
Visualizing Real-Time Network Resource Usage

Ryan Blue, Cody Dunne, Adam Fuchs, Kyle King, and Aaron Schulman?

Department of Computer Science
University of Maryland, College Park

{blue, cdunne, afuchs, kking, schulman}@cs.umd.edu

Abstract. We present NetGrok, a tool for visualizing computer network
usage in real-time. NetGrok combines well-known information visualiza-
tion techniques—overview, zoom & filter, details on demand—with net-
work graph and treemap visualizations. NetGrok integrates these tools
with a shared data store that can read PCAP-formatted network traces,
capture traces from a live interface, and filter the data set dynamically
by bandwidth, number of connections, and time. We performed an ex-
pert user case study that demonstrates the benefits of applying these
techniques to static and real-time streaming packet data. Our user study
shows NetGrok serves as an “excellent real-time diagnostic,” enabling
fast understanding of network resource usage and rapid anomaly detec-
tion.

Key words: Real-Time, Network Administration, Force-Directed, Treemap

1 Introduction

Network administrators typically look for patterns in textual router logs in real-
time. Such patterns include: spotting attackers, validating routing configuration,
and monitoring for unfair resource usage. Often, these can be difficult to catch
by scanning logs or scripting, and it seems natural that visualization methods
could apply. Unfortunately, the task of finding network traffic patterns has long
been unable to benefit from information visualization; networks are difficult to
visually represent, and few visualization methods have been developed to handle
the real-time nature and sheer scale of network data. While forensics applications
can benefit from static, historical pictures of the network, network monitoring
functions require a view of the network that is always up-to-date.

In this paper, we present NetGrok, a tool that studies the application of
powerful visualizations—force directed network graphs [7] and treemaps [13]—
to problems faced by many network administrators. NetGrok allows network
administrators to view network traffic at a glance, and to interact with the visu-
alizations in novel ways that allow them to discover phenomena such as network
host scanning. NetGrok’s primary goal and fundamental technical challenge is
to bring network visualization techniques into the realm of real-time, streaming
data. To this end, we extend both the network graph and treemap to handle
? Aaron Schulman was supported by NSF-0643443 (CAREER).



Fig. 1. NetGrok’s visual elements include a main visualization (upper left), a time-line
histogram (lower left), a filter and search panel (upper right), and a details on demand
window (lower right).

real-time as well as static data. We also present an extension to treemaps, which
allows the user to see “edges”—network connections, in our setting—without
obscuring the treemap.

We describe the relevant work done in network visualization in section 2, our
visualization approach in section 3, NetGrok’s user interface in section 4, the
back-end infrastructure in section 5, a short case study in section 6, future work
in section 7, and our conclusions in section 8. The NetGrok source code and a
demonstration video can be found at http://www.cs.umd.edu/projects/netgrok.

2 Related Work

In developing a network traffic visualization tool, a fundamental design question
is the following: At what network layer should the traffic be shown? Teoh et al.
introduced novel ways of representing network routing data [15] for analyzing
faults and anomalies, mainly in physical topologies. NetGrok focuses instead on
visualizing and interacting with the logical structure of networks at the IP layer:
what IP addresses are interacting, ignoring pass-throughs and infrastructure
carrying the IP packets.

Cheswick et al. presented one of the first large scale, static network visu-
alizations: the first force-directed map of the Internet [4]. This map shows all
connections between Internet routers, which unfortunately obscures the topol-
ogy of the network. Cheswick et al. also color coded the map by IP address; the



first three octets of the IP are red, green, and blue color values. Although this
visualization is useful for understanding a network’s structure as a snapshot,
it is not interactive. For larger networks, where many hosts may look visually
similar, analyzing such network graphs yields little discovery, unless, of course,
the user has an intimate understanding of the underlying data set.

Girardin proposed visualizing static network data through the use of self-
organizing maps for attack detection [8]. Girardin’s work mapped multi-dimensional
data onto a 2D map using an artificial neural network. Unfortunately, the layout
of the hosts varies with each run, forcing users to re-acquaint themselves spa-
tially with the network. Moreover, the algorithm is computationally intensive
and designed for static data, making it challenging to use in real-time.

Herman and Melan presented a survey of the known techniques for visual-
izing networks [11]. Their work thoroughly characterizes the state of network
visualization at the end of the twentieth century. We adapted two of the tech-
niques mentioned in this paper to be used by NetGrok: the popular force directed
network graph [7], and treemaps [13].

Like the work of Ball et al., NetGrok focuses on viewing the network from a
home-centric perspective by segregating local and external hosts [1]. Ball et al.
provide stable internal and external host layouts through the use of grid pat-
terns derived from the hosts’ IP addresses. This has the drawback of sacrificing
significant screen space to show hosts that do not exist. NetGrok achieves effi-
cient space usage by using a force directed approach for the internal hosts, with
a hashed layout for external hosts. Host clustering reduces visual instability for
internal nodes, and increases the information content embedded in the external
node layout. The host anchoring feature also supports visual consistency.

There are a handful of free and commercially available network administration-
focused visualization tools. These include: The Multi Router Traffic Grapher
(MRTG) by Tobi Oetiker (available as a free download), QRadar from Q1 Labs
(commercially available), and several others. These tools provide traditional
statistics visualizations, including: pie charts, line graphs and histograms.

3 Visualizations

NetGrok’s main features are two visualizations: a network graph and a treemap.
Both of these visualizations capture: 1. IP hosts, 2. the hosts’ bandwidth usage,
and 3. links between hosts. We implemented both visualizations using the Prefuse
visualization library [10]. These visualizations are found in the upper left portion
of the overall interface that can be seen in Figure 1.

3.1 Network Graph

We now discuss the features of NetGrok’s network graph and how they aid in
finding patterns in network traffic, and developing familiarity with a particular
network.



Fig. 2. NetGrok’s Network Graph Visualization

Grouping Hosts As shown in Figure 2, NetGrok’s network graph groups nodes
in two ways: through their placement in or out of a large dashed ring, and through
convex hulls.

Traffic collected on a typical Internet-connected network will likely have far
more foreign hosts represented than local hosts. To prevent local network hosts
from becoming lost among an overwhelming number of foreign hosts, the network
graph contains a dashed ring. This ring serves as a boundary with local hosts
contained within the ring and foreign hosts outside, providing a home-centric
view of the network [1].

All hosts belonging to user-defined groups are encompassed by a uniquely
colored, semi-transparent convex hull. This technique allows users to visually
identify the logical groupings of hosts in the network and manipulate entire
groupings of hosts simultaneously. The google.com group can be seen on the
right side of Figure 2.

Navigation An important feature of NetGrok is its ability to allow users to
navigate the vast amount of real-time network traffic in the visualizations. In
the network graph, this is done mainly through zooming and panning; both of
which are useful for exploring groups of hosts. A user can, for example, zoom in
on a group to see all members of the group simultaneously. A user may zoom
in on an item by double-clicking on it, or by scrolling with the scroll wheel.
Double-clicking the item a second time resets the zoom to encompass the entire
graph. The zoom can also be reset by right-clicking anywhere on the graph and
selecting the ”Reset Zoom” option.



As internal hosts are laid out using the force directed algorithm, the hosts
will move when new hosts are added. To overcome this problem, users arrange
the internal hosts as they wish by fixing hosts or groups to their desired location
on the graph. This also allows the user to arrange the internal hosts to their
pleasure.

Fig. 3. This graph shows group, host, and edge characteristics. The large node in the
center is a local host in the Wireless group. A download between the two dark nodes is
evident in the image. The group on the right contains hosts in the google.com domain.

Host and Connection Characteristics Every IP host on the network is
represented in the graph as a colored node labeled with the host’s IP address.
The label’s size is proportional to the size of the host, so that it does not occupy
more space on the graph than the host itself. A host’s size is proportional to
the number of unique hosts it communicates with. For example, in Figure 2, the
large node within the dashed ring has by far the most number of connections.

Hosts are colored by their bandwidth usage. Colors range from green to
red, with green hosts utilizing the least bandwidth and red hosts utilizing the
most. NetGrok uses binned host colors. Host colors are assigned relative to the
most bandwidth consuming host in the network. Similarly, there are binned
sizes for hosts, assigned relative to a host’s degree. Figure 3 shows host and edge
characteristics.

We define zero-byte hosts, shown in Figure 4, as the hosts that have received
IP traffic, but have not sent any IP traffic. Although these hosts might not have



Fig. 4. An example of what a ping sweep looks like in the network graph. The large,
dark circle in the center is performing a scan and the smaller white circles are zero
byte hosts.

sent any data, it is possible that they do not exist at all. For example, a ping
sweep is a scanning technique for finding active IP addresses by sending out ping
packets to a range of IP addresses, and waiting for a response from active hosts.
Since many of these addresses are not active, a ping sweep of a local subnet
might yield far more zero-byte hosts than responses. Figure 4 shows how a ping
sweep of a local network might look in NetGrok. Since there is no visual way
to distinguish between low-degree hosts and zero-byte hosts, the visualization
treats them as a special case, coloring them white and giving them a dashed
border.

Every connection between unique hosts is represented as an edge in the net-
work graph. Because the sheer number of edges in the graph can obscure the
visualization, only the edges to or from the host under the mouse are shown.
There are options to always show edges to or from certain nodes, and to show
all edges on the entire graph. Edges thickness depends on the number of bytes
transferred between two hosts. To aid in differentiation of edge thickness only
three values were chosen.

Discovering Abnormalities Developing a familiarity with the graph of a net-
work helps to reduce the work required to discover network abnormalities. A user
that has become familiar with a network graph in which, for example, a large
red backup server appears every night, is likely to notice when the server fails
to appear. The ability to easily recognize network hosts is an important factor
in the developing of graph familiarity. Host recognizability is based on a host’s



Fig. 5. A treemap visualization generated from the OSDI dataset. The dataset was
anonymized so groupings are not possible.

size, color, and, most importantly, position on the graph. The more consistent
these characteristics are, the more recognizable the host will be to users.

Since local network hosts have well-defined grouping, established network
roles, and a dedicated area at the center of the graph, they are far more recog-
nizable than foreign hosts for which users have far less information. To increase
the recognizability of foreign hosts and the spatial stability of the graph, foreign
hosts are always placed in the same location on every graph.

The foreign host layout algorithm hashes the host’s IP, creates rectangular
coordinates from the halves of the hash, and then converts them into polar
coordinates. The resulting coordinate is plotted in an exponential polar plot,
(eρ−1, θ) as the new coordinates where ρ and θ are set from parts of the hashed
IP [6]. This layout pushes the points away from the center while keeping them
from being bunched up at any particular radius. This algorithm guarantees that
the same foreign host will always occupy the same position on any network
graph. Users can override this position by fixing hosts to a desired position on
the graph.

3.2 Treemap

To augment the network graph NetGrok also offers a treemap visualization [13].
Just like the network graph, the treemap shows: IP hosts, their bandwidth usage
and connections, as well as groups and links between nodes. Treemaps comple-
ment network graphs as they can handle considerably more nodes, without oc-
clusion, than the network graph, and they layout nodes using all of the available



space. However, unlike the network graph the layout algorithm does not consis-
tently place a host in the same location. Figure 5 shows a treemap with many
hosts, generated from the OSDI 2006 dataset [3].

Host Characteristics The treemap is structured using the squarified treemap
algorithm [2]. The tree is organized with hosts as leaf nodes and groups as inter-
nal nodes. The size of a host in the treemap indicates the number of connections
to it, while color denotes the host’s bandwidth usage, relative to the other hosts.
To allow for display of large networks, hosts do not contain any labels. Instead,
mousing over a host reveals this information in the details on demand window.

Fig. 6. Showing links in a treemap

Showing links in a treemap A treemap can coherently show more hosts than
the network graph, but a basic treemap does not show links between nodes.
Fekete et al. showed that links between nodes in a treemap can be overlaid on
top of the treemap [5]. Unfortunately, placing links on top of nodes can occlude
the nodes underlying the links. When there is high link density, even the links
themselves can be occluded. We take advantage NetGrok’s interactive nature to
show links in the treemap.

Figure 6 shows how we take advantage of mouse roll-over and color to quickly
view a host’s connections. Hovering over a host activates the link browsing view
of the treemap. The hosts that are not connected to the selected host will change
from color to black and white. Only the hosts that are connected to the hov-
ered over host will be in color. This technique allows the users to distinguish



between connected and unconnected hosts, while still being able to see the net-
work structure. When using a treemap, users first look for nodes that are larger
and a darker color. We expect users will want to inspect the connections for
these hosts.

4 Interface

In this section, we present the other elements of NetGrok’s user interface that
assist network administrators in exploring their real-time or static network data.

NetGrok provides a Swing-based GUI written in Java using the prefuse visu-
alization toolkit[10]. The NetGrok user interface (Figure 1) provides a consistent
set of controls to manipulate the data model. In the current implementation,
these controls provide three methods to filter the hosts that are displayed in the
visualizations.

IP prefix filtering and bandwidth and degree sliders only filter on hosts, while
the time-line tool filters both hosts and links. There are many additional ways to
filter links and host, and the NetGrok framework is easily extensible for adding
such filters in the future.

4.1 IP Prefix Filtering

IP filtering is based on classless inter-domain routing (CIDR) prefixes1. The user
is presented with a text box in the filter pane, shown in Figure 7, that they can
use to input a CIDR prefix to filter by. IP filtering is helpful for focusing on
resource usage in contiguous IP blocks.
1 For example, 172.26.0.0/16 represents IP addresses between 172.26.0.0 and

172.26.255.255.

Fig. 7. NetGrok’s filter panel



Fig. 8. NetGrok’s time-line histogram. This histogram shows a history of hundreds
of packets collected between 12:51:53 and 12:57:26 on April 30, 2008. The highlighted
region indicates a zoomed-in region of time that is used as a filter for the other NetGrok
visualizations. This region can be moved, broadened, or narrowed by using the double-
block slider shown.

4.2 Bandwidth and Degree Filtering

Bandwidth and degree filtering are simple and effective methods for tailoring the
data displayed in the visualizations to answer particular questions. In network
traces, host behavior can be very different at opposite ends of the bandwidth and
degree spectra. Large classes of hosts can be quickly eliminated from the view by
using NetGrok’s bandwidth and degree filtering. Hosts are filtered by specifying
bandwidth and degree ranges using sliders in the filter pane. The sliders allow
users to interactively filter the hosts that are displayed by selecting a range or
eliminating extremes in host bandwidth and degree. These controls can be seen
in Figure 7. Filters affect only the visualization of the data. Their effects are
seen immediately and are completely reversible.

4.3 Time-Line Histogram Filtering

NetGrok provides a time-line histogram and time-range slider filtering option,
as well. This filter can be seen in Figure 8. The time-line histogram filter has
two functions: it displays an overview of the collected packets over time, and it
allows users to zoom in to a particular time frame of interest. This histogram
automatically updates as data flows into the program, displaying the entire time
range of known packets. Like all of the visualization aspects of NetGrok, the
time-line histogram required significant design effort to deal with displaying
real-time streaming data.

Histogram Update Algorithm Constructing an efficient algorithm to update
the histogram online is technically challenging. We require the histogram to
cover a time range that includes all of the packets in the visualization. However,
covering too much time diminishes the efficiency and accuracy of the histogram.
We also want the histogram to maintain a roughly constant number of buckets
in which to aggregate packet counts. When NetGrok starts, the time range that
will need to eventually be covered is unknown. As new packets arrive, that time
range grows into the future to include the new packet. For accuracy throughout



the execution of NetGrok, the range of the histogram must dynamically match
the range of packet times seen. Balancing efficiency and accuracy required the
creation of a histogram updating algorithm.

NetGrok never removes packets from its data set, hence one can assume
that the histogram only needs to grow, and never to shrink. The histogram
can therefore effectively adapt to a growing time range by using a pair of grow
operations: one to grow back in time, and one to grow forwards in time. The
forward growth algorithm is as follows: When a packet is received that has a
time greater than the histogram covers, NetGrok finds an integral factor by
which to grow the width of the histogram so that it will cover the new point. For
example, if we have a histogram that covers 10:00 to 11:00, and we see a new
packet from 11:30, we will grow the histogram forwards in time by a factor of 2,
and the new histogram will cover the time 10:00 to 12:00. The new histogram
has the same number of buckets as the old histogram. During the growth, all of
the buckets of the previous histogram are dumped into the appropriate buckets
of the new histogram. With an expansion factor of n, we will see n buckets from
the previous histogram combined to form a single bucket in the first portion of
the new histogram. In this translation, we see no loss of accuracy on the bucket
boundaries. NetGrok uses a similar algorithm to grow the histogram backwards
in time, as it may need to do when loading historical data from a file.

Because of the dynamic updating algorithm, the histogram may cover a time
period wider than the time range of collected packets. This can be up to a factor
of 4 in the worst case, but generally is no more than a factor of 2. NetGrok does
not display this entire range, but instead only the range of the packets seen.
Only the part of the histogram from the first seen packet to the last seen packet
is drawn. The number of buckets in the histogram must be sized accordingly, so
enough precision is given at a zoom factor of four, and the curve is still relatively
smooth when showing every bucket. When the grow operations are called, users
see the view zoom out slightly to include the new range, and the histogram
smoothes slightly because the bucket width increases.

Filtering With the Timeline Histogram The time-line includes a double-
block range slider that allows users to select a temporal region of interest, and
only see traffic from that time period. This resembles the technique used by
Girardin et al. [9], as well as many other projects since then. When users move
the range slider, the highlighted period of the histogram updates to reflect the
selected time period, and the other visualizations filter out data that is not
relevant to that time period.

The time range slider has two modes: forensic mode and real-time mode.
If a time period that does not include the latest packets is selected, the time
slider will be in forensic mode. In forensic mode, NetGrok does not change the
selected period when new packets arrive. When observing a historical time period
for forensic reasons, users most likely do not want that time period changing.
This can lead to the highlighted time period walking away from the position of
the double-block slider. When users move the slider again, the highlighted time



period will again line up with the slider. If the selected range includes the latest
packets, the time slider will be in real-time mode. In real-time mode, the selected
time window is updated when new packets arrive to include new packets that
are further in the future.

5 Infrastructure

5.1 Back-end Data Model

NetGrok uses the prefuse.data.Graph object as its primary data store [10], and
this is augmented by several auxiliary data sets. The program stores simplified
versions of collected packets, and a prefuse.data.Tree structure holds the hierar-
chical set of groups. The data store also keeps a collection of basic statistics for
normalizing visualizations. Lastly, the NetGrok data store has basic support for
brushing and linking with shared filter and selection resources. These data struc-
tures take advantage of prefuse data models, where possible, for performance.
The data store manages the data and exposes the containing structures to the
visualization components.

For dynamic updates, NetGrok components can register to be notified when
new packets arrive and when graph attributes are modified. This is particu-
larly important for atomic real-time updating of data with multiple visualiza-
tion threads. This also allows NetGrok’s back-end data model to support batch
updating, where newly added data may not be accurate until the entire batch
is loaded. Large data sets and high bandwidth flows rely on batch updating for
efficiency.

5.2 Network Packet Collection

NetGrok provides a variety of options for importing data. First, a user can
directly connect to a local network interface and stream packets from that in-
terface. For a network administrator, local interfaces may not have access to
wide enough coverage of the network traffic. Thus, NetGrok also supports a re-
mote sensor system, where a set of remote network sniffers forward batches of
simplified packets to NetGrok, in real-time. In addition to live capture options,
NetGrok supports reading the standard PCAP packet capture file format. It
also has support for reading and saving data to a more compact format that
disregards packet data not used in the visualization.

5.3 Group Configuration

The groups.ini file defines the hierarchical groups used in NetGrok’s visualiza-
tions. This file allows the user to specify which IP addresses and ranges are
associated with each group (see Figure 9). The file is divided into two main
groups: local and foreign. Each line contains the group name followed by any
number of CIDR prefixes to represent networks. Initial group location can be



specified by two additional x and y parameters, as shown for the Slashdot foreign
group with location (100,200). If the location isn’t specified, it is automatically
set to the default root polar projection location for the first CIDR prefix as
described in Section 3.1.

[local]

UMD CP=128.8.0.0/16

local 0=192.168.0.0/24

local 1=192.168.1.0/24

[foreign]

Slashdot=66.35.250.55/24=100=200

Google=216.239.0.0/16,64.233.0.0/16,64.68.0.0/16

Fig. 9. Sample groups.ini file

6 Evaluation

To evaluate NetGrok, we performed a single subject case study. Our subject,
Brad Plecs, is the network administrator for the University of Maryland Com-
puter Science Department. Mr. Plecs’s network monitoring is “usually in re-
sponse to a right-now network-is-broken situation,” but he is interested in net-
work visualization tools to aid with attack detection. His normal usage of network
monitoring tools is to find “interesting” hosts, meaning IP addresses that are
using a “disproportionate” share of bandwidth or number of connections. Mr.
Plecs’s current tools are a combination of grep, tcpdump, and “occasionally,”
Ethereal/Wireshark.

6.1 Hands-on sessions

The study consisted of a short demonstration of NetGrok and two hands-on
sessions in which the subject used NetGrok to analyze PCAP packet traces, and
a live network. In the first session the subject used NetGrok to analyze PCAP
traces of the wireless network at the 2006 OSDI Conference (available from
CRAWDAD [3]). The purpose of this session was to familiarize the subject with
NetGrok by finding interesting features in the data. This session went quickly
because the interesting features—disproportionate bandwidth and connections—
were easy to locate with both visualizations’ use of color gradients and node size.
“Zero-byte” hosts also received a positive response.

Mr. Plecs gave two criticisms after the first session. First, that NetGrok
needs to incorporate transport layer information, specifically, TCP and UDP
port numbers: “[NetGrok] lets you find IP addresses easily, but next you want



to see what they’re doing.”2 His second criticism was that there should be a
division between incoming and outgoing bandwidth, to make investigating zero-
bytes hosts easier, and for more fine-tuned filtering.

For the second session, Mr. Plecs gathered live traffic from a segment of the
UMD Computer Science network which hosts the department’s PlanetLab [12]
nodes. As soon as NetGrok started showing traffic in the network view, the
subject said the external host placement animation caused confusion. The hosts
appear in the center of the display then they slingshot to their final positions in
the external network area. When large internal hosts are near the start location,
it visually implies communication between the new external host and the existing
internal host.

Mr. Plecs quickly found the time slider useful to restrict what was displayed.
Initially, he used it to remove the distraction of hundreds of hosts entering the
display every second. He responded that—along with the histogram—the feature
was useful, allowing users to identify and investigate events that “could easily be
missed.” However, because the time slider is so closely tied with the histogram
display, Mr. Plecs initially attempted to use the edges of the histogram’s high-
lighted time section to modify the filter. He also liked the filter sliders because
he could remove the vast number of uninteresting hosts on the live network.

The subject appreciated NetGrok’s representation of the internal network
(see Figure 2). Within seconds, he understood the network segment and went on
to investigate the external hosts. We think that this is a successful demonstration
of applying semantic substrates—in this case, groups—to visualizing computer
networks. The subject responded positively to the groups and requested a dy-
namic grouping ability, so that users can maintain a watch-list or hide hosts on
demand and keep the display visually organized without restarting the applica-
tion and editing the groups configuration. He also noted that having the ability
to fix a node’s position helps, but is tedious for tasks like ignoring a large group.

6.2 Suggestions for Improvement

Investigating the network through the treemap view was difficult because the
treemap does not currently respond to the filtering or time overview and selec-
tion. Further, Mr. Plecs indicated that the treemap was unintuitive—obvious
patterns in the treemap were difficult to understand, and once understood, in-
dicated uninteresting features.

After the live session, Mr. Plecs said that the “biggest thing” is incorporating
transport layer data to give users more information. At the IP layer, NetGrok
helps users to discover interesting hosts, but cannot help users investigate exactly
why those hosts are interesting.

Mr. Plecs had two other criticisms about the network graph. First, that the
animation used to place hosts in the external network is distracting. Initially
hosts have a set position in the display, but then they are force-directed to avoid

2 TCP and UDP information greatly increases the complexity of network tools. This
data, while extremely useful, was simply beyond the scope of the initial project.



overlapping; this works well with a moderate number of hosts, but when too
many hosts are on the graph, it causes constant shaking or jiggling. Mr. Plecs
commented that it’s fine for initial placement, but hosts should not continue
moving, especially when the traffic displayed is a static time-slice of live capture
or packet trace.

Second, Mr. Plecs wanted a more structured layout for the network graph.
Hosts are placed via hashing outside the internal network circle so that all of the
space on the screen is used. This, however, discards the structure of IP space
and isolates hosts that are potentially associated. Consequently, if a certain IP
subnet is sending malicious traffic (and it is not specifically grouped), the traffic
will visually appear to come from random places in the external network.

6.3 Questionnaire

In addition to working with Mr. Plecs’s during the sessions, we provided him
with a short questionnaire about NetGrok. For each task discussed in our initial
interview, Mr. Plecs was asked to gauge the speed and accuracy of NetGrok
when compared to his standard tools. The questionnaire presented a five-option
Likert scale ranging from “much worse” to “much better” to record responses3.
Mr. Plecs rated NetGrok “much better” for all of the tasks using both PCAP
and live data sources.

The questionnaire also included Likert-scaled questions regarding the usabil-
ity of both the visualizations and user interface components. The scale for these
questions ranged from “bad” to “acceptable” to “good.”4 Mr. Plecs rated the
graph visualization and user controls (filtering) “good” in all areas, including
organization, the ability to identify features or details, and filtering. Mr. Plecs
rated the treemap visualization mostly “acceptable.”

The last part of the questionnaire asked Mr. Plecs to rate NetGrok’s ability
to aid in detecting problems and monitoring networks. Mr. Plecs rated NetGrok
“fair” on monitoring because “[monitoring tools] should be able to run automat-
ically and notify you when [they] detect something,” but rated NetGrok “good”
in the areas of problem detection. He noted: “NetGrok is excellent as a real-time
diagnostic.”

7 Future Work

One future direction for NetGrok is to rapidly prototype additional real-time net-
work visualizations. NetGrok has a modular construction, so new visualizations
can be added without repeating the back-end development effort. The current
version displays two primary visualizations, but there are countless others we
can potentially implement.
3 The actual choices for the first section of the questionnaire were: “much worse,”

“worse,” “equivalent,” “better,” and “much better.”
4 The actual choices for the second section of the questionnaire were: “bad,” “poor,”

“acceptable,” “fair,” and “good.”



NetGrok’s filtering capabilities offer a good first solution to displaying large
datasets, but these capabilities need additional work. For NetGrok to truly sup-
port large scale data sets, it needs to contain an abstract overview capability
that displays the gist of the data set without showing every node. Many network
visualization tools support graph clustering algorithms and cluster-based views
of the network. However, extending these clustering and visualization techniques
to real-time data flows is not trivial. NetGrok has the foundations for a real-time
clustered visualization, which can be seen in the group visualization. However,
more effort is needed to develop this into a complete, large scale overview capa-
bility.

The network graph was created under the assumption that there would be a
manageable number of hosts in the local network and a force-directed algorithm
would convey more information about the relationships between local hosts.
However, the force direction destroys the spatial stability, which disorients users.
In the future a hashed layout algorithm, like the foreign host layout, should be
applied to local hosts.

The current network view visualization consistently lays out non-local hosts
in the same location. However, that location is essentially randomly generated.
We think that there is room for improvement by using semantic substrates[14]
to meaningfully arrange hosts. The challenge of using a semantic substrate for
IP address layouts lies in grouping addresses from the same domain, while il-
lustrating one or two attributes of those addresses. Although we expect this is
possible, we did not find an appropriate set of attributes to generate a useful
semantic substrate to integrate into our visualization, and we must leave this as
future work.

8 Conclusion

The visualizations, filtering, and details on demand, provide network admin-
istrators with the capability to identify network scans, and hosts using a dis-
proportionate amount of network resources. The case study with our expert
subject shows that NetGrok’s approach holds promise. The study also confirms
that NetGrok’s network graph and treemap assist in rapid identification of high
bandwidth and degree hosts, as well as ping sweeps. The study gave us signif-
icant insight into which features need to be enhanced to create a production
quality tool for network administration visualization.

9 Acknowledgments

We thank Brad Plecs, our case study subject, for lending his time and expertise
to help evaluate NetGrok. We also thank the reviewers and Dave Levin for their
thoughtful comments.



References

1. R. Ball, G. A. Fink, and C. North. Home-centric visualization of network traffic for
security administration. In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security, pages 55–64,
New York, NY, USA, 2004. ACM.

2. M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In In Proc. of Joint
Eurographics and IEEE TCVG Symp. on Visualization (TCVG 2000), pages 33–
42. IEEE Press, 2000.

3. R. Chandra, R. Mahajan, V. Padmanabhan, and M. Zhang. CRAW-
DAD data set microsoft/osdi2006 (v. 2007-05-23). Downloaded from
http://crawdad.cs.dartmouth.edu/microsoft/osdi2006, May 2007.

4. B. Cheswick, H. Burch, and S. Branigan. Mapping and visualizing the internet.
In ATEC ’00: Proceedings of the annual conference on USENIX Annual Technical
Conference, pages 1–1, Berkeley, CA, USA, 2000. USENIX Association.

5. J.-D. Fekete, D. Wang, N. Dang, A. Aris, and C. Plaisant. Overlaying graph links
on treemaps. In Information Visualization Symposium Poster Compendium, pages
82–83. IEEE, 2003.

6. G. Fink and C. North. Root polar layout of internet address data for security
administration. Visualization for Computer Security, 2005. (VizSEC 05). IEEE
Workshop on, pages 55–64, 26 Oct. 2005.

7. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed place-
ment. Software - Practice and Experience, 21(11):1129–1164, 1991.

8. L. Girardin. An eye on network intruder-administrator shootouts. In Proceedings
of the Workshop on Intrusion Detection and Network Monitoring (ID’99), pages
19–28, Berkeley, CA, USA, 1999. USENIX Association.

9. L. Girardin and D. Brodbeck. A visual approach for monitoring logs. In LISA
’98: Proceedings of the 12th USENIX conference on System administration, pages
299–308, Berkeley, CA, USA, 1998. USENIX Association.

10. J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive information
visualization. In CHI ’05: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 421–430, New York, NY, USA, 2005. ACM.

11. I. Herman, G. Melancon, and M. S. Marshall. Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics, 06(1):24–43, 2000.

12. L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introduc-
ing disruptive technology into the internet. SIGCOMM Comput. Commun. Rev.,
33(1):59–64, 2003.

13. B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach.
ACM Trans. Graph., 11(1):92–99, 1992.

14. B. Shneiderman and A. Aris. Network visualization by semantic substrates. IEEE
Transactions on Visualization and Computer Graphics, 12(5):733–740, 2006.

15. S. T. Teoh, K.-L. Ma, and S. Wu. A visual exploration process for the analysis of
internet routing data. Visualization, 2003. VIS 2003. IEEE, pages 523–530, 24-24
Oct. 2003.


