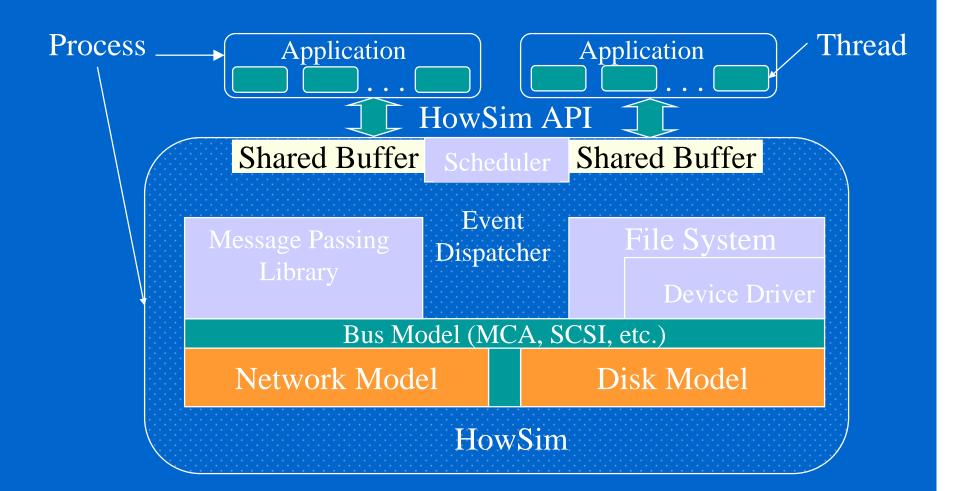
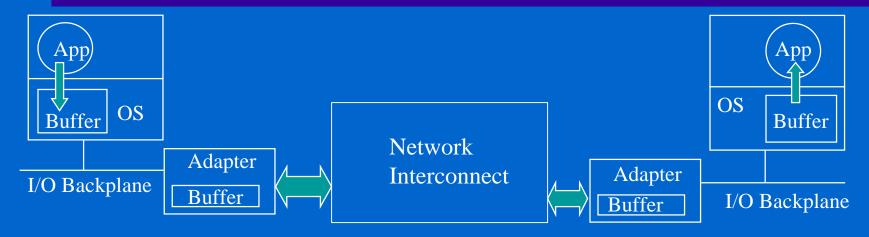
Future I/O Systems Tools, Applications, Architectures

Mustafa Uysal University of Maryland


Introduction

- High-fidelity architecture simulation
 - Detailed study of small to mid-range systems
 - Complex device models and system protocols
 - Validates less-detailed models
- I/O-intensive application suite
 - characterization and trends
- Case study: Active Disks


HowSim

- Focus on I/O and network operations
- Accurate simulation of key hardware
 - disk, I/O bus, adapters, network, etc.
- Detailed simulation of key software
 - filesystem, scheduler, message passing libraries, interrupts, etc.
- Simulate multiple applications and processes

HowSim Architecture

Network Model

- Data transmission: DMA, latency-bandwidth model, flow-control
- Message Passing Library (blocking/non-blocking send/recv)
- Customizable for different networks (Multistage switch, ATM)

Disk Model (1)

- Seeks
 - Long seeks: linear in distance
 - Short seeks: head-acceleration sqrt(distance)
- Disk Geometry
 - Positioning: nominal rotational speed
 - Zone modeling
 - Sparing
 - Track and cylinder skew

Disk Model (2)

- Data transfer: SCSI Protocol
- Disk Cache
 - Segmented cache
 - Read-ahead
 - Immediate writes
- Controller: Request queuing/scheduling
- Source Base: Ruemmler[94] and Kotz[94]

Bus/Adapter/CPU Models

- Bus: latency+bandwidth, streaming
- Adapter: memory+protocol (e.g. SCSI)
- CPU: processing, interrupts, context-switch
 - coarse-grain: no cache/pipeline/FPU models
 - application-driven
 - user/system tasks are differentiated

File system Model

- UNIX-like interface (i.e. read/write)
 - file access semantics
- Extent-based file allocation (user-specified)
- Fixed-size file cache buffer, write-behind
- C-SCAN request-scheduling

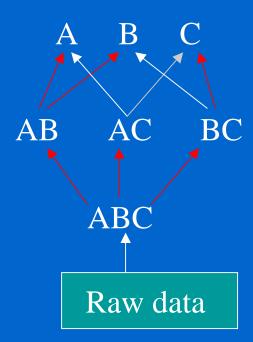
Current Work

- Multiple device models
 - Integrating Ganger's Disk simulator
 - Support for SMP node
 - Gigabit-ethernet interconnect
- Multiple interfaces
 - Trace-driver
 - Single-application mode

I/O-Intensive Applications

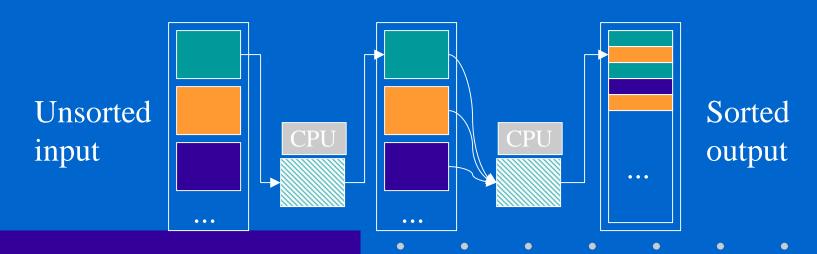
- Characterization Effort
 - I/O requirements
 - Access patterns, compute patterns
 - Inter-processor and intra-processor locality
- Modeling
 - Application traces vs. emulation

MAMBO Suite


Maryland Applications for Measurement and Benchmarking for I/O

- DB2 Parallel Edition
- Data Mining
- Parallel Web Server
- Parallel Text Search
- Data Cube
- NOW-Sort

- Titan
- Virtual Microscope
- Out-of-core LU
- Rendering
- Hartree-Fock
- Electron Scattering
- Synthetic Aperture Radar
- others ...


Data Cube

- Multidimensional aggregates
- Domain: decision support
- Algorithm: PipeHash
 - Search lattice
 - MST computation
 - datacube: sequence of pipelines

External Sort

- Two-pass algorithm
 - Pass 1: Produce memory-sized sorted partitions
 - Pass 2: Merge partitions
- Optimizations: large requests, overlapped I/O, multiple outstanding requests, etc.

Application Trends

- Exponential rate of increase in online data
 - data storage doubles every 5 months
 - Petabyte satellite data repositories
- Shift in users' expectations
 - archival to frequent reprocessing of entire data
 - overnight data mining

Technology Trends

- Disk performance/capacity improves
 - 15 MB/s and 18 GB/disk, around \$1700
- Cheap, powerful cpu and large memory
 - -\$100 = 200 MHz Cyrix/6x86 and 16 MB (now)
 - -\$100 = 300 MHz + 32-64 MB (Y2K)

Active Disks

- Disks with embedded CPU and memory
- Application-specific code executes on disk
- Processing partitioned: disk and host
 - Active disk performs bulk of the processing
 - Host coordinates/schedules/combines
- #CPUs increase with #Disks
- Processing power evolves with disks

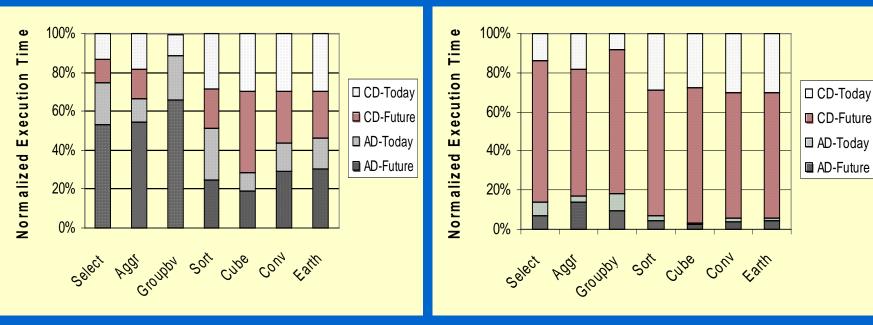
Programming Model

- User code (i.e. disklet) downloaded to disk
- Disklets use streams to access data
 - host- and disk-resident streams
 - pipe streams
 - data delivered in fixed-size buffers
- Disklet safety restrictions...

OS support

- DiskOS thin OS layer at disk
 - memory management
 - stream communication
 - disklet scheduling
- HostOS disklet management
 - check/install/revoke disklets
 - manage host-resident streams

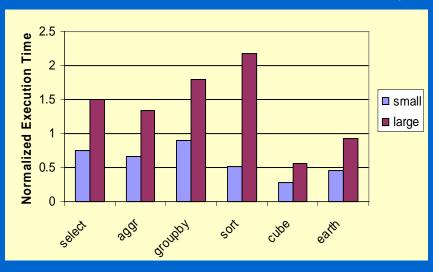
Application Restructuring

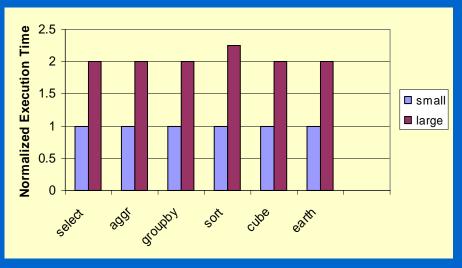

- Datacube: separate disklet per pipeline
 - disklets compute local group-bys (pipehash)
 - partial results shipped to host
 - host combines and computes global groupbys
- Sort, pass 1 partition data
 - partitioner/sorter disklets, host moves data
- Sort, pass 2 local merge
 - merger disklet

Simulation Infrastructure

- Howsim node model changes:
 - DiskOS controls disk operations
 - Map stream communication to SCSI
 - Extend file system functions for disklets
- Simulation parameters:
 - Today: 350/200 MHz CPU, 1GB/16MB memory, 200 MB/s
 I/O bus, 15MB/s, 10000 RPM disk
 - Future: 500/300 MHz CPU, 1GB/32MB memory, 300 MB/s
 I/O bus, 20 MB/s, 12500 RPM disk

Active Disk Performance

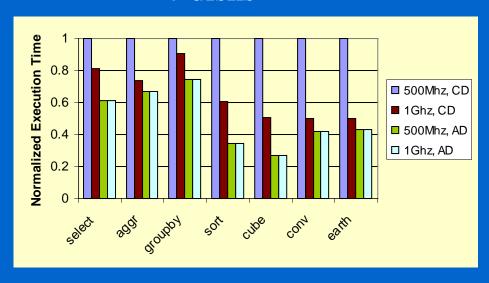



Conventional disks vs. active disks, varying technology

Key performance issues: parallelism, interconnect bandwidth

Scaling datasets

4 disks, today's configuration


Active Disks

Conventional Disks

Active disks perform better with larger datasets

Next Generation CPU

4-disks

Host CPU becomes more powerful

Active disks remain superior to conventional disks

Conclusions and Future Work

- Flexible, accurate architecture simulation
- Emulators for database applications
 - Simple structure, easy to calibrate
- Active Disks
 - Initial results encouraging
 - multiprocessor study underway
 - new applications development underway