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Abstract— In disaster and combat situations, mobile cameras
and other sensors transmit real-time data, used by many op-
erators or analysis tools. Unfortunately, in the face of limited,
unreliable resources, and varying demands, not all users may
be able to get the fidelity they require. This paper describes
MediaNet, a distributed stream processing system designed with
the above scenarios in mind. Unlike past approaches, MediaNet’s
users can intuitively specify how the system should adapt based
on their individual needs. MediaNet uses both local and on-
line global resource scheduling to improve user performance
and network utilization, and adapts without requiring underlying
support for resource reservations. Performance experiments show
that our scheduling algorithm is reasonably fast, and that
user performance and network utilization are both significantly
improved.

I. I NTRODUCTION

Consider a dangerous setting, such as collapsed buildings
caused by an earthquake or terrorist attack. Novel recording
devices, such as cameras carried by Uninhabited Aerial Ve-
hicles (UAVs) or by robots that crawl through rubble, may
be deployed to explore the area. The output of these devices
can be of interest to many operators. Operators may include
rescue workers working in the rubble itself, people overseeing
the work in a station somewhere, the press, or software that
creates, say, a 3-dimensional model of the scene.

Different operators may require different views of the area,
and may have different fidelity requirements or user priorities.
Although the operators may work independently of one an-
other, they share many resources, such as the recording devices
themselves, compute servers, and networks. These resources
have limited capacity, and so they must be allocated carefully.
Without resource reservation, adaptivity is essential.

The conditions present in this disaster situation are not
unique. That is, many applications consist of multiple oper-
ators interested in streaming data from multiple sources that
must adapt to limited resources, potentially in application-
specific ways. Examples include the exchange and aggregation
of sensor reports [1], the distribution of media on a home
network [2], the performing of reconnaissance and deployment
in a military setting [3], and so on.

A number of projects have explored how to provide im-
proved quality of service (QoS) for streaming media in
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resource-limited conditions. These systems place computations
in the network, either within routers themselves (e.g., [4], [5],
[6]) or at the application-level using an overlay network (e.g.,
[7], [8]), and employ system-determined, local adaptations,
such as priority-based video frame dropping. While such
adaptations impose little overhead, they can be inefficient
because they do not take into account global information. Also,
existing schemes typically do not consider user preferences in
making QoS decisions.

To study whether these problems can be overcome, we are
developing a system calledMediaNet that takes a compre-
hensive view of streaming data delivery. MediaNet mainly
differs from past approaches in two ways. First, rather than
make QoS adaptation system-determined, MediaNet allows
users to specify how it should adapt under overload conditions.
Each user contributes a list of alternative specifications, and
associates a utility value with each specification. To some
users, color depth may be more important than frame rate,
while for other users the preference may be the other way
around. The primary goal of MediaNet is to maximize each
user’s utility.

Second, in addition to using local scheduling, MediaNet
employs a global scheduling serviceto divide tasks and
flows among network components. This global point of view
has benefits to both fairness and performance, because the
service can consider specifications from multiple users while
accounting for priority and overall network efficiency; the
challenge is to do this in a scalable manner. Different from
other projects that use global schedulers (e.g., [5], [9], [2]),
MediaNet’s global scheduling service is continuously looking
for improvements based on monitoring feedback. MediaNet
employs a completely adaptive overlay network; it does not
rely on resource reservations, and adapts to loads not under
its control.

Experimental measurements with our prototype implemen-
tation are promising: users achieve better performance and
the network is more efficiently utilized than without any or
with only local adaptations. On the other hand, our system
does exact a higher cost for its global adaptations, in terms
of overhead and implementation complexity. We consider our
work as a step to exploring how to synergistically apply
adaptations from various levels in a scheduling hierarchy.

In this paper, we describe the MediaNet architecture (Sec-
tion II) and our prototype implementation (Section III).
We focus on the challenges of implementing a globally-
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reconfigurable stream processing system, and show experimen-
tal evidence of its costs and benefits (Section IV). We finish
up with related work (Section V) and conclusions and future
work (Section VI).

II. M EDIANET ARCHITECTURE

MediaNet’s architecture defines acomputational network,
consisting ofcompute nodesandnetwork links. These elements
are responsible for receiving streaming data from various
sources, computing on that data, and delivering it to the end-
applications. As shown in Figure 1, compute nodes are highly
heterogeneous, consisting of cameras, sensors, workstations,
and compute servers; as such they have different computational
power, available memory, hardware support for video opera-
tions, etc. Network links between nodes could be either wired
or wireless; as such, the underlying network topology may
change at run-time as components physically move around or
new parts of the infrastructure are deployed.

The user’s interface to this computational network is via a
global scheduling service; the architecture leaves the imple-
mentation of this service abstract. The service is responsible
for scheduling various flows and computations on the network,
based on user specifications and the current state of the
network. We describe these specifications next, followed by
a discussion of scheduling.

A. Specifications

Users communicate their requirements to the global
scheduling service using what we call acontinuous media
network (CMN), which is a directed acyclic graph (DAG)
representing a computational dataflow. The job of the global
scheduling service is to combine the CMNs of individual
users into a single CMN, and then partition this CMN into
subgraphs to be executed on the various compute nodes. The
act of combining the CMNs and partitioning them among
nodes takes into account issues of fairness, performance, and
user-specified adaptation, as we describe later.

Each node in a CMN represents an operation mapping zero
or more input frames (stream-specific packets of data such
as video frames, audio clips, etc.) to zero or more output
frames. Operations can be simple, e.g., data forwarding, frame
prioritizing, and frame dropping; or they can be more complex,
e.g., video frame cropping, changing the resolution or color
depth, “picture-in-picture” effects, compression, encryption,

etc. We also need operations to receive input from and send
output to components external to the DAG, to perform I/O
with devices like video cameras and players. The global
scheduling service takes into account the bandwidth, latency,
and processing requirements of operations.

Operations have a number of associated attributes. One
important attribute is theintervalwhich indicates the minimum
time between operations on subsequent frames (i.e., the inverse
of the rate). For better performance, operations can either
process input frames immediately, or they can be forced to
execute at the specified intervals on queued data. In either case,
the interval effectively specifies a soft real-time constraint
on the processing of frames; if frames arrive faster than the
specified interval, or if the node cannot process them at that
interval (perhaps because of downstream congestion), then
either backpressure must be applied to the incoming flow
or frames must be dropped. How to handle this situation
adaptively is considered in the next subsection.

A CMN node can be fixed at a certain location in the
actual network (e.g., to indicate the network location of a
particular video source), or left unspecified. Moreover, a node
can be consideredoptional, meaning that it is only inserted
between mandatory nodes when the CMN is scheduled across
multiple compute nodes. Operations can maintain internal soft-
state and need not actually operate on packets. Requiringsoft-
state is important for allowing operations to relocate during a
reconfiguration.

A user specification is a list of CMNs, where each CMN’s
relative preference is indicated by a correspondingutility
value, which is a real number between 0 and 1, where 1
means most desirable. In our implementation, we encode user
specifications, and consequently CMNs, as XML documents.
An example specification is shown in Figure 2(a), depicted
graphically, where the user specifies three CMNs, having
decreasing utility. In each CMN, an MPEG video stream
originates at locationpcS, the frames are prioritized for
intelligent dropping by the optional (as indicated by the* )
Prio operation, and they are finally delivered to the user’s
player onpcD. In the second CMN, the frame rate is reduced
by proactively dropping B frames, while in the third CMN the
P frames are dropped as well.1 The MediaNet scheduler can
decide which of these specifications to run, and where to run
the operations with unspecified locations.

We do not expect users will author CMNs directly, but
rather provide higher-level preferences, such as the general
adaptation methodology and the streams of interest. For ex-
ample, a user might specify (in some declarative format) “I
want MPEG streamX from locationY , and I want to adapt
using frame dropping.” Aweaving tool, which is part of
the global scheduling service, would index these preferences
into a database that contains template CMNs and stream
specifications. The template CMNs are basically like the

1In MPEG streams, I frames are essentially JPEG images, while P frames
and B frames exploit temporal locality, including “deltas” from adjacent
frames. P frames rely on the most temporally-recent P or I frame, and B
frames rely on the prior I or P frame, and the next appearing I or P frame.
Therefore, I frames are more important than P frames, while B frames are
the least important.
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CMNs we have shown, but without any stream-specific data,
like the stream location, resource usage characteristics, etc.,
while the stream specifications would include this missing
information. The weaver then merges the template and the
stream specification of the requested movie together to create
an almost-complete CMN; only the utility values have not been
filled in. This idea is shown in Figure 2(b).

The weaver should set utility values to share resources
among users of potentially differing priority fairly. Utility
values have bothrelative and absolute effect. That is, a
user’s alternative specifications are prioritized relatively by
the ordering of their utilities, while the particular magnitude
of a utility value relates globally to the utility values of other
users. For example, a higher priority user might have the same
specification as in Figure 2(a), but have utility values 1.0, 0.2,
and 0.1, respectively. When resources became limited, this
user would be forced to adapt only after a user having the
utilities assigned in Figure 2(a). We expect to report on the
implementation of this aspect of the MediaNet architecture in
future work; in the meantime, our implementation assumes
utilities are set fairly by hand.

B. Scheduling

Once a user provides a specification, the global scheduling
service schedules it on the network in conjunction with all
existing user specifications. Some schedules generated by
our prototype implementation are depicted in Figure 6. Here
we have combined five user specifications of equal priority,
each varying from that in Figure 2(a) only in the user and
video locations, and scheduled them on a network (shown in
Figure 3). In Figure 6 thev1 andv2 nodes correspond to the
video sources, thePr nodes correspond to the frame priority-
settingPrio operations, thedB node corresponds to thedrop
B operation. The empty circles aresendandreceiveoperations
inserted by the global scheduling service to transport data
between nodes.

The quality of a schedule can be evaluated by the provided
per-user utility, and the network-wide utilization, in terms of
CPU, memory, and bandwidth usage. Schedule evaluation in
an absolute sense is difficult because the scheduling problem
is almost certainly NP-complete, so generating an optimal
schedule for comparison is not feasible. Therefore, we must

assess schedules manually (if possible), or compare them with
schedules from different algorithms.

In the figure, the global scheduling service has exploited
the commonality among the specifications sharing the same
source, creating a multicast-like effect, but generalized to
CMNs. Moreover, the service avoids wasted bandwidth by
locating bandwidth-reducing computations as far upstream as
possible; in Figure 6(c), video 2’sdB node is scheduled at
pc2 ratherpc3 , which is connected to the congested link; this
avoids wasting bandwidth across linkL2 . Though not shown
here, user CMNs of different utility values can be combined.
For example, combining the utility1.0 CMN of one user with
the 0.4 CMN of another (assuming a shared source) would
result in a split path on the way to the destinations, with the
drop B operation only operating on one arm of the split;
the result is a sort of RTP-stylemixer [10] providing a local
resource adaptation on a shared stream.

While other architectures with similar global scheduling
services either set up only the initial computational flow [2],
or reschedule very rarely (such as when compute nodes or
network links fail), MediaNet’s global scheduling service op-
erateson-line, performing continuous scheduling. As such, the
service needs regular reports of current conditions, including
changes to link and CPU/memory loads, and changes to topol-
ogy. Because of delays in detecting and reporting changing
information, changes to the schedule necessarily occur on the
order of seconds. To mitigate these delays, user specifications
can employ local adaptations, like intelligent packet dropping
or upstream backpressuring.

III. I MPLEMENTATION

The MediaNet architecture leaves the details of the global
scheduling service unspecified, admitting the possibility of a
variety of implementations. Our current prototype implements
the most straightforward approach: a singleglobal scheduler
(GS) computes a CMN subgraph for each node and sends it
to a local scheduler(LS) running there. The LS implements
the CMN and periodically reports local resource usage to
the GS, which can periodically recompute and redistribute its
schedules, as necessary. This approach has the benefit that
since the scheduler can consider the entire network and all of
its users, it can likely achieve better fairness and performance,
but at the cost of scalability. Conversely, a completely dis-



tributed approach would improve scalability but likely degrade
performance.

We believe that the best approach will be to use a hierarchy
of GSs, each responsible for sub-components of the network
and combined user CMNs. The users will provide their spec-
ifications to a top-level GS, which will aggregate all of the
specifications and disseminate partitions of them to its child
schedulers. These will do likewise, until ultimately a single
CMN is provided to the LS for implementation on a compute
node. Conversely, each LS will report its available resources to
its parent GS, which will report aggregated resource amounts
to its parent, and so on. Moreover, the hierarchy will be best
created on-the-fly, depending on the size of the network, or
its current state. For small networks (e.g. 5-15 nodes, with
5-10 users, as might be expected in the motivated disaster
situation), a single GS will likely be ideal, while for larger
networks, more hierarchy will reduce the system-wide effects
of reconfiguration, reduce monitoring overhead, etc.

In this section, we describe our global scheduling algorithm,
the implementation of the local schedulers, our monitoring
methodology, and our reconfiguration protocol. The aspects of
this implementation should extend naturally to a hierarchical
arrangement; we leave such an extension to future work.

A. Global Scheduling

Though space restrictions prevent us from fully describing
our scheduling algorithm, we summarize its key features;
complete details can be found in [11]. Our framework is not
tied to this particular algorithm; other approaches such as [2]
and [12] could be adapted.

The challenge with any on-line scheduling algorithm is that
it must be fast, while still arriving at a good schedule. To do
this, we used a couple of techniques. First, rather than consider
an entire search space (such as assignments of user operations
to nodes, or the combinations of users’ CMNs at different
utility levels), we break a space into more coarse-grained
pieces, and make locally optimal decisions. For example, we
schedule each derived multicast tree one at a time, rather than
consider all possible combinations at once. Similarly, rather
than consider all possible user-utility combinations, we first
find a single, optimal utility for all users, and then optimize
individual user utilities.

To insert send and receive operations between user opera-
tions, the GS must choose the path they should follow; we
do this using a shortest-path computation based on maximum
bottleneck bandwidth. To arrive at the optimal path, we could
recompute the shortest paths between user operations for
every possible assignment, but this would be too expensive.
We could conversely do it once at the outset of scheduling,
but this would fail to discover alternate paths (among other
deficiencies). We compromise by calculating the shortest paths
before scheduling each derived multicast tree, which effec-
tively exploits alternate paths. Alternatively, we could use a
multi-path algorithm such as the k-best paths algorithm in [13].

Our prototype GS is written in C, consisting of about 10,000
lines of code. For the experiment presented in Section IV-C,
we measured GS running times of between1 ms and90 ms,

with the longer running times for the cases when the network
was more loaded, and thus more possibilities were considered.
Much of the running time is due to ‘constant factors’ in our
implementation that we have yet to tune.

B. Local Scheduling

A LS is responsible for implementing the CMN provided by
the GS. To do this, it first creates data structures that represent
the CMN nodes, and sorts them topologically based on their
data-flow. Next, it uses deadlines to ensure that operations are
run as soon as possible after the prescribed interval, following
the topological ordering. When operations are data-driven the
LS simply runs the operations when frames arrive. The LSs
are written in the type-safe systems language Cyclone [14],
essentially a safe C, comprising roughly 13,000 lines of code.

To allow legacy applications to use MediaNet seamlessly,
MediaNet’s transport protocol, implemented by its inserted
send and receive operations, needs to meet the API expected
by the application. For example, if the application uses TCP to
receive its data, then MediaNet must not only connect to that
application via TCP on its last hop, but it must also ensure that
data is delivered to the receiver reliably, in order, and without
duplication. A UDP-based application would impose fewer
requirements. MediaNet should support a variety of transport
protocols between send and receive operations to maximize
the performance of the system while still meeting the minimal
requirements of the application. For expedience, our prototype
implementation uses TCP exclusively; we plan to support other
transport protocols, such as UDP, RTP [10] over UDP, and
possibly others.

One benefit of using TCP within MediaNet is that it readily
communicates bandwidth limitations, mitigating the need for
external available bandwidth detection facilities. In particular,
when the TCP send buffer fills up, the application receives
an EWOULDBLOCKerror and therefore queues its frames
until more bandwidth is available. Once the application queue
is filled, the consequent action depends on the application
semantics. For streams that can tolerate dropped frames, like
video streams, MediaNet will start dropping frames based on
priority. User-supplied operations are used to set the priority
(see Figure 2), supporting local adaptation. If a stream cannot
tolerate lost data, then MediaNet will exert backpressure to
the sending application to effectively throttle its rate (until a
reconfiguration can take place). Choosing a reasonable queue
size is important for reconfigurations, and we mention it
further below.

C. Monitoring

For adaptive reconfiguration to be profitable, the GS must
be reasonably well-informed of changes to the network, par-
ticularly those to its topology and to the loads on nodes and
links. We have been focusing on bandwidth limitations in our
experiments, and therefore on available bandwidth reporting;
we have yet to implement a CPU monitor.

Available bandwidth detection is an ongoing area of re-
search with no clear, general solutions as yet [15]. In particular,



various techniques trade off accuracy, overhead, and mea-
surement time. For example, packet-pair-based estimates [15],
[16], [17] can quickly predict available bandwidth with ex-
tremely low overhead (just a few packets), but only reliably so
for single hop links [18], [16], including wireless links [16].
On the other hand, Jain and Dovrolis’ approach using one-
way delays [18] works for multi-hop paths with reasonably
low overhead (on the order of a few hundred packets), but
the estimation time is typically between 10–30s and is often
within a couple Mbps of the “actual” value. These limits to
accuracy and speed constrain the time scales and magnitude
of the changes made by the global scheduling service.

In our implementation, each LS notes how much data is
sent and dropped (at the application level) for a given link, and
sends this information periodically to the GS. These reports
provide a low-overhead, highly relevant way of assessing the
available bandwidth. It is low-overhead because the informa-
tion is piggy-backed on the actual stream being sent, and it is
most relevant because it directly reports the value of interest:
how much data can a node send across a particular link using
the appropriate transport protocol?

We observe that each link report will indicate that either the
link can support the bandwidth imposed on it, or it cannot.
That is, either all the data intended to be sent was sent, or
else frames were dropped or backpressure was applied. For the
latter case, the GS knows that the link is at peak capacity, so it
sets its estimate to the reported sent bandwidth (for broadcast
links, reports must be aggregated). In the former case, it knows
the capacity isat least the reported amount.

Unfortunately, this approach only provides an upper bound
on the available bandwidth when a link is overloaded; this
is the main drawback of the technique. To compensate, if the
GS does not receive a link peak capacity report for some time,
it assumes that additional bandwidth might be available and
so begins “creeping” its bandwidth estimate for that link at
regular intervals in the spirit of TCP’s additive increase. The
net effect is that eventually a reconfiguration will take place
that uses the assumed-available bandwidth; if the estimation is
incorrect then the new configuration will fail and another will
take place to compensate. We currently increase the estimate
by a constantw = 3% each second beginningt = 5 seconds
after a peak capacity report. The choice of values forw andt
essentially determines how rapidly the GS tries to find unused
bandwidth.

There is a tension between monitoring and accuracy: the
more frequently that monitoring information is sent, the more
accurate the GS network model will be, but the more overhead
there will be on network links. To reduce traffic but maintain
accuracy, each LS sends non-peak reports only when the
reported bandwidth increases by∆ = 10%. Peak reports are
sent everyr = 1 seconds. We have found that this approach
(rather than sendingall reports everyr = 1 seconds) reduces
monitoring traffic by roughly 75% in our experiments.

As future work, we plan to incorporate other forms of
feedback and estimation into our link estimates to improve
the accuracy of the GS’s network view. For example, Jain
and Dovrolis’ technique of finding anincreasing trend in
the latencies of sent packets could be incorporated into our

measurements to determine an upper boundbefore a link
becomes overloaded. In general, we wish to associate “confi-
dence” measures with link bandwidth estimates, so that mostly
estimated links are not weighted as highly as those with recent
measurements during scheduling. We also imagine that “link
profiles” could be used to estimate unmeasured links based
on past usage. Finally, we could consider testing unmeasured
links after a new schedule is determined but before it is used
to configure the network.

D. Reconfiguration

When a global reconfiguration is initiated, it should take
effect quickly and safely, without negatively impacting per-
ceived user quality. We do this by defining a protocol that
allows old and new configurations to run in parallel until
the old configuration can be removed. We use a number
of mechanisms to ensure the old configuration is removed
as quickly as possible, while preserving the application’s
expected stream semantics.

The protocol works as follows. Whenever the GS calculates
a new schedule, it sends a new CMN to each LS. The LS
schedules this CMN immediately upon receipt, in parallel with
its existing configuration. So that the two configurations do
not interfere, the GS assigns different TCP port numbers to its
inserted send and receive operations. As such, these operations
will establish connections, but connections to the video source
and receiver outside of MediaNet (which are still using the
same ports) will be delayed until they are closed by the old
configuration. Next, all video source applications are notified
that a reconfiguration has taken place (we do this using out-of-
band TCP data from the downstream MediaNet node). They
each close their connections to MediaNet and reconnect, this
time connecting to the new configuration. In the meantime,
the old configuration will continue to forward any data it has
toward the destination; when a LS’s old queues are flushed the
old configuration is removed. When the last bit of old data is
sent to the video receiver, the new configuration will be able
to connect to it and forward its data.2

Using this protocol, we minimize the time during which the
video source and receiver are disconnected from MediaNet; for
our experiments this time averages1 ms, which is far less than
a typical video inter-frame interval of33 ms. Even so, to re-
duce the total switching time we must reduce the time that the
old configuration stays connected to the receiving application;
during this time, frames from the new configuration queue
while waiting to connect to the receiver. In the case that frames
can be dropped, we reduce the old configuration’s lifetime by
quickly clearing its application queues via priority-based frame
dropping, as described next. Otherwise, the queues must clear
naturally; this suggests that when frames cannot be dropped,
application queue lengths should be relatively short, so as to
permit quicker reconfigurations.

We initiate frame dropping in two ways. First, we tie
together the queue lengths of connections using the same link,
so that higher priority new packets can force the dropping

2Our API assumes that applications will be able to reconnect or be discon-
nected as described; we have used proxies to support legacy applications.
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of lower-priority old ones sharing the same link. Second, for
those cases in which the old and new paths are not shared,
we set a drop timer (currently going off every0.5 s) that
proactively drops increasingly higher priority frames from the
old queues. Using these methods, our average reconfiguration
time in the larger experiment in Section IV-C is0.3 s, with a
maximum time of about1.1 s; these times are easily within
the buffering window of most video players.

For stability, global reconfigurations are initiated at most
once perreconfiguration windoww, currently with w = 5
seconds. The larger this window, the less adaptive, but the
more stable the system. We are currently experimenting with
different kinds of windows for limiting reconfigurations, based
on the quality of the network model, rather than on a fixed
timeout.

IV. EXPERIMENTS

In this section, we present experiments that measure Media-
Net while delivering an MPEG video stream under various
topologies and load conditions. We show that MediaNet con-
sistently delivers good performance and efficient network uti-
lization by effectively utilizing redundant paths, by exploiting
commonality in user specifications, and by carefully locating
CMN operations.

A. Configuration

The experiments were performed onEmulab [19], con-
figured to use the topology shown in Figure 3. Each node
is a 850MHz Intel Pentium III Processor running RedHat
Linux 7.1, having 512MB RAM and 5 Intel EtherExpress
Pro 10/100Mbps Ethernet cards. Emulab supports ”dynamic
events scheduling” to dynamically inject traffic shaping events,
implemented by Dummynet nodes [20]; we use this to increase
and decrease the available bandwidth on various links during
our experiments. In all experiments we ran a LS on every node
and the GS onpc3 .

For the source video, we loop an MPEG video stream where
I frames appear twice per second, P frames 8 times per second,
and B frames 20 times per second, with average sizes 13500
B, 7625 B, and 2850 B, respectively. This video requires about
145 KB/s to send at its full rate, about 88 KB/s to send only
I and P frames, and about 27 KB/s to send only I frames.

B. Exploiting Global Adaptation

To demonstrate the benefit of local adaptation under network
load, and then the added benefit of global adaptation, we
compare four different configurations:

• The no adaptationconfiguration consists of streaming
the data at the desired play rate, oblivious to network
conditions. We implement this with the MediaNet LSs
only.

• Thepriority-based frame droppingconfiguration consists
of tagging P, B, and I frames with successively higher
priority, and during overload the lowest priority frames
are dropped. This approximates some past approaches on
intelligent frame dropping [4], [21].

• The proactive frame droppingconfiguration also consists
of intelligently dropping video frames during overload.
In this case, the LS observes when frames start getting
dropped for a particular link, and then adapts by proac-
tively droppingall B frames, and then laterall P frames.
When dropping frames, the LS will occasionally attempt
to improve the configuration; i.e., if it is dropping P
and B frames, it will try just dropping B frames. This
configuration approximates past approaches to intelligent,
in-network frame dropping, as well as end-to-end layered
approaches [22] (where each frame type essentially de-
fines a layer). In particular, the path of the data never
changes, just what data is sent along that path. For this
experiment, we implement this approach by using the GS
but preventing it from choosing alternate paths.

• Finally, theglobal adaptationconfiguration uses Media-
Net’s GS with the user specification depicted in Figure 2.

For each configuration, we ran an experiment that uses the
diamond portion of our topology, with a single video sender
on pc3 and a receiver onpc4 The experiment measures the
video player’s performance, in terms of the received bandwidth
and the decodable frames, as we lower both linkL3 ’s andL4 ’s
available bandwidth over time.

Each of the graphs shown in this section has the same
format. Each light gray circle in the figure is a correctly-
decoded frame, while each black× is an incorrectly decoded
one. The figure plots time versus bandwidth, so the x-location
is the time the frame is received, and the y-location is the
bandwidth seen by the player at that time (aggregated over
the previous second). The available bandwidth, as set by
Dummynet, is shown as dashed and/or solid lines. Dropped
frames are not shown.

Figure 4(a) shows the no adaptation case. At the start, the
route to the receiver is fixed along L3, and as the available
bandwidth on the link drops the video quality degrades. The
application cannot decode the majority of the received frames
because temporally important frames (I and P frames) are
being dropped. During playback, each undecodable frame
manifests as a “glitch” noticeable by the user. In this case,
the large and constant clumping of glitches is quite disruptive.

Figure 4(b) shows the priority-based dropping case. In this
case, playback improves when dropping B frames, but remains
poor under highly loaded conditions. Until roughly time 50,
the player can decode all of its received frames, but after that
a large fraction of frames cannot be decoded properly. By this
time we are only ending I or P frames, so any dropped P frame
could prevent downstream P frames from being decoded.

In contrast, when using local adaptation along the same
path, the performance improves significantly, as shown in
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Fig. 4. User-perceived performance under diminishing bandwidth for various adaptivity schemes.

Figure 4(c). The few glitches that occur are as a result of
a sudden drop in available bandwidth, and due to attempts to
obtain a better configuration when no resources are available.
By dropping all B and/or P frames, we avoid dropping frames
that could lead to temporal glitches.

While the proactive frame-dropping adaptation significantly
improves playback along a congested path, it fails to use
alternative paths that could further improve playback. In con-
trast, MediaNet’s global scheduler reconfigures the network to
utilize redundant paths.3 Figure 4(d) shows how MediaNet’s
GS reroutes traffic throughpc6 whenL3 becomes congested
at roughly time 30, utilizing the idleL4 . Later,L4 ’s bandwidth
is reduced as well, which causes MediaNet to drop frames until
it reaches the same level as the local case.

A number of times in this experiment, the GS optimistically
assumes that more bandwidth is available on unmaximized
links and attempts to improve the total utility. At time 105
when link L4’s bandwidth drops, it tries to reroute the flow
through link L3. However, L3 has even lower available band-
width, and so after the reconfiguration window expires (here
set to 5 seconds), the GS returns the configuration to link
L4, at utility 0.4 (dropping B frames). Similar failed attempts
occur at times 120 and 155. Our user configuration mitigates
the negative effects of such reconfigurations by intelligently
dropping frames until the network is reconfigured. Ideally we
could prevent these spurious configurations without becoming
so conservative so as to degenerate to local adaptation only;
possible approaches are discussed in Section III-C.

3Redundant paths occur frequently in the wide area [23], and mobile hosts
often have multiple networks available, e.g., many laptops have cellular,
802.11b, and Ethernet.

We should emphasize that MediaNet’s contribution is not
simply multi-path routing or local adaptation, since each
has been explored in prior contexts. Rather, MediaNet’s
global scheduling service encapsulates a more general way
of performing adaptation on a network-wide basis, based on
individually-specified adaptation preferences and metrics. In
so doing, it in effect employs both local adaptations (i.e.,
proactive frame dropping) and global adaptations (i.e., path
rerouting), among others, to meet the needs of users and the
network.

C. Multi-user Sharing

To examine how resources are shared among users, we
configured MediaNet with two video sources and five clients.
Video v1 on pc1 has three clients: usersuser1 on pc5 ,
user3 on pc7 , anduser5 on pc8 ; video v2 on pc2 has
two clients: usersuser2 on pc4 anduser4 on pc7 . Each
user specification varies from the one shown in Figure 2 in
the specification of the video source and user locations.

If all links are fully available, the GS assigns the opera-
tions as shown in Figure 6(a). The unlabeled operations are
TCP sends and receives, and thePr operations assign frame
priorities for intelligent dropping. In combining the five user
specifications, the GS has essentially created two multicast
dissemination trees, and usesL3 for the v1 stream andL4
for v2 .

The performance as seen at the two sets of receivers is
shown in Figure 5. At time 20, the bandwidth on link L3 is
reduced to 100 KB/s, and so the GS reconfigures the network
to be as in Figure 6(b) where all flows go along link L4 so as to
maintain utility 1.0 for all users. At time 40, the bandwidth on
link L4 is dropped to 200 KB/s, making it impossible to carry
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Fig. 5. User-perceived performance for multiple user scenario.

both streams along that link. As such, the GS reconfigures
to be as in Figure 6(c), in whichv2 is sent along link L3
with its B frames dropped (as indicated by thedB node on
pc2 ), using the utility 0.4 CMN, whilev1 goes along link L4
at utility 1.0 for all users. Notice that the GS has scheduled
the dB (dropping B frames) nodeat the sourcepc2 rather
than at the node connected to the congested link, for better
network utilization. At time 60, L4’s bandwidth also drops to
100 KB/s, which results in all flows now operating at utility
0.4 (not shown in Figure 6). This configuration is essentially
the same as the unloaded configuration in Figure 6(a) but with
dB nodes on both of the video source hosts.

During the run, the GS guesses that additional bandwidth
might be available on various links, and so attempts to improve
the configuration. This occurs at time 50 (to improve to
Figure 6(a)), but fails and reverts back at time 55. A similar
attempt is made at time 80 (to go up to Figure 6(c)).

V. RELATED WORK

Although distributed multi-media research has been popular
for decades, the idea of multi-media processing in the network
was first inspired by the problems of digital video broadcasting
in heterogeneous networks [24], [25]. The goal of providing
adaptive QoS for streaming data is shared by a number of
systems, includingActive Networksapplications [26], [6], [4],
QoS middleware substrates [21], [27], [28], and application-
layer in-network processors [29], [7], [30]. Other projects have
targeted the dissemination to mobile, wireless workstations,
such as Quasar [31] and Odyssey [32]. None of these systems
focuses on sharing resources among many users with differing
adaptation preferences, though adaptivity mechanisms and
resource models are quite relevant.

A few systems have considered efficient stream adaptations
shared among many users. Layered multicast [22], [6], [33]
shares resources efficiently among many users, and Degas [8]
contains decentralized protocols for task distribution and load
balancing of streaming data operations. Layered multicast
layers are coarse-grained abstractions, however, and do not
support more “computational adaptations” like transcoding.
Degas similarly fails to account for user preferences in
scheduling adaptations.

MediaNet shares some mechanisms with certain overlay
networks (e.g., RON [34]) that, in addition to constructing
a flexible virtual network on top of physical networks, can

provide improved network performance via alternative paths in
conjunction with bandwidth probing and failure detection [34],
[23], [35]. To date, these systems have not been concerned
with QoS (i.e., real-time constraints) of streaming data, or
sharing of resources among many users.

An alternative approach to adaptive QoS isreservation-
basedQoS, in which resources like CPU and bandwidth are
allocated for applications in advance [36], [37], [38]. The
drawbacks of reservations are that underlying support is not
widely available, and allocated resources can be underutilized,
resulting in inefficiency. A number of systems looked at
application-specific scheduling in reservation-capable environ-
ments, for example, the OMEGA end-system architecture [39],
[40].

A number of systems share our goal of supporting user-
specified, adaptive streaming data applications, including
CANS [9], Conductor [41], Darwin [5], End-to-end Media
Paths [2], Ninja [42], PATHS [43], and [12]. Central to all
of these systems is the notion of paths of stream transformers
that must be scheduled on the network, and the presence of a
centralizedplan managerto schedule paths across the network,
similar to MediaNet’s GS. However, these systems only use
the plan manager at initialization or rarely, while MediaNet’s
GS runs continuously. Less attention has been paid to explor-
ing fast, on-line scheduling algorithms that are nonetheless
effective, which would be needed in a scalable on-line system.
As such, these systems do not take advantage of path-based,
user-specified adaptation. In addition, plan managers appear
to consider scheduling only for a particular application or
flow, as opposed to the combination of many or all existing
applications or flows, and therefore miss opportunities to
improve both per-user and network performance, for example,
by aggregation and/or re-routing.

The full paper contains additional comparisons to related
work [11].

VI. CONCLUSIONS

MediaNet is an architecture for user-specified, globally-
adaptive QoS in distributed streaming data applications. It
has two clear benefits. First, adaptations are user-specified,
rather than system-determined. Second, MediaNet’s global and
local scheduling approach results in both global and local
adaptations applied among all user flows; our experiments
demonstrate better user and system performance in three ways:
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1) The GS aggregates users’ continuous media networks,
removing redundancy in a multicast-like fashion.

2) It utilizes redundant resources, such as alternative, un-
loaded routing paths.

3) It adapts proactively to prevent wasted resources, for
example by dropping frames close to the source when
there is downstream congestion.

While our work is a promising first step, many interest-
ing directions remain. To understand the scalability of the
architecture, we plan to explore a hierarchical implementation
of the global scheduling service, described in Section III.
In addition, we intend to examine practical hindrances to
growth—such as monitoring message overhead, GS running
times, and network instability—to understand possible trade-
offs. As mentioned earlier (Section III-C), we are interested
in employing additional monitoring techniques and better
heuristics for weighing and aggregating information. Finally,
we plan to explore automated means for setting or scaling user
utilities to systematically ensure fair sharing of resources.

We have just scratched the surface of MediaNet’s possibil-
ities by experimenting with only network-limited (i.e., video
plus frame dropping) applications. We believe that MediaNet’s
generality will be quite useful when considering CPU-limited
cases; for example, when streaming data to embedded devices,
or while performing computationally-intense transformations,
such as digital facial recognition or motion analysis.
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