
IMPACT tools section 2: Agent instantiation life-cycle: Page 1 of 3

The IMPACT Agent instantiation life-cycle
(from conception to run-time)

2.0 An IMPACT Agent instantiation life-cycle can be broken down into three phases,
development, deployment, and run-time as follows:

2.1: Agent development (a brief recap) -- The IMPACT agent development environment
(AgentDE) comprises a set of compilers which translates an input agent definition (text) into an
instantiated hierarchy of IMPACT agent core classes (Java objects) which capture the desired agent
behavior. The IAD_MetaData class, a Java thread class extension, heads the hierarchy; It provides
the agent control interface and ensures that every agent can run independently in its own thread.

All IMPACT agent core classes implement the standard Java "serializable" interface; This
allows us to save/restore class objects to/from disk and transfer them to remote clients as necessary via
standard Java Remote Method Invocation (RMI) library calls. Thus, when a developer prompts the
AgentDE to save an agent instantiation, the system serializes the agent core class hierarchy into a
system independent binary file we call the agent meta data (AMD) file. When restoring an agent from
its AMD file, the IMPACT deserializes Java class objects from the AMD binary file, reinstantiating the
agent core class hierarchy.

2.2: Agent deployment -- Deployment to target roost(s) is handled via one of the following three
methods:

2.2.1: Physical deployment – The developer physically copies the AMD serialization files to the
target roost initialization directory and then prompts the roost to load from the directory at start-up. In
this mode, the roost server builds an agent list from the AMD files found in the initialization directory (at
start-up), registers itself and the loaded agents with the yellow-pages server
(IYR_YPHook.registerAgents Java RMI method call), and then enters the message queue / duty
watch processing loop.

2.2.2: Developer prompted deployment via roost client/server calls (PENDING) – At start-up,
the AgentDE obtains a listing of active roost servers from the yellow-pages server. Once the developer
is satisfied with the test results for a given agent, they can select the “Deploy program” button to prompt
the agent deployment dialog-box. Here they select the desired target roost(s), verify the run-time
scheduling, and initiate the code transfer via the “Deploy” button. At this point, the AgentDE system
contacts the target roost server(s) and begins the agent class object transfer through the network via the
IRR_RoostHook.inProcessAgent Java RMI method call (see Image 2.1). Once the code transfer
is complete, the target roost server serializes the agent class hierarchy to a local AMD file, adds the
new agent run-time data to its list, informs the yellow-pages server of the new addition
(IYR_YPHook.registerAgent Java RMI method call), and continues its message queue / duty
watch processing loop.

IMPACT tools section 2: Agent instantiation life-cycle: Page 2 of 3

Java-RMI

Yellow Pages Server

In

Out

Ja
va

-R
M

I In

Out

Ja
va

-R
M

I In

Out

Ja
va

-R
M

I

IMPACT Agent Deployment from the Agent Development Environment:

Agent Development
Environment
(AgentDE)

Java-RMI

 Specifications:
Who aaabbbccc
What xxxyyyzzz
Where 111222333

UNIX

NT

NT

MacOS PalmOS

Active Roosts:
Alpha@Janeway.nt.umd.edu
Bravo@Muddle.Mac.umd.edu
Charlie@Mystic.bam.net

inProcessAgent:
MacChecker

Roost: Alpha@Janeway.nt.umd.edu Roost: Bravo@Muddle.mac.umd.edu Roost: Charlie@Mystic.bam.net

registerAgent:
MacChecker

(1)

(2)

(3)
(4)

AgentDE running on troi.cs.umd.edu
YPServer running on jilad.cs.umd.edu

Image 2.1: Developer prompted agent deployment.

2.2.3: Agent prompted deployment via roost client/server calls (PENDING) – An agents
behavior specification might include the necessity that it physically moves from roost to roost, while
processing and/or generating data; this we call a mobile IMPACT agent. In this case, the agent
instantiation encodes the constraints and parameters which, during its normal execution cycle, prompts
the current roost host to temporarily suspend the mobile agents execution thread, contact the next roost
host, and send the agent on its way through the network via the IRR_RoostHook.runTDY_Agent

Java RMI method call. In this case the new roost host does not register the wayward agent with the
yellow-pages server. Rather, the new roost host simply continues the mobile agents execution thread
from where it stopped; The agent continues as it was before, except that it now has access to assets
available from the new roost host.

IMPACT tools section 2: Agent instantiation life-cycle: Page 3 of 3

2.3: Agent run-time – An IMPACT roost server provides an environment in which agents can work,
communicate, and sleep. Since it’s written in Java, roost servers can exist on any platform for which
the Java runtime library is available (currently version 1.2). This forms the framework through which
the IMPACT agents can operate collaboratively while widely distributed across networked resources,
regardless of platform and/or operating system. Within a roost server is the “duty-officer”
(IR_DutyOfficer) class object which functions mainly as a communications and activity daemon for
agents deployed to its server.

2.3.1 Local message processing: As messages arrive for local agents, the duty officer “wakes” the
agents by deserializing the appropriate AMD file (noted in it’s agent run-time list) into the target agent’s
Java class instantiation, and then starting the thread execution. Once running, the agent follows its
specification to completion.

2.3.2 Message generation: Agents communicate with other agents by generating and inserting
messages (IA_Message Java class objects) into the message queue (IA_MessageQueue class
object). As running agents generate messages for other local and/or remote agents, the message queue,
in-turn, consults the yellow-pages server as necessary to obtain the actual message routing data (this is
accomplished through the network via the yellow-pages client IRR_YPHook.getRoostings Java
RMI method call).

2.3.3 Remote message processing: As with the IMPACT agent core classes, the IA_Message

class implements the Java serializable interface; Thus message transfer can be conducted between
roosts via standard Java RMI library calls. For every “out-going” message (those destined for other
roost servers) in the queue, the duty-officer contacts the target remote roost server and transfers the
message object through the network via the IRR_RoostHook.addMessage Java RMI method call.
Through this procedure, the remote message objects are removed from the local message queue, and
transferred to the remote message queue for consumption by the remote agent.

2.3.4 Run-time scheduling: Part of an agents behavior specification can be that of a run-time
schedule. That is to say that agents can be designed to run at regular intervals, or some designated
specific, perhaps recurring, schedule. Thus the duty officer must periodically review the run-time data
and wake those agents whose schedule constraints match the current date-time group (DTG); As
before, the duty officer wakes a given agent by deserializing from the appropriate AMD file to
instantiate the necessary IMPACT agent core class hierarchy, and then starting thread execution.

