IMPACT Implementation overview.

1.0 Introduction: The current IMPACT implementation provides all components necessary to build

and test one or more IMPACT agents “housed” in run-time environment wrappers we call the
“Roosts”. Briefly speaking, roosts come in two flavors; A local roost wraps a single collaborative
community of agents in a non-networked “sand-box” environment (agents can only work with other
agents within this one community). A networked roost, on-the-other-hand, forms the back-bone for a
widely distributed global community of agents (agents on one roost can interact with agents on other
roosts — spanning operating systems and hardware platforms).

The implementation code consists of three main components; The IMPACT agent development
environment (AgentDE) contains a series of compilers, writtdava, which render an agent
instantiation (an collection of IMPACT agent core class objects) from a given agent definition (text).
The IMPACT Yellow-pages server (YPServer), writtedana and C, provides agent directory
lookup services necessary for agent construction and run-time communications. The IMPACT Roost,
written inJava, provides a run-time environment for IMPACT agents to work, sleep, or travel the
networks. Most of the implementation code, contained in a 2 megiwgarchive file (JAR) is
written currently to thdava 1.2 specification; This provides maximal code portability across operating
systems and platforms. It does, however, require loading Java 1.2 runtime library on the target
platform (6+ MB on Windows NT).

Future revisions will includdava JINI support, the addition of caching and multi-query
optimization techniques, and enhanced error handling and correction methods. Of note, pushing the
communications layer into thieni framework requires loading tldni runtime library which further
expands the minimum library footprint beyond the scope of some smaller platforms.

1.1 IMPACT agent architecture: An IMPACT agent definition includes a list of one or more action
definitions, with inter-action constraints, which prescribe the agents behavior by mapping the action
result data (the action status atom set) to procedures which ultimately change its’ state (the data out
component). At a deeper level, action determination runs according to the agent program which lists
sets of rules (connection function code-calls and comparisons) evaluated over raw or sensor data,
application or server request output.

The AgentDE, in short, allows the developer to compile agent definitiondawambject
collections (each wrapped byrar ead class object) referred to here as agent instantiations; Every
agent instantiation executes in it's own process thread and contains all th@asadebfects)
necessary to perform its’ defined behavior.

Agent instantiations typically “sleep” until awakened to process incoming message traffic. They

may also, however, be designed to run continuously (with periodic sleep intervals). A pending
enhancement will also allow the developer to specify a non-periodic run-time schedules.

IMPACT tools section 1: Implementation overview: Page 1 of 9

1.1.1 IMPACT connections: As mentioned above, IMPACT agents commonly exploit local and

networked assets through code-calls. To enhance development extensibility we developed the

IMPACT connection module, a Java base-class, from which all connection “classes” extend. Similar

to the notion of Dynamic Link Libraries common on some platforms, IMPACT connections allow agent
programs to load/use (at run-time) only the code necessary to access the desired servers, frameworks
and method libraries. This keeps the execution foot-print small and the agent architecture highly
flexible.

IMPACT connection classes typically define either a communications interface for external
servers, or a code "wrapper" which provides function calls (an API) to some third-party program
library or code. Our beta release connection library provides a few examples as we defined connectiol
interfaces for generidDBC, Hermes (a legacy data mediation system), tB&1 Aglets framework,
and some local programs which handle basic agent messaging, math, and time method code-calls.

Extending the connection library is relatively straight forward as the agent developer can create
a new connection module by “extending” a new class from the connection base class
(I AD_Connect . j ava). They would then encode a hand-full of required methods in the new
connection module class definition, compile it, and ultimately copy the new created connection module
somewhere in the java system pa@thASSPATH). On boot-up, IMPACT explores the archives
listed by the syster@L ASSPATH refererence and notes all such connection extension classes for use
in the AgentDE session.

1.1.2 IMPACT action procedures (I AD_Act i onExe class extensions): Just as we provided

an extendable library architecture for connections (typically data input), so too we defined an
extendable library for output action procedures; Thed2 Act i onExe classes provide the

mechanism by which an agent may change its state (typically data updates and prompts to other
processes and/or agents). Once an agent instantiation has calculated and approved its “To Do” list (tr
action status atom set), The agent can then act on the generated to-do data by mapping it to and
executing the appropriate action procedures. The beta rélaBséct i onExe library includes

methods such as eat eFi | e, appendFi |l e,mai | Fi |l e,f axFi | e, and

sendMessage.

IMPACT tools section 1: Implementation overview: Page 2 of 9

1.1.3 Theagent instantiation life-cycle: We represent an agent here in Image 1.1 as a complex
grouping of geometric objects which represent the underlying reality; An IMPACT agent instantiation is
a complex grouping of Java class objects, a hierarchy, wrapped by the | AD_Met aDat a classinto
self-executing Java threads -- Every agent definition contains all the code (instantiated classes)
necessary to execute independently while performing its designated behavior.

On theright side of Image 1.1 we see asset information (usually simple data) coming into the
Agent composition through the connection modules. The agent then evaluates its current state by
processing the underlying action rule body code-calls through which it generates “to-do” list entries (the
action status atoms). The agent then checks its “to-do” list against constraint definitions (as applicable
and renders the “DoAble” action set. Finally the agent executes the “DoAble”actions, calling action
procedures as specified in the corresponding action definitions — The answers flow out the left side of

the agent composition diagram.

Typica Agent dataflow

ActionExe Methods

IA_ActionExe FaxFile
[
IA_ActionExe MailFile

[
IA_ActionExe_SendMessage

Integrity Constraints
Action Constraints

(IAD_Connect extensions)

| (IAD_ActionExe extensions)

Networked assets

= -

|—— Server

Image 1.1: Agent data flow.

IMPACT tools section 1: Implementation overview: Page 3 of 9

1.2 IMPACT agent community “roost” implementation: An IMPACT agent roost

(I RR_Roost Ser ver class) comprises acollection of IMPACT agent objects which communicate
through an internal message queue (I A_MessageQueue class) managed by a “duty officer”
(IR_DutyOrficer class).

The roost duty officer functions primarily as a communications daemon for the local agents; the
duty officer routes incoming messages to the queue, wakes agents for whom pending messages exist,
and pulls out-going messages from the queue for remote routing. The duty officer, and thus the roost,
remains active until commanded to shut-down.

Agents, by design, are independent. While the duty officer may prompt an agent to work
(waking them), the officer does not control agents’ activities -- agents are free to sleep or run, come,
and go, according to their design specification. As mentioned previously, each agent has everything it
needs to perform its designated activity. If it requires access to some data, application, server, sensor
or actuator asset, then it includes the necessary connection specifications which provide proper asset
usage. For example, image 1.2 shows agents one and two accessing local assets while agents three
and four exploit remote resources via the network (Local or Internet).

IMPACT Agent Roost -- Internal work and data activity...

Agent 1

Message
Out Box

Image 1.2. Roost data flow.

Note that the communication “boxes” in Image 1.2 denote IMPACT agent message objects
passed between agents through the message queue both in and out of the roost. The dark green
“boxes” denote input messages while the light yellow boxes denote output messages. The asset data
streams are tagged with rectangles containing zeros and ones to denote the binary formats native to tt
assets.

IMPACT tools section 1: Implementation overview: Page 4 of 9

1.3 A global IMPACT agent community implementation, a network of roosts: The

| RR_Roost Server and| YR _YPSer ver classes provide the communications layer necessary

for Inter-Roost agent collaboration. This enables agents to collaborate directly with agents |ocated on
remote roosts, distributed across network connections (perhaps globally), spanning diverse operating
systems; In short, agents running under Unix can work directly with agents deployed on other
operating systems such as Windows NT, MacOS, and (hopefully soon) PalmOS.

As mentioned previously in section 1.2, the roost duty officer directs message traffic within their
roost. Additionally, duty officers designate routing for newly generated message traffic (IMPACT
agents, by design, do not know where the other agents are roosted) through callsto the IMPACT
yellow-pages server. Thusin figure three we see the duty officer querying the Y ellow-Pages server for
LogTads agent location information. The resulting address denotes a remote roosting and so the
applicable messages are placed in the “Out-box” and redistributed via stdam@aRemote Method
Invocation (RMI) procedures to the target roost.

IMPACT Agent Message Communications (Inter-Roost)

= In Roostl Egn;_ E
E ‘% ;%H;:E Java-RMI
3 = EE UNIX =
Out a
s T/

Y ellow Pages Server

2 Lo s

§ || o= y g

g S g e
Out| MacOS Out| PamOS

Image 1.3. Inter-Roost agent communications.

IMPACT tools section 1: Implementation overview: Page5 of 9

1.4 TheIMPACT agent development environment (AgentDE): The (beta) AgentDE interface

provides all the controls necessary to define and test a single IMPACT agent. It employs a series of

compilers through which the
developer parses the various
agent component definitions

i Fom =g Iekaig
e o Manieed Param be dgseis Dollalew mmg 1ot 80 AT
LR E O P EE S T TS e

(type, function, action, etc.) if
the appropriatdava class

objects. This interface grougs;

sub-controls under two sets
tab-select panels. The uppe
set (containing UserDef T&D
UserDef Action, Connect T&

ERIETIT (TS | - T
Hoare- SHOHE=

=

eu-- srfiund T
LT o Vol o bymy
S |8 rerasg osdraa s

L]

el P v i A g
.
i dsrred

Fivs s wi o o o i il

Qi ir s

BRI QARA (HLMBE IS T 3

and ActionExe Lib tabs) allo
the developer to view the
definitions already defined fg
current agent. The lower tah
(containing YPInfo, Connect,
Type, Function, Action,
Program, I-Cons, A-Cons,
Calcs, and Finiteness tabs)
provide access to the corresponding definition input controls and parsers.

s Sl by w0 T, Wb i L B ol b e

Image 1.4 — The initial AgentDE frame..

1.4.1 Definingthe agent, a quick walk-thru: An agent developer typically starts by defining the
target agent yellow-pages information — select the lower “1-YPInfo” tab and then enter the agents nam
and a brief description.

Next the developer must select t
appropriate asset connection modules (i
necessary) — select the lower “2-Conneg
tab to bring the connection control page
forward, and then click on the “New” button. ..., -
located to the far-right. This launches the . w e
AgentDE Connection specification dialog s
(image 1.5) where a developer defines @' " e
connection alias (required) and specific
parameters for the target asset connect
Please note that the “target source type
drop-down list selection control. Clicking
mouse button on the control causes the lidigge 1.5: AgentDE Connect specification dialog.
drop-down, allowing selection from the defined IMPACT connection library. Image 1.5 shows a
connection named “Jilad”, which taps$iarmes data mediator, the LIAData.med mediator file, through
the remoteHermes interface accessed through the jilad.cs.umd.edu:8222 port. Image 1.6 shows the
AgentDE interface with the accepted Jilad connection definition.

g ALE Lernecl specsbeasen dalag

t"

hilda seawcw allas:

N wd

Teromm LRI Jladch el sdu

Fhan il a1 prr Herme e Dot ol s c el A0S med
sy

divreaie adp e allaar

(b .

LA o0 WHE 1 HE SR I T 1 O T RS PN N L B T

IMPACT tools section 1: Implementation overview: Page 6 of 9

[E3IMPACT AgentDE Frame2

File Edit Help Debug
Interactive Maryland Platform for Agents Collaborating Together (IMPACT)
Agent Development Emvironment {AgentDE)

-0 User defined types ———— |- 0 User defined functiens

Name: Selected schema:
< NONE > ({ nathing defined)

UserDef T&FLib
Parameters:
Copy

Return type:

Name: | <NONE= - | |

Defined data source {DS) connections

Data source (Alias): Description:
ilad RHermes type data connection:

Semer: jilad.cs.umd edu8322

DS: ffshjiladirogersiHermes/DatafLogistics/LIAData
med

Login: "walley"

Test Program...

Status: Controls initialized -- Begin work...

o

Image 1.6: AgentDE showing the accepted connection definition..

Next the developer defines agent types, functions, actions, integrity constraints, and action
constraints as necessary: The control sets for defining each of these agent components all work roughly
the same. The developer enters the definition text into the text area and then clicks on the parse button.
If the text parses correctly, then it becomes part of the agent definition. If the text failsto parse, then an
error dialog will

appear with the
corresponding error | w__tR__Be ko
Tl ey v WL] PR D i B Agsifs Collaler slbig Beselles (VEAL 10
text. |m@e 1.7 Rijain Deewsbepiiism Ermm siiis @ (BgeirEr
shows the program (T e detaied B s
P . - | . : -
definition control with s fossss M Uktal it M |

1 e s s
an accepted agent 2 M andiauits

program definition.

F]
B IR e
AEL_Waliad |l isgai

oo LecE AT _Tolsla| S o, DAINC O _farbdky, 01 _ G ldan oy -
Dl Los: Mmrmee es Bl o Fensr resmes

Doel CA2EAC 20 d, SEERCIL, 0 Fengex G J EAC rads refermnpae
A

“arih_nty, Nel_ghoef, T,
Loce, =", Bdar,
Tt S Exad

| ParsePremmn | it s o e e

ﬁ
N Faaghat Lat | ERC matar
L]
Lol T
Jilad--wgrucie prajpd_us ekl wou i 32 e Mty s
L.

S SAe A aleilts FU I L el £ lpases LocERC TRl sl s

Image 1.7: AgentDE showing the program definition control page.

IMPACT tools section 1: Implementation overview: Page 7 of 9

Following successful agent definition, the developer moves on to the testing phase. Clicking th
cursor on the “Test Program” button caufse
the AgentDE to launch a test dialog as s
inimage 1.8. Similar to the primary AgeptDE ...
interface, the test dialog is organized as| e Fereas
selectable control groupings. The “Sumpmaly™ = e
group displays a running summary of the == e
current test status. The “Message Quey RN R
control set allows manipulation of the logal
message queue for testing inter-agent
communications. The “Definition” contra e e :
displays the current agent definition text Exve Dol '
“Layer Info” set displays the rule layering
information. The “Unfold Info” set displays | mage 1.8: Theinitial AgentDE test dialog.
the agent program unfolding, similar peri RS mrr——
to in-line method substitutions, imposed
improve run-time efficiency. Selecting ™= S
“Status Set Info” tab displays another ta ":':“,m‘"
control subgrouping, shown in image 1.[L0 fiosn st Fisssr - Frogsm wrs s
which displays the rendered action statd | S e s dhein)

(in effect, the “to-do” list). e i AR

L al fadn commpciian g pled oaerrioesg

n-ﬂ":nl-.-: il pRreLaRas PEnieg

= wees, | Eciva Debag | Skip 350 | Pomy s
S Comhy il bl i oel — Cmiil v i B

o} Strim eet garerstion - Pasesd - A0 Frogpam 550 Fapcessied

Selecting the “Begin Test” button
causes the agent execution testing to by
Image 1.9 shows the dialog summary pi
following a successful test execution.
Image 1.10 shows the “DoAble” action sTatus
atom set following a Image 1.9: Test dialog — post-test summary page.
successful agent executiq e -

The “DoAble” set :
corresponds to actions thg
agent determined it shoul WL_Frgian

Mk sidrrap neew 316 *
dO at run_time_ Coa RO BT il § P 1L e A Tols BT) l

1 Siwigs Merm s ubon Pagess]

1B b Li vl [Feldig L [(L TE B | nq v
Rijewi i=emn anry esdel . leplagied paosails

Cmpie o EALTpisaFis (CP LecERCTobais fal|

AT iy A 0 BAA
Ml R Totn b | &8_Loc FRC Tambe b "ALERARDRIA, "1 g e e s umad se
MEILBIERT [0l T Lol ESC T Pl BT, "COLLECE PAHE, “vE g fuuded fdii™)

BB ST Wiy v m i TS
Apparad Tonad = e | 325_Lo ERC Tkl s b, SALESNIRLE | TG SW_EHARD R, Bl Boos DA B2)
Appmre Tl uF i | 55_Loc ERCT risln b, "ALEMARDELE "W, "SLEMMMTISTA, &, 11 180, 1704 [|
Apgernd Tk i | Ma_Lowt ERGT ikl 6 0T, “ALESAWDRLE 7, AL EsRRGRW, P s 0 4320)

ApperaiToisie®is | T-F_LaE R Tolnk b, "0 0LLESE FARE", "R "COLLEGE PARSC BT_ SIES 0 48T I |
Bpperacd Torbihi® i | TF_LmE T Tida e B, ™ COLLIEDRE PRIVET, ", "COLLEOE PAME B B9 500, 135300)
AppedredTaissris | TP_LaER Tolpk b, “C OLLESE PR 'F *COLLEGE FARE P A4 0, B I)

Agmid leily sma g majed] . | jancdiis

Image 1.10: Post-Test “DoAble” status set.

IMPACT tools section 1: Implementation overview: Page 8 of 9

1.51MPACT Agent roost interface: In anormal agent community, the roost runs seamlessly in the
background without an interface. For testing and demo purposes, however, we developed a roost
front-end, displayed inimage 1.11, which allows us to view the on-going agent activities. Thissimple
interface provides alist of available agents, the ability to wake sleeping agents, and to view message
traffic generated between agents (the top window reflects the current message queue contents).

Interactive Maryland Platform for Agents Collaborating Together (IMPACT) Roost debug view-port
rMessage Queue {Incoming and Cutgoing)

Add message... || Edit message... |_ | Save (... || Load Q... |

rAgent listing
) BSFinder Agent Description:

1) BSInventAgent 1 |Pull requested AWR data, postvia desired method.
2) BSPurchasergent
3) BSRechwentAgent
4) AWR_Processor
5) AWR_Processor2
6) AWR_Requestor
[t AWR Redauestor2

[»

Wake-up agent

Status: Roost initialized; Begin work.

Image 1.11: The Agent Roost (debug) interface.

1.6 Futureenhancements: Time alowing, we plan to include the following:

J Performance optimizations through caching and incremental update methods.

J An enhanced GUI (“drag&drop”) AgentDE interface.

J An enhanced Roost network viewport for debugging global agent communities distributed
across multiple roosts.

. Java JINI enabled server front-ends to ease network configuration issues.

] Improved “safety” checks applied during the compilation process (error detection and handling
algorithms)

1.7 Targeting micro platforms, the futureisnear: Software installation requirements push the
current implementation beyond the scope of most palm-top platforms. The (pending) arrival of
embedded java devices, however, would quickly rectify this probldmi tMPACT agents could
then reside directly, as mobile agents, on palm-top devices.

This aside, our existing implementation code libraries appear fairly generic — Our code should
prove readily adaptable to most micro-device environments through cross-compilation techniques.

IMPACT tools section 1: Implementation overview: Page 9 of 9

