
IMPACT tools section 3: Agent Definition Syntax. Page 1 of 13

ID ::= (‘a’..‘z’ | ‘A’..‘Z’)
(‘a’..‘z’ | ‘A’..‘Z’ | ‘0’..‘9’ |

‘_’)*

RECID ::= ID (‘.’ ID)+

INT_VALUE ::= (‘0’..‘9’)+

INT ::= (‘+’ | ‘-’)? INT_VALUE

REAL ::= INT ‘.’ INT_VALUE

STRING ::= ‘"’ (~‘"’)* ‘"’

FILE ::= ‘\'’ (~‘\'’)* ‘\'’

AND ::= ‘&’

OR ::= ‘|’

NOT ::= (‘!’ | ‘~’)

BOOL ::= ‘$’ (“true” | “false”) ‘$’

Fig 3.1: Base-level tokens.

IMPACT Agent definition syntax.
3.0 Introduction: An IMPACT agent definition is a collection of specifications (identification,
connection, type, function, action, program, action-constraint, and integrity-constraint) necessary to
describe the target agents behavior. Agent identification and connection criteria are typically specified
using the AgentDE graphical user interface (GUI) controls to select and specify the necessary input
parameters. As for the type, function, action, program, action-constraint, and integrity-constraint
definitions (hereafter called parseable components), the AgentDE provides a series of parsers which
render instantiated objects from the definition text input. As mentioned previously, the AgentDE lower
tab-control panels provide the agent specification input controls; Here you should note that for every
parseable component, there is a corresponding definition entry page which includes a text entry area
and two buttons (parse and clear). Simply select the desired input page (bringing the corresponding
control page forward), enter the text into the edit window, and then invoke the parser by selecting the
“Parse” button.

If the text parses correctly, the system will generate the object and insert it into the agent
instantiation (the IAD_MetaData class). If, however, the system detects an error, an dialog box will
appear with the corresponding error text.

NOTE: The connection interface (the Java IAD_Connect class) provides the ability to
import pre-defined connection type and function code-call definitions. That is to say that if the
connection developer defined types and/or code-call functions for the connection interface, then your
agent instantiation automatically inherits such
type and function definitions when you select that
connection for use in your agent instantiation –
You need not define such connection specific
types or functions manually.

3.1 General parser syntax: This document
uses a Bachaus-Naur like format to describe
syntax used in the various agent definition
components. Some tokens, such as “ID”,
“INT”, and “STRING”, apply universally and
thus are presented here before anything else.

IMPACT tools section 3: Agent Definition Syntax. Page 2 of 13

IMPACT agent type definition ::=
type_node ‘;’ EOF

type_node ::= (record_node | set_node | base_type
)

set_node ::=
 SchemaTok:ID ‘{‘ (record_node | base_type)
‘}’

record_node ::= SchemaTok:ID
 ‘<‘
 NameTok:ID ‘/’ type_node
 (‘,’ NameTok_N:ID ‘/’ type_node)*
 ‘>’

base_type ::=
 “integer” | “real” | “char” |
 “boolean” | “file” | “any” |
 “object” | “string” | SchemaTok:ID

Fig 3.2: Agent type grammar.

From the base-level token syntax (see Fig 3.1) we see that an ID token must start with an alpha
character and can be followed by zero or more alpha-numeric or underscore characters.

‘a’..’z’ denotes the span of characters from ‘a’ to ‘z’

(x | y) denotes that item x or y applies

()* denotes that the enclosed items occur zero or more times.

()+ denotes that the enclosed items occur one or more times.

()? denotes that the enclosed item is optional.

STRING denotes text inclosed in double quotes.

FILE denotes text inclosed in single quotes.

3.2 IMPACT Agent type definitions: Agent type definitions describe storage and argument data
structure schemas used in all the higher-level agent definitions (such as connection code-call functions,
actions, and action procedures). Current agent type definitions occur in two flavors, data type sets and
records; Simply speaking, data sets are bound by curly brackets “{}” , data records are bound by
angle brackets “<>” , and record field names are separated from schema names by the forward slash
‘/’ character (See Syntax3.2 for the current type grammar).

The type syntax allows us to define simple
as well as nested hierarchy type definitions. Of
note, the “base_type” tokens can reference either
standard simple types (i.e. integer, real, char,
boolean, file, and string), special simple types (i.e.
any, object – to be discussed later), or they can
reference any previously defined type definition by
name (the system attempts to locate and set the
necessary sub-type references during the parsing
phase).

IMPACT tools section 3: Agent Definition Syntax. Page 3 of 13

PointSet
{
 PointRecord
 <
 X/integer,
 Y/integer
 >
};

Fig 3.3: PointSet type.

RouteSet
{
 RouteRecord
 <
 RouteCost/double,

RouteLength/integer,
 Route/PointSet,

Fig 3.4: RouteSet type..

RouteSet
{
 RouteRecord
 <
 RouteCost/double,
 RouteLength/integer,
 Route/PointSet
 {
 PointRecord
 <
 X/integer,
 Y/integer
 >
 },
 RouteScript/file
 >
};

Fig 3.5: Four types in one definition.

Suppose for example we’re defining an agent which deals with route
planning. The first thing we might want to define is a type for the set of
points which describing a travel path (see Fig 3.3). Select the type edit
control page, enter the definition text into the edit window and select (click
on) the “Parse” button. After parsing the type definition text you should
note that the text entry area has cleared. This, and the status bar entry
‘Success – “PointSet” type added to table’, indicates that the defininition
parsed successfully. To view the newly rendered type definitions, select the
upper AgentDE tab-control panel marked “UserDef T&F Lib” (user defined type and function
definition library). Here you should now see two new type entries in the left-hand list box
(PointSet and PointRecord); The example text actually defined two types, a set type and a
record type, in one nested definition.

Continuing with this example, a typical route planning algorithm
might render a set of one or more routes (for client selection). The Fig
3.4 lists the RouteRecord type, one field of which references the
previously defined PointSet type, and the RouteSet type as a
set of RouteRecords:

The type definitions from figures 3.3 and 3.4 ultimately
rendered four type objects from two input text definitions.
Using a type definition variation, you could have just as easily
have defined all four from one text definition as depicted in Fig
3.4. Please note that here the Route/PointSet{}
entry defines not only the field and schema name (separated
by a forward slash), but the underlying schema as well.

IMPACT tools section 3: Agent Definition Syntax. Page 4 of 13

APS_LOC_2D
{
 LOC_Recd1
 <
 LOC/string
 >
};

Fig 3.6: APS_LOC_2D type.

IMPACT Agent function definition ::=
 ConnAliasTok:ID “-->”
 DomainTok:ID ‘:’ FunctionTok:ID
 ‘(’ paramList “):” returnType ‘;’ EOF

paramList ::=
 paramType (‘,’ paramType)* |
 “void”

paramType ::=
 FnameTok:ID ‘/’ typeName

returnType ::=
 returnParamType | “void”

returnParamType ::=
 (“polymorphic” | FNameTok:ID ‘/’ typeName
)

typeName ::=
 (NameTok:ID | “integer” | “real” |
 “char” | “boolean” | “file” |
 “any” | “object” | “string”)

Fig 3.7: Agent connection code-call function grammar.

3.3 IMPACT Agent function definitions provide code-call prototypes (see Fig 3.7 for precise
grammar) for methods invoked through a specified connection interface (IMPACT invokes code-calls
through connection interfaces). The AgentDE uses these prototypes later in the compilation and run-
time process to validate parameter and return-type compatibility. Simply speaking, an IMPACT agent
function definition lists the connection alias, domain and function names, the parameter list (may be void
– similar to the C language, void functions have no parameters), and the return type as follows:

AliasName –-> DomainName:FunctionName
(Param1/Type1, Param2/Type2, ···,ParamN/TypeN):ReturnName/ReturnType;

The following example shows a function definition used to invoke the Hermes oracle:project
method via an RHermes connection (aliased as “Jilad”):

Jilad-->oracle:project(SrcTable/file, ConnectInfo/string,
ProjectFlds/string): ret/APS_LOC_2D;

This function takes three input parameters (a file and two strings) and
returns an argument of type “APS_LOC_2D” (a set of string records
– see Fig 3.6).

Note: As mentioned previously, if the agent
developer uses a connection interface which
does not provide a method listing, then they
must define the types and/or method
prototypes for all the types or methods they
plan to invoke through the connection within
the agent instantiation. If, however, the
connection does provide a method listing
(the preferable design), then the agent
instantiation inherits those type and function
definitions from the connection reference;
The agent developer then simply references
the desired code-call methods within the
program.

IMPACT tools section 3: Agent Definition Syntax. Page 5 of 13

MailLocTotalsFile(FnSource/file, SzTo/string);;;;
--> executes
{
 mailFile
 (
 "", FnSource,
 SzTo, "demo@jilad.cs.umd.edu",
 "LocTotals agent generated Army War Reserves
data.",
 "londo.cs.umd.edu"
)
};

Fig 3.8: MailLocTotalsFile action definition.

3.4 IMPACT Agent action definitions (see Fig 3.10 for precise grammar) map an agents inner state
to its behavior with the outside world (i.e. users, hardware, and other agents). As depicted in section
1, figure 1, action procedures (see IAD_ActionExe methods), represent the “data-out” side of an
agent. Similar to C language function prototypes, an action definition specifies the action name and
result data parameters such as renderMessage(SzMessage/string), but not its underlying
implementation. Moreover, action definitions can include PreCondition, Add, and Delete agent state
conditions, and commonly detail action procedure mappings, as necessary, over the prescribed result
data set to render the appropriate output. The action procdure library currently includes methods such
as createFile, appendFile, mailFile, and sendMessage. Alternately, actions with out an executable
component, so called “No Operation” (NoOp) actions, are useful as a shorthand for wrapping code-
call subroutines and inserting data facts. During the compilation / testing phase, constants and/or
program entry rule bodies for such “NoOp” actions are actually in-line substituted into the unfolded
agent program and then removed from the action list.

Note: The current IMPACT implementation ignores action Precondition, Add, and Delete
state condition specifications; These control measures will be supported in a (near) future version.

When designing an agent, perhaps the first step should be to decompose the problem into
appropriate sub-tasks; To send an email message, for example, you must first create a data file, then
append data to it, and finally send the file to the mail server. In this example, a list of defined actions
(with action procedure mappings) might include CreateMailFile, AppendMailFile, and SendMailFile.
With the base set of actions defined, you might then consider sets of facts and subroutines useful in the
agent design.

3.4.1: Action definition example 1 (Fig 3.8) lists the MailLocTotalsFile action whose status
set will contain a set of data parameters (FnSource source file, and SzTo address string elements).
It further specifies the mapping of those parameters into the mailFile action procedure which will
fire after IMPACT generates action status sets for all the applicable actions.

IMPACT tools section 3: Agent Definition Syntax. Page 6 of 13

LocTotals (SzLOC/string, D_AuthQty/real,
D_OnHand/real);;;;
--> NoOp;

Fig 3.9: LocTotals action definition.

Note: Selecting the AgentDE ActionExe Lib control tab (in top panel section) prompts the
system to display the control page which lists the currently available action procedures. Selecting the
listed procedure entries (click on a listed text entry), in-turn, prompts the controls to display information
about that action procedure.

The mailFile action execution method (see ActionExe Lib tab entry) requires six input
parameters:

FSzSrcPath/file_or_string (it accepts either a file or string type),
FSzSrcFile/file_or_string,
SzTo_Address/string,
SzFromAddress/string,
SzSubject/string,
SzSMTP_Host/string

In this action definition, we can see that the FnSource action status set data parameter was
mapped to the mailFile FSzSrcFile input parameter, and the SzTo action status set data parameter was
mapped to the mailFile SzTo_Address input parameter. All other mailFile input parameters were
defined with constants.

3.4.3 Action definition example 2 (Fig 3.9) defines the LocTotals action whose status set will contain
a set of data parameters (SzLOC string, D_AuthQty real, and D_OnHand real elements). This
action, however, cites NoOp as it’s used within the program to define a subroutine code block which
ultimately gets in-line substituted into the unfolded program.

IMPACT tools section 3: Agent Definition Syntax. Page 7 of 13

IMPACT Agent action definition ::=
 actionName ‘;’ precondition ‘;’ add ‘;’ delete ‘;’
 “-->” exeModuleActionCall ‘;’ EOF

actionName ::= NameTok:ID ‘(’ paramList ‘)’

exeModuleActionCall ::= exeActionCall | “NoOp”

exeActionCall ::= “executes” ‘{’ NameTok:ID ‘(’ actionArgList ‘)’ ‘}’

actionArgList ::= actionArg (‘,’ actionArg)* |

actionArg ::= VarTok:ID | RvarTok:RECID | StringTok:STRING | IntegerTok:INT |
 RealTok:REAL | CharTok:CHAR | FileTok:FILE | BooleanTok:BOOL

paramList ::= formalParam (‘,’ formalParam)* | “void”

formalParam ::= FnameTok:ID ‘/’ simpleType

simpleType ::= NameTok:ID | “integer” | “real” | “char” | “boolean” |
 “file” | “any” | “object” | “string”

precondition ::= codeCallCondition

add ::= codeCallCondition

delete ::= codeCallCondition

codeCallCondition ::=
 (NOT)? simpleCodeCallCondition
 (
 AND (NOT)? simpleCodeCallCondition
)*

simpleCodeCallCondition ::= codeCallAtom |
 (“<” | “<=” | “>” | “>=” | “=” | “<>”)
 ‘(’ argument ‘,’ argument ‘)’

codeCallAtom ::= “in” ‘(’ argument ‘,’ codeCall ‘)’

codeCall ::= DomainTok:ID ‘:’ FunctionTok:ID ‘(’ argList ‘)’

argList ::= argument (‘,’ argument)*

argument ::= VarTok:ID | RecVarTok:RECID | StringTok:STRING | IntegerTok:INT |
 RealTok:REAL | CharTok:CHAR | FileTok:FILE | BooleanTok:BOOL

Fig 3.10: IMPACT Action grammar.

IMPACT tools section 3: Agent Definition Syntax. Page 8 of 13

// Simple “ActionName” facts:
//
Mode(ActionName(“Alpha”, 5, •••, “Zulu”)).
Mode(ActionName(“Bravo”, 6, •••, “Zulu”)).

// A conditional “ActionName” fact:
//
Mode(ActionName(“Charlie”, 7, •••, “Zulu”)) :-
 in(Q, Alias1–>Domain_A:Function_1())&
 >(Q, 10) &
 <(Q, 20).

// An “ActionName”rule body; The output parameters are
// rendered from data code-calls and constraints
//
Mode(ActionName(OutParam1, OutParam2, •••,
OutParamN)) :-
 in(X, Alias2–>Domain_B:Function_1(“Alpha”, 5))&
 in(Y, Alias3–>Domain_C:Function_1(“Zulu”, 2.3,
“Fox”))&
 =(X.SubField1, Y.SubField3)&

•••
 in(Z, Alias3–>Domain_C:Function_2(Y.SubFld1))&
 =(OutParam1, Z.SubField1)&
 <(5, Z.SubField2) &
 =(OutParam2, Z.SubField3)&

•••
 =(OutParamN, Z.SubFieldN).
;

Fig 3.11: Generic program example.

3.5 IMPACT Agent program definitions (one per agent) map one or more facts or rule body
definitions to action status atom instantiations (See Fig 3.15 for the precise grammar). Here the agent
developer specifies the constants and /or data evaluations necessary to instantiate the action status atom
arguments (the output data). A typical program entry specifies the action status atom, a deontic
modality (Do, Obliged, Forbidden, Waived, Permitted) wrapper containing an action reference,
followed by the optional rule body (a collection of connection code-calls and / or comparisons linked
by the ampersand). Program entry action status atom references are separated from the (optional) rule
bodies by the “:-” operator and must terminate with a period (‘.’). Finally, the agent program
definition must terminate with a semicolon (‘;’) character following the last entry definition. Of note,
“facts” are special cases as they typically map constants directly to an action status atom; moreover,
facts need not include a rule body (see 3.11, first three program entries)..

3.5.1 Run time evaluation: The
current rule-body execution engine
follows a stack model. That is to say
that at evaluation time, the system
processes every action/rule body
definition for which the pre-condition
state is true (omission of the
precondition, currently the default
mode, means that the action/rule
bodies get evaluated every time).
Rule body execution starts with the
top rule and continues sequentially
through the listed rules (on success
the system pushes the rule body
element result on the data stack) until
either the final rule succeeds, and the
action status atom is instantiated
from the current stack data, or one
of the rules fails (the action status
atom is not instantiated for those
states).

IMPACT tools section 3: Agent Definition Syntax. Page 9 of 13

Less-Than <
Less-Than or Equals <=
Equals =
Greater-Than or Equals >=
Not Equal <>

or
!=

Fig 3.12: Comparison operators.

3.5.2 Comparison operators (listed in Fig 3.12) are common
elements of program entry rule bodies. The comparison
syntax is a bit backwards (i.e. Reversed Polish Notation)

Operator ‘(’ Argument1 ‘,’ Argument2 ‘)’

...but the result is as expected; That is to say that
<(Value1, Value2) evaluates true if Value1 is less than Value2.

3.5.3 The “in” operator, which wraps code-call specifications, can functionally be thought of as
both as a membership function and a result set assignment reference. That is to say that the evaluation
of “in(X, AliasName–>DomainName: FunctionName())” would be true if the domain
function succeeds and either:

1) X is a variable -- It then gets assigned the domain function result (set or value).

2) X is instantiated (as a value or previous result set reference), and it’s a member of the current
domain function code-call result set. Of note, the current implementation does not handle
this second case; This, however, is easily remedied by including some additional
comparison elements in the rule body.

3.5.4 Basic Math functions: The current IMPACT implementation provides a “Local” connection
module which implements a library of commonly used domain functions (math domain is one of these).

3.5.5 Special operators:

3.5.5.1 Connection code-call caching: Agent programs often include a few rule-body elements
which are both costly and execute frequently. IMPACT currently supports caching on specific in
operator rule-body element via the cache modifier. The following program entry rule-body element
causes the system to consult the internal result cache, prior to execution, for the specified connection
code-call:

cache in(X, ConnAlias–>Domain: Function(Arg1, Arg2, ..., ArgN))

If the cache contains a result/reference for such a code-call, then the result is pushed directly on the
stack (execution continues with the next rule body element). If the cache does not contain a reference
for the code call, then the code-call get’s evaluated, and the result is both pushed onto the stack and
referenced into the cache.

IMPACT tools section 3: Agent Definition Syntax. Page 10 of 13

sendMessage
(
 SzTgtAgent/string,
 SzCommand/string,
 L_Flags/integer,
 A_Data/any
)

Fig 3.13: sendMessage action procedure.MessageRecd
<
 SzTo / string,
 SzFrom / string,
 SzCommand / string,
 SzTimeHack / string,
 L_Flag / integer,
 A_Data / any,
 SzKey / string
>;

Fig 3.14: Local.MessageRecd type.

3.5.5.2 Argument type-casting: One of the special
IMPACT types is called “any” (parameters of type
“any” , accept assignment of any value). This is used,
for example in the sendMessage action procedure
A_Data parameter (Fig 3.13); Note, when executed,
the sendMessage action procedure renders a
MessageRecd (Fig 3.14) object containing the
necessary message data which, in-turn, gets inserted into the
message queue.

Agents can pass anything through the A_Data
parameter as the field value. On the receiving end, however,
an agent can not simply assign something of type “any” to,
say, an integer variable. To get around this, IMPACT
supports some rudimentary type-casting capabilities.

Suppose agent A passed a string, for example, as the data input for a message addressed to
agent B. Agent B, in-turn, would then retrieve its messages, and access/assign the data field as a string,
via program entry rule-body elements something as follows:

...
in(MsgRecd, Local–>msgBox:getMessages())&
=(SzData, (string) MsgRecd.A_Data)&

...

3.5.6 Program unfolding: During the agent testing phase, AgentDE attempts to “Unfold” the program
in an attempt to generate a simpler program for run-time evaluation. Not unlike subroutine usage
(except that the parameters are explicitly data out), rule bodies can include nested references to other
action status atoms. The unfolding process, basically, attempts to remove all such nested action status
atom references by replacing such references with their (specially modified) factual parameters and/or
program entry rule-body definition as applicable (this process is slightly similar to C language in-line
subroutine substitution).

Of note, agent programs without such action status atom reference nesting do not require
unfolding. In these cases, the agent evaluates the action status atom set using the original program.

IMPACT tools section 3: Agent Definition Syntax. Page 11 of 13

3.5.6.1 “NoOp” action status atom program references renders a developer’s short-cut. As
cited previously, the IMPACT action definitions (see X) include either a mapping to an action
procedure, or a “NoOp” reference (nothing executes over the action status atom data). This is
commonly used to tag an “action”, and subsequently it’s rule body, as an action which does not do
anything to change the agent’s state (it does not execute any action procedures which would alter the
state data). While this may seem pointless, it does, in-fact, render a short-cut syntax for writing a
program rule-body “subroutine” (the developer writes it once and then cites it in many places). At
unfolding time, the AgentDE inserts the appropriate factual constants and/or rule-body blocks into the
new program, and then, finally, removes the “NoOp” action status atom program entries from the
rewritten program.

IMPACT tools section 3: Agent Definition Syntax. Page 12 of 13

IMPACT Agent program definition ::=
 (ruleHead (“:-” ruleBody)? ‘.’)+ ‘;’ EOF

ruleHead ::= actionStatusAtom

ruleBody ::=
 ruleEntry ((‘,’ | ‘&’) ruleEntry)*

ruleEntry ::=
 actionStatusAtom | simpleCodeCallCondition | cacheBlockReference |
 NOT (actionStatusAtom | simpleCodeCallCondition)

cacheBlockReference ::=
 (
 “cacheBlockAs” ‘(’
 SzNameTok:STRING ‘,’ ‘[’ argument (‘,’ argument)* ‘]’
‘,’
 (NOT)? simpleCodeCallCondition
 ((‘,’ | ‘&’) (NOT)? simpleCodeCallCondition)* ‘)’
) |
 (
 “importCacheBlock” ‘(’ SzNameTok2:STRING ‘)’
)

simpleCodeCallCondition ::=
 codeCallAtom |
 (“<” | “<=” | “>” | “>=” | “=” | “<>”)
 ‘(’ argument ‘,’ argument ‘)’

codeCallAtom ::=
 (“cache”)? “in” ‘(’ argument ‘,’ codeCall ‘)’ |
 (“is” | “store”) ‘(’ fileArgument ‘,’ codeCall ‘)’

codeCall ::=
 ConnAliasTok:ID “-->” DomainTok:ID ‘:’ FunctionTok:ID ‘(’ argList
‘)’

argList ::= argument (‘,’ argument)*

argument ::=
 (‘(’ (“integer” | “real” | “double” | “char” |
“boolean” |
 “file” | “any” | “object” | “string”) ‘)’)?
 (
 VarTok:ID | RvarTok:RECID | StringTok:STRING | IntTok:INT |
 RealTok:REAL | CharTok:CHAR | FileTok:FILE | BooleanTok:BOOL
)

fileArgument ::= FileTok:FILE

actionStatusAtom ::=
 (“Do” | “P” | “F” | “W” | “O”) ‘(’ actionCall ‘)’

actionCall ::= NameTok:ID ‘(’ actionArgList ‘)’

actionArgList ::= actionArg (‘,’ actionArg)*

3.15: Agent program grammar.

IMPACT tools section 3: Agent Definition Syntax. Page 13 of 13

3.6 IMPACT Action constraints are not currently supported; This control feature will be available in
a (near) future version.

3.7 IMPACT Integrity constraints are not currently supported; This control feature will be available
in a (near) future version.

