
University of Maryland

Predicting the Impact of
 Configuration Changes

Jeff Hollingsworth
Hyeonsang Eom

University of Maryland

A Family of Simulators

Explore accuracy vs. time trade-off
– Use simple static estimation of I/O and communication
– Exploring adding stochastic variation

Simplifying assumptions
– no network link contention
– predictable computation/communication interference
– infinite memory

University of Maryland

DumbSim

l Very Fast, Optimistic Simulator
– assumes perfect overlap of I/O and computation
– ignores block producer-consumer relationship

l Epochs used for intra-node synchronization
l Is embarrassingly parallel

Disk
Time

CPU
Time

Comm. Time

Disk
Time

CPU
Time

Comm. Time

Node 2Node 1

Max
Epoch

Boundry
Epoch

Boundry

Time

University of Maryland

FastSim: Fast Simulator

Flexible event processing loop
– round-robin: process next event for each node

• most accurate when load is balanced
– discrete event: find earliest time of next event

• more overhead than round-robin
Uses Graph to update timing for each resource

Node 2Node 1

MAX

MAXComm. Time

CPU
Time

Comm. Time

Disk
Time

University of Maryland

Titan Emulator (SDSC Machine)

16 32 64 100

IBM SP2
Dumbsim
Fastsim
Gigasim
Petasim

1

10

100

1000

10000

100000

1000000

16 32 64 100

S
im

ul
at

io
n

tim
e

(m
se

cs
)

Scaled Input

16 32 64 100

IBM SP2
Dumbsim
Fastsim
Gigasim
Petasim

1

10

100

1000

10000

100000

16 32 64 100

Si
m

ul
at

io
n

tim
e

(m
se

cs
)

Non-scaled Input

University of Maryland

Pathfinder Emulator (SDSC Machine)

16 32 64 100

IBM SP2
Dumbsim
Fastsim
Gigasim
Petasim

Scaled Input

1

10

100

1000

10000

100000

1000000

16 32 64

Si
m

ul
at

io
n

tim
e

(m
se

cs
)

4/60 8/56 16/48 32/32 48/16 56/8 60/4

IBM SP2
Dumbsim
Fastsim
Gigasim
Petasim

1

10

100

1000

10000

100000

4/60 8/56 16/48 32/32 48/16 56/8

Si
m

ul
at

io
n

tim
e

(m
se

cs
)

Varying IO/Compute Node Ratio

University of Maryland

Virtual Microscope (SDSC Machine)

0

5

10

15

20

25

16 32 64 100

of processors simulated

P
re

di
ct

ed
 ti

m
e

(s
ec

s)

IBM SP2

Dumbsim

Fastsim

Gigasim

Petasim

1

10

100

1000

10000

16 32 64 100

of processors simulated

S
im

ul
at

io
n

tim
e

(m
se

cs
)

University of Maryland

Scaling up the number of Nodes

256 512 1024 2048 4096 8192
1

10

100

1000

10000

256 512 1024 2048 4096

Si
m

ul
at

io
n

tim
e

(s
ec

s)

Dumbsim

Fastsim

Gigasim

256 512 1024 2048 4096 8192
1

10

100

1000

10000

100000

256 512 1024 2048 4096

Si
m

ul
at

io
n

tim
e

(s
ec

s)

Pathfinder Application Emulator

Virtual Microscope Application Emulator

University of Maryland

Summary of I/O Results

l Application Emulators
– can generate complex I/O patterns quickly.
– enable efficient simulation of large systems.

l Family of Simulators
– permits cross checking results.
– allows trading simulation speed and accuracy.

University of Maryland

Critical Path Profiling

lCritical Path
– Longest path through a parallel program
– To speedup program, must reduce path

lCritical Path Profile
– Time each procedure is on the critical path

lCP Zeroing
– compute the CP as if the a procedure’s time is 0.
– use a variation of online CP algorithm

• CPnet = CP - Share
• at receive, keep tuple with largest CPnet

University of Maryland

Program Activity Graph

call(c)

startSend

call(a)

call(b) startSend

startRecv

endRecv

initial node

final node

call(c)

call(a)

startRecv

endRecv00

0

00 0

7 0 8

endSend

endSend

4

1

2

4

1

1

5

8

0

initial node

final node

call(c)

call(a)

startRecv

endRecv

University of Maryland

NAS IS Application

Procedure CP % CP CPU % CPU
nas_is_ben 12.4 56.4 54.8 74.1
create_seq 9.2 42.0 9.2 12.4

do_rank 0.4 1.6 9.2 12.5

create_seq is more important than CPU time indicates.

do_rank is ranked higher than create_seq by CPU time.

University of Maryland

Load Balancing Factor

l Key Idea: what-if we move work
– length of activity remains the same
– where computation is performed changes

l Two Granularities Possible
– process level

• process placement or migration
– procedure level

• function shipping
• fine grained thread migration

University of Maryland

Process LBF

lWhat-if we change processor assignment
– predict execution time on larger configurations
– try out different allocations

l Issues:
– changes in communication cost

• local vs. non-local communications
– interaction with scheduling policy

• how are nodes shared?
• assume round robin

University of Maryland

Computing Load Balancing Factor

Call(a)

send

endRecv

send

Call(b) Call(c)

Start

startRecv startRecv

End

endRecv

0 0 0

1

0

4

3

0

1

0

0
0

1

1

Program Activity Graph
P1 P2 P3

P1

p2

p1

p2

Call(a)

send

endRecv

send

p3Call(c)

Start

p3

p3

p1startRecv

startRecv

End

0 0

2

1

0

0

4
1

0

Group Activity Graph

P2Call(b)

1

endRecv

1

G1 G2

University of Maryland

Using Paradyn to Implement Process LBF

ü forward data from application to monitor
– Need to forward events to central point

– supports samples
– requires extensions to data collection system

ü provides dynamic control of data collection
– only piggy pack instrumentation on demand

ü need to correlate data from different nodes
– use $globalId MDL variable

University of Maryland

Results : Accuracy

0

50

100

150

200

250

300

EP FT IS MG

Measured Time on 16 Processors

Predicted Time for 16 Processors on 16 Processors

Predicted Time for 16 Processors on 8 Processors

University of Maryland

LBF Overhead (16 nodes)

0

50

100

150

200

250

300

350

EP FT IS MG

Measured Time W/o Instrumentation Measured Time W/ Instrumentation

University of Maryland

Changing Network and Processes

0

50

100

150

200

250

300

EP FT IS MG

Measured Time on 16 processors w ith HPS

Predicted Time when run on 8 Processors w ith Ethernet

Change: # of nodes (8->16)
 network (10Mbps Ethernet -> 320Mbps HPS)

University of Maryland

Linger Longer

lMany Idle Cycles on Workstations
– Even when users are active, most processing power

not used

l Idea: Fine-grained cycle stealing
– Run processes a very low priority
– Migration becomes an optimization not a necessity

l Issues:
– How long to Linger?
– How much disruption of foreground users

• delay of local jobs: process switching
• virtual memory interactions

University of Maryland

Simulation of Policies

Model workstation as
– foreground process (high priority)

• requests CPU, then blocks
• hybrid of trace-based data and model

– background process (low priority)
• always ready to run, and have a fixed CPU time

– context switches (each takes 100 micro-seconds)
• accounts for both direct state and cache re-load

Study:
– What is the benefit of Lingering?
– How much will lingering slow foreground processes?

University of Maryland

Migration Policies

l Immediate Eviction (IE)
– when a user returns, migrate the job
– policy used by Berkeley NOW
– assumes free workstation or no penalty to stop job

l Pause and Migrate (PM)
– when a user returns, migrate the job
– used by Wisconsin condor

l Linger Longer (LL)
– when user returns, decrease priority and remain

• monitor situation to decide when to migrate
– permits fine grained cycle stealing

l Linger Forever (LF)
– like Linger Longer, but never migrate

University of Maryland

Simulation Results - Sequential Workload

– LF is fastest, but variation is higher than LL
– LL and LF have lower variation than IE or PM.
– Slowdown for foreground jobs is under 1%.

LL LF IE PM

Migration Policy

0

500

1000

1500

2000

LL LF IE PM
Migration Policy

A
ve

ra
ge

 T
im

e
(s

ec
) AVG MIGR TIME

AVG LINGER TM
AVG RUN TIME

AVG IN Q TIME

– LF is a 60% improvement over the PM policy.

University of Maryland

Simulation Results - Parallel Applications

– Use DSM Applications on non-idle workstations
– Assumes 1.0 Gbps LAN
– Compare Lingering vs. reconfiguration

fft (16 node, nonidle lusg 20%)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

idle node

linger reconfiguration
water (16node, nonidle lusg 20%)

0
1
2
3
4
5
6
7
8
9

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

idle node

Ti
m

e
(B

ill
io

n
cy

cl
es

)

linger reconfiguration

– Lingering is often faster than reconfiguration!

University of Maryland

Future Directions

Wide Area Test Configuration
– simulate high latency/high bandwidth network
– a controlled testbed for wide area computing

Parallel Computing on non-dedicated clusters
– current simulations show promise, but ...

• need to include data about memory hierarchy
• real test is to build the system

Development of the Metric and Option Interface
– prototype applications that can adapt to change
– evaluate different adaptation policies

