled InterComm applications.
More detailed information for a particular platform can be gleaned from examining the generated Makefiles

in the examples directory of the distribution.

49



7.1 Compiling

The following example commands show the libraries needed for an InterComm application written in one
of the supported languages. The compiler names used are chosen to be generic, they may be different for a
particular system or communication library (i.e. MPI).

cc -o cexample cexample.c -1IC -1lgpvm3 -1lpvm3

£f77 -o fexample fexample.f -1ICf77 -1IC -1lfpvm3 -lgpvm3 -lpvm3

c++ -o pppexample pppexample.cpp —-1ICppp -1IC -1lgpvm3 -lpvm3 -1Ppp -1Ppp_static
f90 -o f90example f90example.f90 -1IC£90 -1IC -1fpvm3 -lgpvm3 —-1lpvm3

Depending on your compiler you may need to link in the math library (-1m) as well.

Use of the MultiBlockParti or Chaos descriptor translation functions requires linking additional libraries,
(-1ICmbp and -1ICchaos, respectively).

7.2 Running

InterComm depends upon PVM for inter-program communication, so the first step for any successful coupling
is to start the PVM daemon on all the target machines. For this particular example, it is assumed that there
is no scheduler or access constraints for the hosts on which the programs will run and that these hosts have
been listed in a file called hosts.

echo ‘‘quit’’ | pvm hosts

mpirun -np 4 cexample
mpirun -np 8 fexample
echo ‘‘halt’’ | pvm

More complicated scenarios for starting the virtual machine are outside of the scope of this document and
are best handled by consulting the PVM documentation. However, some scripts for working around the
constraints of IBM’s LoadLeveler[8] scheduler can be found in the scripts directory.

A Utility Functions

The following sections provide utility functions for interfacing with external libraries.

50



A.1 Descriptor Translation Functions
A.1.1 IC_Translate_parti_descriptor

If support for MultiBlockParti is enabled during configuration (Section 2), inclusion of the header file
mbp2bdecomp.h will allow the use a translation function for converting MultiBlockParti DARRAY descrip-
tors to InterComm block decomposition descriptors.

Synopsis
C IC_Desc* IC Translate_parti_descriptor(DARRAY* darray)

Fortran IC_Translate_parti_descriptor(darray, desc)
integer darray, desc

Parameters

darray a MultiBlockParti distributed array descriptor
Return value

an InterComm array descriptor data type
Ezample

DARRAY* darray;
IC_Desc* desc;

/* ...create DARRAY using MultiBlockParti calls... */
desc = IC_Translate_parti_desciptor(darray) ;

A.1.2 IC_Translate _chaos_descriptor

If support for Chaos is enabled during configuration (Section 2), inclusion of the header file chaos2ttable.h
will allow the use of a translation function for converting Chaos TTABLE descriptors to InterComm translation
table descriptors.

Synopsis
C IC_Desc* IC_ Translate_chaos_descriptor(TTABLE* ttable)

Fortran There is no Fortran interface to Chaos
Parameters
ttable a Chaos translation table descriptor

Return value

51



an InterComm array descriptor data type
Ezxample

TTABLE* ttable;
IC_Desc* desc;

/* ...create TTABLE using Chaos calls... */
desc = IC_Translate_chaos_desciptor(ttable);

B XML Job Description and HPCALE

This section describes the structure of the XML Job Description (XJD) and introduces the High-Performance
Computing Application Launching Environment (HPCALE), which is an environment to launch multiple
high-performance computing applications on multiple resources with minimal user intervention.

B.1 XML Job Description

An XJD (XML Job Description) describes a configuration for a coupled simulation that consists of mul-
tiple data parallel programs. In an XJD, the programs used in a coupled simulation are described in the
components section, and the data communication patterns between the program pairs are described in the
connections section.

Decoupling such information into a separate description file helps users to write each program more inde-
pendently from the programs that it may be coupled with. Moreover, since the information for program
coupling is decoupled from the source code, a program can be reused without code modification or with
minimal code modification for different coupled simulations.

Every program implemented using the XJD-based programming API, as described in Sections 4 and 6,
requires an XJD for InterComm initialization. HPCALE also uses an XJD to launch components using
additional information that must be added in the components section for each component. The following
example shows the overall XJD structure.

Example

<?xml version="1.0" encoding="utf-8"7>
<ICXJD>
<version>1.5</version>
<components>
<component>. . .</component>
<component>. . .</component>
</components>
<connections>

52



<connection>...</connection>
</connections>
</ICXJD>

InterComm provides different internal implementations for the same function call based on the XJD wversion.
Thus, user must specify the correct InterComm version for the components in an XJD are supposed to use.
The only current legal value for the version is 1.5.

B.1.1 Component

The term component is used in an XJD instead of program because an InterComm program behaves much
like a (parallel) software component when it is implemented using the XJD-based programming API. Each
component exposes a component name and the names of the regions it defines for the data communication.
The entries for a component section and an example is given below. Note that this is the minimal information
for a component description. To launch a component on a resource via HPCALE, more entries must be
specified for a component. The cluster name where a component is to be run is one such entry.

FElements

td the unique identifier for a component

name the externally visible component name (should match the program name given in an IC Initialize()
call or IC_EndPointSet constructor)

nNode the number of processes a component runs on

arrayorder the memory ordering of the arrays for a component. IC_.ROW_MAJOR or IC_.COLUMN_MAJOR
are the two possibilities.

Ezxample

<component>
<id>componenti</id>
<name>RECEIVER</name>
<nNode>8</nNode>
<arrayorder>IC_ROW_MAJOR</arrayorder>
</component>

B.1.2 Connection

A connection specifies how to match regions in two components. In the IC_Initialize() call or IC_EndPointSet
constructor, each component determines how to communicate with other components using the XJD con-
nection information. In the IC_Commit_region() call a communication schedule is built for each connection,
and then components can communicate with each other via IC_export() and IC_import() calls. Note that
InterComm cannot completely verify the syntactic and semantic correctness of the connection information,

53



but does checks for several types of semantic errors in an XJD. For example, if there are multiple connections
with the same importer and different exporters, InterComm will report an error since there must be one
source for any imported object.

For a multicast operation (i.e. an exported object in one program that is imported by multiple importing
programs), multiple connections are needed, one for each path. For example, if component A should send
a data object to components B, C, and D, three different connections, one for A-B, one for A-C and one
for A-D are needed. All the connections should have the same exporter and exportport specification, and
different importer, importport, and msgtag specifications.

FElements

id the unique identifier for a connection

type a basic datatype for the data object being transferred (legal values are char, int, float, and
double)

commtype a communication type for a region. MxN is used for data redistribution between two
(parallel) components, and 1xN for broadcasting an array.

msgtag a unique message tag (an integer between 0 and 65535) for a connection between the
exporter and importer

exporter the exporter component name (should match a component ID in the component section
of the XJD)

exportport a region name for the exporter component (should match the a name registered for an
object in the exporter program)

importer the importer component name (should match a component ID in the component section
of the XJD)

importport a region name for the importer component (should match the a name registered for an
object in the importer program)

Ezample

<connection>
<id>conni</id>
<type>float</type>
<commtype>MxN</commtype>
<msgtag>100</msgtag>
<exporter>compl</exporter>
<exportport>porti</exportport>
<importer>comp2</importer>
<importport>porti</importport>

</connection>

o4



B.2 High-Performance Computing Application Launching Environment (HP-
CALE)

High-Performance Computing Application Launching Environment (HPCALE) provides a convenient envi-
ronment for launching complex applications, such a set of coupled InterComm programs, on one or more
computational resources.

To achieve this, an XJD must be located in a directory an InterComm program can access. Thus, to launch
programs installed on multiple resources, the XJD must be placed in the correct file system locations on the
resources where each program is launched. In addition, several entries are needed in the component section
of the XJD. For example, the cluster and node entries must be specified to let HPCALE know where to
launch a component, and on how many nodes.

Such information can be retrieved from the HPCALE information repository by registering the information
before launching the components. Otherwise, the user can specify the information directly in the XJD (and
that will override any information in the repository). The additional entries HPCALE requires for each
component are listed below. See the HPCALE manual [9] for the complete description for the entries.

FElements

cluster the computational resource to launch a component on

argument program arguments for the component

sendlist the list of input files that must be transferred to the resource a component is launched on

recvlist the list of output files that must be transferred back from the resource to the launching
site

launchprog external launching tool for a component (e.g., mpirun, mpiezec)

launcharg the arguments for the launching program if a launching program such as mpirun or
mpiezec is used for a component

zjdoption the XJD options defined by the component when it accepts an XJD name as a command-
line argument with an optional delimiter

Although writing an XJD is not very complex, to create an XJD a user must have information about
available resources and the component details. HPCALE provides a Web-based tool to help create an XJD
for components and connections. The tool utilizes information pre-registered into the HPCALE information
repository (likely by owners of the computational resources used). Users can employ the tool to create an
XJD. The created XJD will have all the information needed for launching a set of coupled components, and
HPCALE will use the XJD to launch components on one or more computational resources. More details on
using HPCALE can be found in [9].

95



C Example Code

There are several example programs in the example directory of the distribution. They demonstrate the
basic InterComm functionality needed to couple a pair of parallel programs. There are examples written
in both C and Fortran, each using either PVM or MPI to acheive parallelism. The files in this directory
include:

e Makefile
This builds the various codes and can be used as a template for other InterComm projects.

e cpvmexample.c
This code uses a translation table type data distribution and is meant to communicate with either the
fpvmexample or the cmpiexample.

e fpvmexample.f
This code uses a block decomposition data distribution and is meant to communicate with either the
fmpiexample or the cpvmexample.

e cmpiexample.c
This code uses a block decomposition data distribution and is meant to communicate with either the
cpvmexample or the fmpiexample.

e fmpiexample.f
This code uses a translation table type data distribution and is meant to communicate with either the
cmpiexample or the fpvmexample.

C.1 Wave Equation

The code in the WaveEquation directory illustrates how one can couple multiple applications using Inter-
Comm’s high-level interface. In this example, a 2-D wave equation simulation was split into two halves on
the x-axis. Because of the split grid and the periodic boundary conditions, the two programs must exchange
data, which is accomplished by an Interpolator class (that, in the future, will be able to manipulate the
data and the grid as well). This class uses a communication endpoint. In this example, there are two imple-
mentations for a communication endpoint: plain files - files are created, read from, and written to (good for
debugging purposes) - and InterComm.

C.2 Rainbow

This code is a sample code that utilizes an XJD file and the XJD-based API to communicate between two
programs.

56



References

[1] InterComm, hitp://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic/

[2] Object-Oriented Tools for Solving PDEs in Complex Geometries, hitp://www.linl.gov/CASC/Overture/

[3] PVM: Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/pvm_home.html

[4] GNU Autoconf, Automake, and Libtool, http://www.gnu.org/directory/

[5] Chaos Tools, http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/tools.html

[6] MultiBlockParti, http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/tools.html
[7] The Message Passing Interface (MPI) Standard, http://www-uniz.mcs.anl.gov/mpi/

[8] IBM LoadLeveler, http://publib.boulder.ibm.com/clresctr/windows/public/llbooks.html

[9] High Performance Computing Application Launching Environment
http:/ /www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/hpcale/

o7

(HPCALE),



