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A Family of Simulators

Explore accuracy vs. time trade-off
– Use simple static estimation of I/O and communication
– Exploring adding stochastic variation

Simplifying assumptions
– no network link contention
– predictable computation/communication interference
– infinite memory
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DumbSim

l Very Fast, Optimistic Simulator
– assumes perfect overlap of I/O and computation
– ignores block producer-consumer relationship

l Epochs used for intra-node synchronization
l Is embarrassingly parallel
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FastSim: Fast Simulator

Flexible event processing loop
– round-robin: process next event for each node

• most accurate when load is balanced
– discrete event: find earliest time of next event

• more overhead than round-robin
Uses Graph to update timing for each resource
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Titan Emulator (SDSC Machine)
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Pathfinder Emulator (SDSC Machine)
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Virtual Microscope (SDSC Machine)
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Scaling up the number of Nodes
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Summary of I/O Results

l Application Emulators
– can generate complex I/O patterns quickly.
– enable efficient simulation of large systems.

l Family of Simulators
– permits cross checking results.
– allows trading simulation speed and accuracy.
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Critical Path Profiling

lCritical Path
– Longest path through a parallel program
– To speedup program, must reduce path

lCritical Path Profile
– Time each procedure is on the critical path

lCP Zeroing
– compute the CP as if the a procedure’s time is 0.
– use a variation of online CP algorithm

• CPnet = CP - Share
• at receive, keep tuple with largest CPnet
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Program Activity Graph
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NAS IS Application

Procedure CP % CP CPU % CPU
nas_is_ben 12.4 56.4 54.8 74.1
create_seq 9.2 42.0 9.2 12.4

do_rank 0.4 1.6 9.2 12.5

create_seq is more important than CPU time indicates.

do_rank is ranked higher than create_seq by CPU time.
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Load Balancing Factor

l Key Idea: what-if we move work
– length of activity remains the same
– where computation is performed changes

l Two Granularities Possible
– process level

• process placement or migration
– procedure level

• function shipping
• fine grained thread migration
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Process LBF

lWhat-if we change processor assignment
– predict execution time on larger configurations
– try out different allocations

l Issues:
– changes in communication cost

• local vs. non-local communications
– interaction with scheduling policy

• how are nodes shared?
• assume round robin
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Computing Load Balancing Factor
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Using Paradyn to Implement Process LBF

ü forward data from application to monitor
– Need to forward events to central point

– supports samples
– requires extensions to data collection system

ü provides dynamic control of data collection
– only piggy pack instrumentation on demand

ü need to correlate data from different nodes
– use $globalId MDL variable
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Results : Accuracy
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LBF  Overhead (16 nodes)
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Changing Network and Processes
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Linger Longer

lMany Idle Cycles on Workstations
– Even when users are active, most processing power

not used

l Idea: Fine-grained cycle stealing
– Run processes a very low priority
– Migration becomes an optimization not a necessity

l Issues:
– How long to Linger?
– How much disruption of foreground users

• delay of local jobs: process switching
• virtual memory interactions
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Simulation of Policies

Model workstation as
– foreground process (high priority)

• requests CPU, then blocks
• hybrid of trace-based data and model

– background process (low priority)
• always ready to run, and have a fixed CPU time

– context switches (each takes 100 micro-seconds)
• accounts for both direct state and cache re-load

Study:
– What is the benefit of Lingering?
– How much will lingering slow foreground processes?
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Migration Policies

l Immediate Eviction (IE)
– when a user returns, migrate the job
– policy used by Berkeley NOW
– assumes free workstation or no penalty to stop job

l Pause and Migrate (PM)
– when a user returns, migrate the job
– used by Wisconsin condor

l Linger Longer (LL)
– when user returns, decrease priority and remain

• monitor situation to decide when to migrate
– permits fine grained cycle stealing

l Linger Forever (LF)
– like Linger Longer, but never migrate
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Simulation Results - Sequential Workload

– LF is fastest, but variation is higher than LL
– LL and LF have lower variation than IE or PM.
– Slowdown for foreground jobs is under 1%.
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– LF is a 60% improvement over the PM policy.
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Simulation Results - Parallel Applications

– Use DSM Applications on non-idle workstations
– Assumes 1.0 Gbps LAN
– Compare Lingering vs. reconfiguration

fft (16 node, nonidle lusg 20%)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

idle node

linger reconfiguration
water (16node, nonidle lusg 20%)

0
1
2
3
4
5
6
7
8
9

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

idle node

Ti
m

e 
(B

ill
io

n 
cy

cl
es

)

linger reconfiguration

– Lingering is often faster than reconfiguration!
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Future Directions

Wide Area Test Configuration
– simulate high latency/high bandwidth network
– a controlled testbed for wide area computing

Parallel Computing on non-dedicated clusters
– current simulations show promise, but ...

• need to include data about memory hierarchy
• real test is to build the system

Development of the Metric and Option Interface
– prototype applications that can adapt to change
– evaluate different adaptation policies


