
IMPACT tools section 1: Implementation overview: Page 1 of 9

IMPACT Implementation overview.
1.0 Introduction: The current IMPACT implementation provides all components necessary to build
and test one or more IMPACT agents “housed” in run-time environment wrappers we call the
“Roosts”. Briefly speaking, roosts come in two flavors; A local roost wraps a single collaborative
community of agents in a non-networked “sand-box” environment (agents can only work with other
agents within this one community). A networked roost, on-the-other-hand, forms the back-bone for a
widely distributed global community of agents (agents on one roost can interact with agents on other
roosts – spanning operating systems and hardware platforms).

The implementation code consists of three main components; The IMPACT agent development
environment (AgentDE) contains a series of compilers, written in Java, which render an agent
instantiation (an collection of IMPACT agent core class objects) from a given agent definition (text).
The IMPACT Yellow-pages server (YPServer), written in Java and C, provides agent directory
lookup services necessary for agent construction and run-time communications. The IMPACT Roost,
written in Java, provides a run-time environment for IMPACT agents to work, sleep, or travel the
networks. Most of the implementation code, contained in a 2 megabyte Java archive file (JAR) is
written currently to the Java 1.2 specification; This provides maximal code portability across operating
systems and platforms. It does, however, require loading Java 1.2 runtime library on the target
platform (6+ MB on Windows NT).

Future revisions will include Java JINI support, the addition of caching and multi-query
optimization techniques, and enhanced error handling and correction methods. Of note, pushing the
communications layer into the Jini framework requires loading the Jini runtime library which further
expands the minimum library footprint beyond the scope of some smaller platforms.

1.1 IMPACT agent architecture: An IMPACT agent definition includes a list of one or more action
definitions, with inter-action constraints, which prescribe the agents behavior by mapping the action
result data (the action status atom set) to procedures which ultimately change its’ state (the data out
component). At a deeper level, action determination runs according to the agent program which lists
sets of rules (connection function code-calls and comparisons) evaluated over raw or sensor data,
application or server request output.

The AgentDE, in short, allows the developer to compile agent definitions into Java object
collections (each wrapped by a Thread class object) referred to here as agent instantiations; Every
agent instantiation executes in it’s own process thread and contains all the code (Java objects)
necessary to perform its’ defined behavior.

Agent instantiations typically “sleep” until awakened to process incoming message traffic. They
may also, however, be designed to run continuously (with periodic sleep intervals). A pending
enhancement will also allow the developer to specify a non-periodic run-time schedules.

IMPACT tools section 1: Implementation overview: Page 2 of 9

1.1.1 IMPACT connections: As mentioned above, IMPACT agents commonly exploit local and
networked assets through code-calls. To enhance development extensibility we developed the
IMPACT connection module, a Java base-class, from which all connection “classes” extend. Similar
to the notion of Dynamic Link Libraries common on some platforms, IMPACT connections allow agent
programs to load/use (at run-time) only the code necessary to access the desired servers, frameworks,
and method libraries. This keeps the execution foot-print small and the agent architecture highly
flexible.

IMPACT connection classes typically define either a communications interface for external
servers, or a code "wrapper" which provides function calls (an API) to some third-party program
library or code. Our beta release connection library provides a few examples as we defined connection
interfaces for generic JDBC, Hermes (a legacy data mediation system), the IBM Aglets framework,
and some local programs which handle basic agent messaging, math, and time method code-calls.

Extending the connection library is relatively straight forward as the agent developer can create
a new connection module by “extending" a new class from the connection base class
(IAD_Connect.java). They would then encode a hand-full of required methods in the new
connection module class definition, compile it, and ultimately copy the new created connection module
somewhere in the java system path (CLASSPATH). On boot-up, IMPACT explores the archives
listed by the system CLASSPATH refererence and notes all such connection extension classes for use
in the AgentDE session.

1.1.2 IMPACT action procedures (IAD_ActionExe class extensions): Just as we provided
an extendable library architecture for connections (typically data input), so too we defined an
extendable library for output action procedures; These IAD_ActionExe classes provide the
mechanism by which an agent may change its state (typically data updates and prompts to other
processes and/or agents). Once an agent instantiation has calculated and approved its “To Do” list (the
action status atom set), The agent can then act on the generated to-do data by mapping it to and
executing the appropriate action procedures. The beta release IAD_ActionExe library includes
methods such as createFile, appendFile, mailFile, faxFile, and
sendMessage.

IMPACT tools section 1: Implementation overview: Page 3 of 9

RulesAction 1

RulesAction 2

RulesAction 3

RulesAction N

Data Connections

(IAD_Connect extensions)

IA_ConnectLocal

IA_ConnectRHermes

IA_ConnectAglet

A
ct

i o
n

C
on

st
ra

in
t s

In
te

gr
it

y
C

on
st

ra
in

ts

ActionExe Methods

(IAD_ActionExe extensions)

IA_ActionExe_FaxFile

IA_ActionExe_MailFile

IA_ActionExe_SendMessage

InOut

Typical Agent data flow

Network
Node 2

Network
Node 1 Message

Server
Aglet host

Hermes
Server

Local Assets

Networked assets

Image 1.1: Agent data flow.

1.1.3 The agent instantiation life-cycle: We represent an agent here in Image 1.1 as a complex
grouping of geometric objects which represent the underlying reality; An IMPACT agent instantiation is
a complex grouping of Java class objects, a hierarchy, wrapped by the IAD_MetaData class into
self-executing Java threads -- Every agent definition contains all the code (instantiated classes)
necessary to execute independently while performing its designated behavior.

On the right side of Image 1.1 we see asset information (usually simple data) coming into the
Agent composition through the connection modules. The agent then evaluates its current state by
processing the underlying action rule body code-calls through which it generates “to-do” list entries (the
action status atoms). The agent then checks its “to-do” list against constraint definitions (as applicable)
and renders the “DoAble” action set. Finally the agent executes the “DoAble”actions, calling action
procedures as specified in the corresponding action definitions – The answers flow out the left side of
the agent composition diagram.

IMPACT tools section 1: Implementation overview: Page 4 of 9

Message Queue

In Box

Out Box

Duty Officer

Work work work
work work work
work work work

Network

Agent 1

Agent 2

Agent 3

Agent 4

Local assets

Remote assets

Agen
t 1

 --
 W

ak
e !

A
gent 4 -- W

ake !

Agent 2 -- Wake !

Agent 3 -- Wake !

IMPACT Agent Roost -- Internal work and data activity...

0101
1010
0101

0101
1010
0101

0101
1010
0101

0101
1010
0101

0101
1010
0101

Message

Message

Image 1.2. Roost data flow.

1.2 IMPACT agent community “roost” implementation: An IMPACT agent roost
(IRR_RoostServer class) comprises a collection of IMPACT agent objects which communicate
through an internal message queue (IA_MessageQueue class) managed by a “duty officer”
(IR_DutyOfficer class).

The roost duty officer functions primarily as a communications daemon for the local agents; the
duty officer routes incoming messages to the queue, wakes agents for whom pending messages exist,
and pulls out-going messages from the queue for remote routing. The duty officer, and thus the roost,
remains active until commanded to shut-down.

Agents, by design, are independent. While the duty officer may prompt an agent to work
(waking them), the officer does not control agents’ activities -- agents are free to sleep or run, come,
and go, according to their design specification. As mentioned previously, each agent has everything it
needs to perform its designated activity. If it requires access to some data, application, server, sensor,
or actuator asset, then it includes the necessary connection specifications which provide proper asset
usage. For example, image 1.2 shows agents one and two accessing local assets while agents three
and four exploit remote resources via the network (Local or Internet).

Note that the communication “boxes” in Image 1.2 denote IMPACT agent message objects
passed between agents through the message queue both in and out of the roost. The dark green
“boxes” denote input messages while the light yellow boxes denote output messages. The asset data
streams are tagged with rectangles containing zeros and ones to denote the binary formats native to the
assets.

IMPACT tools section 1: Implementation overview: Page 5 of 9

IMPACT Agent Message Communications (Inter-Roost)

In

Out

Ja
va

-R
M

I

In

Out

Ja
va

-R
M

I

Java-RMI

Yellow Pages Server

Roost 1

Roost 2 In

Out

Ja
va

-R
M

I Roost 3

UNIX

MacOS PalmOS

NT

Where is LogTads ?
LogTads@Roost 2

Image 1.3. Inter-Roost agent communications.

1.3 A global IMPACT agent community implementation, a network of roosts: The
IRR_RoostServer and IYR_YPServer classes provide the communications layer necessary
for Inter-Roost agent collaboration. This enables agents to collaborate directly with agents located on
remote roosts, distributed across network connections (perhaps globally), spanning diverse operating
systems; In short, agents running under Unix can work directly with agents deployed on other
operating systems such as Windows NT, MacOS, and (hopefully soon) PalmOS.

As mentioned previously in section 1.2, the roost duty officer directs message traffic within their
roost. Additionally, duty officers designate routing for newly generated message traffic (IMPACT
agents, by design, do not know where the other agents are roosted) through calls to the IMPACT
yellow-pages server. Thus in figure three we see the duty officer querying the Yellow-Pages server for
LogTads agent location information. The resulting address denotes a remote roosting and so the
applicable messages are placed in the “Out-box” and redistributed via standard Java Remote Method
Invocation (RMI) procedures to the target roost.

IMPACT tools section 1: Implementation overview: Page 6 of 9

Image 1.4 – The initial AgentDE frame..

Image 1.5: AgentDE Connect specification dialog.

1.4 The IMPACT agent development environment (AgentDE): The (beta) AgentDE interface
provides all the controls necessary to define and test a single IMPACT agent. It employs a series of
compilers through which the
developer parses the various
agent component definitions
(type, function, action, etc.) into
the appropriate Java class
objects. This interface groups
sub-controls under two sets of
tab-select panels. The upper tab
set (containing UserDef T&D,
UserDef Action, Connect T&D,
and ActionExe Lib tabs) allows
the developer to view the
definitions already defined for the
current agent. The lower tab set
(containing YPInfo, Connect,
Type, Function, Action,
Program, I-Cons, A-Cons,
Calcs, and Finiteness tabs)
provide access to the corresponding definition input controls and parsers.

1.4.1 Defining the agent, a quick walk-thru: An agent developer typically starts by defining the
target agent yellow-pages information – select the lower “1-YPInfo” tab and then enter the agents name
and a brief description.

Next the developer must select the
appropriate asset connection modules (as
necessary) – select the lower “2-Connect”
tab to bring the connection control page
forward, and then click on the “New” button
located to the far-right. This launches the
AgentDE Connection specification dialog
(image 1.5) where a developer defines a
connection alias (required) and specific
parameters for the target asset connection.
Please note that the “target source type” uses
drop-down list selection control. Clicking the
mouse button on the control causes the list to
drop-down, allowing selection from the defined IMPACT connection library. Image 1.5 shows a
connection named “Jilad”, which taps a Hermes data mediator, the LIAData.med mediator file, through
the remote Hermes interface accessed through the jilad.cs.umd.edu:8222 port. Image 1.6 shows the
AgentDE interface with the accepted Jilad connection definition.

IMPACT tools section 1: Implementation overview: Page 7 of 9

Image 1.6: AgentDE showing the accepted connection definition..

Image 1.7: AgentDE showing the program definition control page.

Next the developer defines agent types, functions, actions, integrity constraints, and action
constraints as necessary: The control sets for defining each of these agent components all work roughly
the same. The developer enters the definition text into the text area and then clicks on the parse button.
If the text parses correctly, then it becomes part of the agent definition. If the text fails to parse, then an
error dialog will
appear with the
corresponding error
text. Image 1.7
shows the program
definition control with
an accepted agent
program definition.

IMPACT tools section 1: Implementation overview: Page 8 of 9

Image 1.8: The initial AgentDE test dialog.

Image 1.9: Test dialog – post-test summary page.

Image 1.10: Post-Test “DoAble” status set.

Following successful agent definition, the developer moves on to the testing phase. Clicking the
cursor on the “Test Program” button causes
the AgentDE to launch a test dialog as shown
in image 1.8. Similar to the primary AgentDE
interface, the test dialog is organized as
selectable control groupings. The “Summary”
group displays a running summary of the
current test status. The “Message Queue”
control set allows manipulation of the local
message queue for testing inter-agent
communications. The “Definition” control set
displays the current agent definition text. The
“Layer Info” set displays the rule layering
information. The “Unfold Info” set displays
the agent program unfolding, similar perhaps
to in-line method substitutions, imposed to
improve run-time efficiency. Selecting the
“Status Set Info” tab displays another tab-
control subgrouping, shown in image 1.10,
which displays the rendered action status set
(in effect, the “to-do” list).

Selecting the “Begin Test” button
causes the agent execution testing to begin.
Image 1.9 shows the dialog summary page
following a successful test execution.
Image 1.10 shows the “DoAble” action status
atom set following a
successful agent execution.
The “DoAble” set
corresponds to actions the
agent determined it should
do at run-time.

IMPACT tools section 1: Implementation overview: Page 9 of 9

Image 1.11: The Agent Roost (debug) interface.

1.5 IMPACT Agent roost interface: In a normal agent community, the roost runs seamlessly in the
background without an interface. For testing and demo purposes, however, we developed a roost
front-end, displayed in image 1.11, which allows us to view the on-going agent activities. This simple
interface provides a list of available agents, the ability to wake sleeping agents, and to view message
traffic generated between agents (the top window reflects the current message queue contents).

1.6 Future enhancements: Time allowing, we plan to include the following:

C Performance optimizations through caching and incremental update methods.
C An enhanced GUI (“drag&drop”) AgentDE interface.
C An enhanced Roost network viewport for debugging global agent communities distributed

across multiple roosts.
C Java JINI enabled server front-ends to ease network configuration issues.
C Improved “safety” checks applied during the compilation process (error detection and handling

algorithms)

1.7 Targeting micro platforms, the future is near: Software installation requirements push the
current implementation beyond the scope of most palm-top platforms. The (pending) arrival of
embedded java devices, however, would quickly rectify this problem – Jini IMPACT agents could
then reside directly, as mobile agents, on palm-top devices.

This aside, our existing implementation code libraries appear fairly generic – Our code should
prove readily adaptable to most micro-device environments through cross-compilation techniques.

