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Abstract
We present a distributed scheme for trust inference in
peer-to-peer networks. Our work is in the context of the
NICE system, which is a platform for implementing co-
operative applications over the Internet. We describe a
technique for efficiently storing user reputation informa-
tion in a completely decentralized manner, and show how
this information can be used to efficiently identify non-
cooperative users in NICE. We present a simulation-based
study of our algorithms, in which we show our scheme
scales to thousands of users using modest amounts of stor-
age, processing, and bandwidth at any individual node.
Lastly, we show that our scheme is robust and can form
cooperative groups in systems where the vast majority of
users are malicious.

Keywords: Reputation Base Trust, P2P, Distributed
Algorithms

1 Introduction
NICE1 is a platform for implementing cooperative appli-
cations over the Internet. We define a cooperative ap-
plication as one that allocates a subset of its resources,
typically processing, bandwidth, and storage, for use by
other peers in the application. We believe a large class of
applications, including on-line media streaming applica-
tions, multi-party conferencing applications, and emerg-
ing peer-to-peer applications, can all significantly benefit
from a cooperative infrastructure. However, cooperative
systems perform best if all users do, in fact, cooperate
and provide their share of resources to the system. In this
paper, we present techniques for identifying cooperative
and non-cooperative users. Using our schemes, individual
users can assign and infer “trust” values for other users.
The inferred trust values represent how likely a user con-

∗This work is supported by a NSF CAREER award (ANI0092806).
1NICE is a recursive acronym for “NICE is the Internet Coopera-

tive Environment” (See http://www.cs.umd.edu/projects/
nice ).

siders other users to be cooperative, and are used to price
resources in the NICE system.

We focus on distributed solutions for the trust inference
problem. We decompose the distributed trust inference
problem into two parts: a local trust inference component
that requires trust information between principals in the
system as input and a distributed search component that
efficiently gathers this individual trust information to be
used as input for local inference algorithms. There already
exist systems, e.g., e-bay[21], that have a centralized user-
evaluation system. Other resource bartering systems, e.g.,
MojoNation[22], have also implemented centralized trust
inference solutions. Our goal is to enable open appli-
cations where users do not have to register with an au-
thority to be a part of the system. Centralized solutions
do not scale in open systems, since malicious users can
overwhelm the central “trust” server with spurious trans-
actions. The most widely used decentralized trust infer-
ence scheme is probably the PGP web of trust [25], which
allows one level of inference. We present a new decen-
tralized trust inference scheme that can be used to infer
across arbitrary levels of trust. There is no trusted-third-
party or centralized repository of trust information in our
scheme. Users in our system only store information they
explicitly can use for their own benefit. We show that our
algorithms scale well even with limited amount of stor-
age at each node, and can be used to efficiently imple-
ment large distributed applications without involving ex-
plicit authorities. Further, our solutions allow individual
users to compute local trust values for other users using
their own inference algorithm of choice, and thus can be
used to implement a variety of different policies.

1.1 Cooperative Systems
The notion of a cooperative system is not unique in net-
working; in fact, packet forwarding in the Internet is
a cooperative venture that utilizes shared resources at
routers. Our overall goal in NICE is to extend this no-
tion to include end-applications and provide an incentive-
based framework for implementing large distributed ap-
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plications in a cooperative manner. Clearly, an immense
amount of distributed resources can be harvested over the
Internet in a cooperative manner. This observation is key
in the recent surge of peer-to-peer (p2p) applications, and
we believe the next generation of such p2p applications
will be based upon the notions of cooperative distributed
resource sharing.

A number of interesting distributed algorithms for p2p
systems, most notably in the area of distributed resource
location, have recently been introduced. All of these
schemes, however, assume that all peers in the system im-
plicitly cooperate and implement the underlying protocols
perfectly, even though it may not be explicitly beneficial
to do so. Consider the following examples:

• In Gnutella [11], peers forward queries flooded on
behalf of other users in the system. Each forwarded
message consumes bandwidth and processing at each
node it visits.

• In Chord [20], a document is “mapped” to a particu-
lar node using a hash function. Thus, a peer serves a
document that is, in fact, owned by some other node
in the system. Thus, peers in the system expend their
own resources to serve documents for other nodes in
the system. This situation is not unique to Chord; all
hash-based location systems, including CAN [16],
Bayeux [24], Pastry [18], have this property. It is
possible to build a system in which nodes only serve
a pointer to the document data and also to imple-
ment various load balancing schemes; however, even
in the best load-balanced system, there can be tem-
porary overloads when a large amount of local re-
sources are expended due to external serving.

• A number of relay-based streaming media protocols
have been developed and demonstrated. In these pro-
tocols, nodes devote resources such as access band-
width for serving their child nodes.

In each example above, any individual user may choose
not to devote local resources to external requests, and still
get full benefit from the system. On the other hand, the
integrity and correct functioning of the system depends
on each user implementing the entire distributed proto-
col correctly and selflessly. However, experience with de-
ployed systems, such as Gnutella and previously Napster,
show that only a small subset of peers offer such selfless
service to the community, while the vast majority of users
use the services offered by this generous minority [3]. The
goal of this work is to efficiently locate the generous mi-
nority, and form a clique of users all of whom offer local
services to the community.

1.2 Model
In this paper, we assume that a (p2p) system can be de-
composed into a set of of two-party transactions. A sin-
gle transaction can be a relatively light-weight operation
such as forwarding a Gnutella query or a potentially re-
source intensive operation such as hosting a Chord docu-
ment. Next, we assume that the system consists of a set of
“good” nodes that always implement the underlying pro-
tocols correctly and entirely, i.e. good users always fulfill
their end of a transaction. The goal of our work is de-
velop algorithms that will allow “good” users to identify
other “good” users, and thus, enable robust cooperative
groups. These are peer groups in which, with high prob-
ability, each participant successfully completes their end
of each transaction. Specifically, we propose a family of
distributed algorithms which can be used by users to cal-
culate a per-user “trust” value. The trust value for node B
at a node A is a measure of how likely node A believes
a transaction with node B will be successful. In our sys-
tem, users store a limited amount of information about
how much other users trust them, and we present algo-
rithms for choosing what information to store and how to
retrieve this trust information. Once relevant information
has been gathered, individual users may use different local
inference algorithms to compute trust values.

It is important to note that we assume that good nodes
are able to ascertain when a transaction is successful.
Clearly, in many cases, it is not possible to efficiently
determine whether a transaction fails (e.g. when a node
sometimes does not serve Chord documents that it hosts).
It is even more difficult to determine whether a transac-
tion fails because of a system failure or because of non-
cooperative users. For example, consider the case when
all users are cooperative but a document cannot be served
due to a network failure. We believe this problem is inher-
ent in any trust-inference system that is based on transac-
tion “quality”. We discuss different policies for assigning
values to transaction quality in Section 4.

The overall goal of this work is to identify coopera-
tive users. An ideal trust inference system would, in one
pass, be able to classify all users into cooperative or non-
cooperative classes with no errors. However, this is not
possible in practice because non-cooperative users may
start out as cooperative users. The specific goals of our
work are as follows:

• Let the “good” nodes find each other quickly and
efficiently: Good nodes should be able to locate
other good nodes without losing a large amount of
resources interacting with malicious nodes. This
will allow NICE to rapidly form robust cooperative
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groups.

• Malicious nodes and cliques should not be able
to break up cooperating groups by spreading mis-
information to good nodes. Specifically, we want
to develop protocols in which malicious nodes are
rapidly pruned out of cooperative groups. Further,
we assume malicious nodes can disseminate arbi-
trary trust information, and the cliques formed of
good nodes should be robust against this form of at-
tack.

In Section 4, we describe algorithms that achieve our
goals with low run-time overhead, both in terms of pro-
cessing and network bandwidth usage. We believe this
algorithm is the first practical, robust, trust inference
scheme that can be used to implement large cooperative
applications.

The rest of this paper is structured as follows: in the
next section, we discuss prior work in distributed trust
computations. In Section 3, we present an overview of
the NICE system, and describe how distributed trust com-
putations are used by NICE nodes. We describe our algo-
rithms and local node policies in Section 4, present sim-
ulation results of the trust search in Section 5, and sim-
ulated results of a NICE resource trading system in Sec-
tion 6. We discuss our conclusions in Section 7.

2 Related Work
In this section, we discuss prior work in trust inference
and present a brief overview of systems that are based on
notions of trust and incentive.

The concept of “trust” in distributed systems is formal-
ized in [14] using social properties of trust. This work
considers an agent’s own experience to obtain [-1, 1]-
valued trust, but does not infer trust across agents. Abdul-
Rahman et al. [1] describe a trust model that deals with di-
rect experience and reputational information. This model
can be used, as is, in NICE to infer trust. Yu et al. [23] pro-
pose a way to compute a real-valued trust in [-1, 1] range
from direct interactions with other agents. A product of
trust values is used for reputation computation, and unde-
sirable agents are avoided by having an observer of bad
transactions disseminate information about the bad agent
throughout the network. This work is primarily about us-
ing social mechanisms for regulating users in electronic
communities, and the techniques developed here can be
used in NICE. In this paper, we focus on algorithms for
efficiently storing and locating trust information.

Another scheme [2] focuses on management and re-
trieval of trust-related data, and uses a single p2p dis-

tributed database which stores complaints about individu-
als if transactions with them are not satisfactory. When an
agent p wants to evaluate trust for another agent q, it sends
a query for complaint data which involves q, and decides
q’s trustworthiness with returned data, using a proposed
formula. However, this system implicitly assumes that
all participants are equally willing to share the communal
data load, which may not be true in many p2p systems [3].
Such a system is also vulnerable to DoS attacks, as there is
no preventative measure from inserting arbitrary amounts
of complaints into the system.

PGP [25] is another distributed trust model that focuses
on proving the identity of key holders. PGP uses user de-
fined thresholds to decide whether a given key is trusted
or not, and different introducers can be trusted at finite
set of different trust levels. Unlike NICE, trust in PGP is
only followed through one level of indirection; i.e. if A is
trying to decide the trust of B, there can be at most one
person, C, in the trust path between A and B. There are
also a number of popular web sites, e.g. e-bay and Ad-
vogato (see www.advogato.org ) that use trust mod-
els to serve their users. However, all data for these sites
is stored at a trusted centralized database, which may not
be ideal for open systems, and lead to the usual issues of
scalability and single point of failure.

The Eigentrust [12] system focuses on taking pairwise
trust values, i.e. the trust ci,j for all pairs i, j, and attempts
to calculate a single global trust value for each principal.
It accomplishes this task by computing in a distributed
manner the principal eigenvector of the entire pair-wise
trust matrix. In the current Eigentrust system, when node i

and node j have not interacted, ci,j is assumed to be zero.
The protocol presented in this paper is complementary to
Eigentrust, and can be used to infer unknown ci,j values.

A system similar to NICE is Samsara[13]. While NICE
attempts to solve distributed resource allocation problems
in resource neutral manner, Samsara focuses strictly on
remote file storage. In Samsara, nodes exchange chunks
of objects, and query each other to verify that nodes are
correctly storing the objects they claim to. If a particu-
lar node fails a query, other nodes in the system begin to
probabilistically drop the node’s objects. The probability
of a given object being dropped increases as the number
of consecutive failed queries increases. The argument is
made that it is not possible with current bandwidth lim-
itations for a malicious node to replace dropped objects
fast enough to counteract the dropping rate. However, it
is not clear how Samsara’s bandwidth restriction defense
fairs against a more sophisticated attacker that employs
forward error correction (FEC) to entangle multiple ob-
jects. Samsara does not have a notion of trust inference.
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Figure 1: NICE component architecture: the arrows show
information flow in the system; each NICE component
also communicates with peers on different nodes. In this
paper, we describe the trust inference and pricing compo-
nents of NICE.

3 Overview of NICE
In this section, we present a brief overview of the NICE
platform. Our goal is to provide context for the dis-
tributed trust computation algorithms presented in Sec-
tion 4. NICE is a platform for implementing coopera-
tive distributed applications. Applications in NICE gain
access to remote resources by bartering local resources.
Transactions in NICE consist of secure exchanges of re-
source certificates. These certificates can be redeemed
for the named (remote) resources. Non-cooperative users
may gain “free” access to remote resources by issuing cer-
tificates that they do not redeem.

NICE provides a service API to end-applications, and
is layered between the transport and application proto-
cols. The NICE component architecture is presented in
Figure 1, with this papers contributions in bold. Appli-
cations interact with NICE using the NICE API, and is-
sue calls to find appropriate resources. All of the barter-
ing, trading, and redeeming protocols are implemented
within NICE and are not exposed to the application.
These sub-protocols share information within themselves
and are controlled by the user using per-node policies.
NICE peers are arranged into a signaling topology using
our application-layer multicast protocol [4]. All NICE
protocol-specific messages are sent using direct unicast
or are multicast over this signaling topology. The exact
details of the remaining sub-protocols, e.g., bartering, re-
source location, secure exchange, and the NICE API it-
self remain the subject of future work. For the purpose of
building and inferring trust, we treat resources and trans-
actions as abstractions throughout the paper.

3.1 NICE Users and Pricing Policies
Until now, we have used the terms user and node in an
imprecise manner. In NICE, each user generates a PGP
style [25] identifier which includes a plaintext identifica-

tion string and a public key. The key associated with a
NICE identifier is used for signing resource certificates,
for trading resources, and for assigning trust (Section 4)
values.

It is important to note that neither the NICE identifier
nor the associated key needs to be registered at any cen-
tral authority; thus, even though NICE uses public keys,
we do not require any form of a global PKI. Thus, NICE
can be used to implement open p2p applications without
any centralized authority. Since there is no central regis-
tration authority in NICE, a single user can generate an ar-
bitrary number of keys and personas. However, in NICE,
pricing is coupled with identity, i.e., new users have to
pay more for services until they establish trust in the sys-
tem. Thus, it is advantageous for nodes to maintain a sin-
gle key per user and not to change keys frequently. This
property makes NICE applications robust against a num-
ber of cheap identity based denial-of-service attacks that
are possible on other p2p systems[10].

The goal of the default policies in NICE is to limit the
resources that can be consumed by cliques of malicious
users. These policies work in conjunction with the trust
computation which is used to identify the misbehaving
nodes. In practice, NICE users may use any particular
policy, and may even try to maximize the amount of re-
sources they gain by trading their own resources. The pri-
mary goal of the default policies is to allow good users
to efficiently form cooperating groups, and not lose large
amounts of resources to malicious users. The pricing and
trading policies are used to guard against users who issue
spurious resource certificates using multiple NICE iden-
tities. We use two mechanisms to protect the integrity of
the group:

• Trust-based pricing
In trust-based pricing, resources are priced pro-
portional to mutually perceived trust. Assume
trust values range between 0 and 1, and con-
sider the first transaction between Alice and Bob
where the inferred trust value from Alice to Bob is
TAlice(Bob) = 0.5, and TBob(Alice) = 1.0. Under
trust-based pricing, Alice will only barter with Bob if
Bob offers significantly more resources than he gets
back in return. Note however that as Bob conducts
more successful transactions with Alice, the cost dis-
parity will decrease. This policy is motivated by the
observation that as Alice trades with a principal with
lower trust she incurs a greater risk of not receiving
services in return, which, in turn, is reflected in the
pricing.

• Trust-based trading limits
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In these policies, instead of varying the price of the
resource, the policy varies the amount of the resource
that Alice trades. For example, in an scenario with
Alice and Bob, Alice may trade some small, triv-
ial amount of resources with Bob initially, but once
Bob has proven himself trustworthy, Alice increases
the amount of resources traded. This policy assures
that when trading with a principal with relatively low
trust, Alice bounds the amount of resources she can
lose. The simulated results presented in Section 6
use trust based trading limits.

4 Distributed Trust Computation
We assume that for each exchange of resources, i.e., a
transaction, in the system, each involved user produces
a signed statement (called a cookie) about the quality of
the transaction. For example, consider a successful trans-
action t between users Alice and Bob in which Alice con-
sumes a set of resources from Bob. After the transaction
completes, Alice signs a cookie c stating that she had suc-
cessfully completed the transaction t with Bob. Bob may
choose to store this cookie c signed by Alice, which he
can later use to prove his trustworthiness to other users,
including Alice 2. As the system progresses, each trans-
action creates new cookies which are stored by different
users. Clearly, cookies have to be expired or otherwise
discarded; the algorithms we present later in this section
require constant storage space.

We will describe the trust inference algorithms in terms
of a directed, weighted graph T called the trust graph. The
vertices in T correspond exactly to the users in the sys-
tem. There is an edge directed from Alice to Bob if and
only if Bob holds a cookie from Alice. The value of the
Alice→Bob edge denotes how much Alice trusts Bob and
depends on the set of Alice’s cookies Bob holds. Note
that each transaction in the system can either add a new
directed edge in the trust graph, or relabel the value of an
existing edge with its new trust value.

Assume that a current version of the trust graph T

is available to Alice, and suppose Alice wishes to com-
pute a trust value for Bob. If Alice and Bob have had
prior transactions, then Alice can just look up the value
of Alice→Bob edge in T . However, suppose Alice and
Bob have never had a prior transaction. Alice could po-

2It is also possible for Alice to keep a record of this transaction in-
stead of Bob. In this alternate model of trust information storage, users
themselves store information about whom they trust, and can locally
compute the trust of the remote nodes they know of. This model, how-
ever, is susceptible to a denial of service attack that we describe later in
this section.

tentially infer a trust value for Bob by following directed
paths (ending at Bob) on the trust graph as we describe
below.

4.1 Inferring Trust on the Trust Graph
Consider a directed path A0 → A1 → . . . → Ak on T .
Each successive pair of users have had direct transactions
with each other, and the edge values are a measure of how
much Ai trusts Ai+1. Given such a path, A0 could infer
a number of plausible trust values for Ak, including the
minimum value of any edge on the path or the product
of the trust values along the path; we call these inferred
trust values the strength of the A0 → Ak path. The infer-
ence problem is somewhat more difficult than computing
strengths of trust paths since there can be multiple paths
between two nodes, and these paths may share vertices
or edges. Centralized trust inference is not the focus of
our work, but it is important to use a robust inference al-
gorithm. We have experimented with different inference
schemes, and we describe two simple but robust schemes.
In the following description, we assume A (Alice) has ac-
cess to the trust graph, and wants to infer a trust value for
B (Bob):

(Alice)

E

C D

F

B
0.6

0.9

0.7

0.7

0.8

0.9

0.9

0.8 A
(Bob)

Figure 2: Example trust graph: the directed edges repre-
sent how much the source of edge trusts the sink.

• Strongest path: Given a set of paths between Alice
and Bob, Alice chooses the strongest path, and uses
the minimum trust value on the path as the trust value
for Bob. The strength of a path can be computed
as the minimum valued edge along the path or the
product of all edges along a path. Given the trust
graph, this trust metric can easily be computed using
depth-first search. In the example shown in Figure 2,
we use the min. function to compute the strength of
a path. In this example, the strongest path is AEFB,
and Alice infers a trust level of 0.8 for Bob.

• Weighted average of strongest disjoint paths: In-
stead of choosing only the strongest path, Alice
could choose to use contributions from all disjoint
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paths. The set of disjoint paths is not unique, but the
set of strongest disjoint paths (modulo equi-strength
paths) is and can be computed using network flows
with flow restrictions on vertices. Given the set
of disjoint paths, Alice can compute a trust value
for Bob by computing the weighted average of the
strength of all of the strongest disjoint paths. The
weight assigned to the Alice→X→ . . . →Bob path
is the value of the Alice→X edge (which represents
how much Alice directly trusts X). In the example
in Figure 2, ACDB is the other disjoint path (with
strength 0.6), and the inferred trust value from Alice
to Bob is 0.72.

Both these algorithms are robust in the sense that no edge
value is used more than once and trust values computed
are always upper-bounded by the minimum trust on a
path. Before any of these local algorithms can be used,
the trust graph has to be realized in a scalable manner,
and (edge) values have to be assigned to cookies.

Also note that the trust graph is not necessarily con-
nected. For example, if Alice is new to the system, then
there exists no path from her to Bob in the graph. In this
case, we must have some application specific policy to
assign a default level of trust. This policy is highly ap-
plication specific, for example the level of trust for an un-
known node in a file sharing application should be higher
than the default trust in a medical professional referral ser-
vice. Additionally, if we assume that each user maintains
more than ln N cookies, where N is the number of users
in the system and that the trust graph approximates an r-
regular random graph[7], then with high probability the
random graph remains connected. While a random graph
is not necessarily a good model for the trust graph itself,
we use it to motivate our simulation parameter selections,
and show in Section 5 that it performs well.

Note that in order to infer trust for Bob, Alice does not
need to access the entire trust graph, but only needs the
set of paths from her to Bob. In the rest of this section, we
describe schemes to store the trust graph and to produce
sets of paths between users in a completely decentralized
manner over an untrusted infrastructure. We begin with
a discussion of different techniques for assigning cookie
values, and describe our distributed path discovery proto-
col in Section 4.3.

4.2 Assigning Values to Cookies
Ideally, after each transaction, it would be possible to as-
sign a real number in the [0,1] real-valued interval to the
quality of a transaction and assign this as the cookie value.
In some cases, transactions can be structured such that this

indeed is possible: e.g. assume that Alice transcodes and
serves a 400Kbps video stream to Bob at 128Kbps, and
according to a prior agreement, Bob signs over a cookie
of value 0.75 to Alice. The same transaction may have
resulted in a cookie of value 0.9 if Alice had been able to
serve the stream at 256Kbps. In many cases, however, it
is not clear how to assign real-valued quality metrics to
transactions. For example, in the previous example, Al-
ice could claim that she did serve the stream at 256Kbps,
while network congestion on Bob’s access link caused the
eventual degradation of the quality to 128Kbps. It is, in
fact, easy to construct cases when it is not easily feasible
to check the quality of service. In most cases, however,
we believe it is somewhat easier to assign a {0,1} value
to a transaction, i.e. either the transaction was successful,
or it was not. As applied to the previous example, Bob
and Alice could negotiate a threshold rate (say 64Kbps)
at which point he considers the entire transaction success-
ful, and assigns a 1-valued cookie to Alice, regardless of
whether the data was delivered at 64.5Kbps or 400Kbps.
Further, for many transactions, such as streaming media
delivery, it is possible for one party to abort the transac-
tion if the initial service quality is not beyond the 0-value
threshold.

In the rest of this paper, we assume that cookies are
assigned values on the [0,1] interval. However, it is possi-
ble to assign arbitrary labels to cookies, and to conduct
arbitrary policy-based searches as long as the requisite
state is kept at each user. For example, it is possible to
construct a system where cookies take one of four values
(e.g., “Excellent”, “Good”, “Fair”, and “Poor”), and users
search for “Excellent”-valued cookies that are less than
one week old. All of the NICE path enumeration and in-
ference schemes work correctly as long as cookies have
a comparable value, regardless of how users assign these
values, and what range these values take.

One issue is who decides cookie values: by direct user
intervention or by program. There is a trade-off in the
two approaches between the latency in assigning values
versus the accuracy of values. Cookies values that are
assigned automatically, e.g., by heuristic or rule, do not
have to wait for an interactive user before being posted
to the trust network. However, in many cases it is possi-
ble to trick a heuristic into giving good cookie values for
marginal service. For example, Alice offers Bob 10GB of
disk space for one hour in exchange for one hour of com-
puting time on Bob’s machine. Bob takes the disk and
allows Alice to use his computer, but runs additional jobs
on his computer such that Alice’s job is slowed. An au-
tomated cookie valuation might give a high valued cookie
for this transaction, but a human valuation would catch
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Bob’s cheating, and return a low valued cookie.

4.3 Distributed Trust Inference: Basic Al-
gorithm

In this section, we describe how users locate trust infor-
mation about other users in our system. This distributed
algorithm proceeds as follows: each user stores a set of
signed cookies that it receives as a result of previous trans-
actions. Suppose Alice wants to use some resources at
Bob’s node. There are two possibilities: either Alice al-
ready has cookies from Bob, or Alice and Bob have not
had any transactions yet.3 In the case Alice already has
cookies from Bob, she presents these to Bob. Bob can ver-
ify that these indeed are his cookies since he has signed
them. Given the cookies, Bob can now compute a trust
value for Alice.

The more interesting case is when Alice has no cookies
from Bob. In this case, Alice initiates a search for Bob’s
cookies at nodes from whom she holds cookies. Suppose
Alice has a cookie from Carol, and Carol has a cookie
from Bob. Carol gives Alice a copy of her cookie from
Bob, and Alice then presents two cookies to Bob: one
from Bob to Carol, and one from Carol to Alice. Thus,
in effect, Alice tells Bob, “You don’t know me, but you
trust Carol and she trusts me!” In general, Alice can con-
struct multiple such “cookie paths” by recursively search-
ing through her neighbors. In effect, Alice floods queries
for Bob’s cookies along the cookie edges that terminate at
each node, starting with her own node. After the search is
over, she can present Bob with an union of directed paths
which all start at Bob and end at Alice. Note that these
cookie paths correspond exactly to the union of directed
edges on the trust graph which we used for centralized
trust inference. Thus, given this set of cookies, Bob can
use any centralized scheme to infer a trust value for Alice.

This basic scheme has several desirable properties:

• If Alice wants to use resources at Bob, she has to
search for Bob’s cookies. This is in contrast with the
analogous scheme in which nodes themselves keep
records of their previous transactions. Under such a
setting, if Bob did not know Alice, he would have to
initiate a search for Alice through nodes he trusted.
A malicious user Eve could mount an easy denial-
of-service attack by continuously asking other nodes
to search for Eve’s credentials. In our system, nodes
forward queries on behalf of other nodes only if they

3There is yet a third possibility in which Alice has discarded cookies
from Bob, but we assume that this case is equivalent to Alice having no
cookies from Bob

have assigned them a cookie, and thus, implicitly
trust them to a certain extent.

• Alice stores cookies which are statements of the form
“X trusts Alice”. Thus, Alice only devotes storage to
items that she can use explicitly for her own bene-
fit, and thus, there is a built-in incentive in the sys-
tem to store cookies. In fact, if Bob assigns a low-
value cookie for Alice, she can discard this cookie
since this is, in effect, a statement that says Bob does
not trust Alice. In general, users store the cookies
most beneficial to their own cause, and do not for-
ward messages on behalf of users they do not trust.

• The transaction record storage in the system is com-
pletely distributed, and if two nodes conduct a large
number of spurious transactions, only they may
choose to hold on to the resultant state. In contrast, in
a centralized transaction store, these nodes could eas-
ily mount a denial-of-service attack by overwhelm-
ing the transaction store with spurious transaction
records.

Note that a malicious node may choose to drop or cor-
rupt trust queries sent to it. However, as the network
evolves, trust lookup queries are sent primarily to nodes
that are already trusted, so dropping a trust lookup query
is less common. A possible modification to the protocol
is to change the trust lookups from a recursive process to
an iterative process. Specifically, Alice queries Cathy for
any of Bob’s cookies, Cathy returns a cookie for Doug,
which Alice then uses to query Doug for Bob’s cookies,
iteratively. However, this iterative protocol has higher net-
work overhead, so we do not consider it further.

4.4 Refinements
While the flooding-based scheme we have described is
guaranteed to find all paths between users and has other
desirable properties, it is not a complete solution. Flood-
ing queries is an inefficient usage of distributed resources,
and as pointed out before, malicious nodes can erase all
information of their misdeeds simply by throwing away
any low valued cookies they receive. We next describe
three refinements to the basic scheme that address these
issues.

4.4.1 Efficient Searching

The recursive flooding procedure described above does
find all cookies that exist for a given principal. However,
it is extremely inefficient, since it visits an exponentially
growing number of nodes at each level. Further, unless
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Figure 3: Different stages in the operation of the Alice→Bob search protocol. Edges in this figure represent message
flow. It is important to note that corresponding edges in the trust graph point in the opposite direction.

the flooding is somehow curtailed, e.g., by using dupli-
cate suppression or by using a time-to-live field in queries,
some searches may circulate in the system forever.

It is obvious to consider using a peer-to-peer search
structure, such as a distributed hash table (DHT) [20, 18],
to locate cookies. However, this is not possible since in
NICE because we do not assume the existence of any-
thing more sophisticated than plain unicast forwarding.
NICE is the base platform over which other protocols,
such as Chord, can be implemented. The NICE protocols
are much like routing protocols on the Internet: they can-
not assume the existence of routing tables etc., and must
be robust against packet loss and in the case of NICE,
against malicious nodes. Thus, we must employ other
mechanisms to make the cookie searches more efficient.

Instead of flooding to all neighbors in the trust graph,
nodes forward queries to a random subset of their neigh-
bors (typically of size 5). However, the resulting search
still increases exponentially at each hop, only with a
smaller base! Thus, additionally we add the following
extension to our base protocol: whenever node receives
a cookie from some other node, it also receives a digest of
all other cookies at the remote node. Since, in our imple-
mentations, the number of cookies at each node is quite
small (typically around 40 for a 2048 node system), this
digest can be encoded using around less than 1000 bits
in a Bloom filter4 [6]. Thus, the storage space required
for the digests are trivial (around 128 bytes), but they al-
low us to direct the search for specific cookies with very
high precision. The idea of using digests for searches has
been used previously, e.g., in lookaround caching [5] and
summary caches [9]. It is, in fact, a base case of proba-
bilistic search using attenuated Bloom filters [17]; in our
experiments, we found that we did not need to use full

4Such a filter, with only eight hash functions, would have a false
positive rate of 3.16 × 10

−5.

attenuated Bloom filters — only one level of filters was
sufficient. Lastly, each node also keeps a digest of re-
cently executed searches and uses this digest to suppress
duplicate queries.

In our implementation, when choosing nodes to for-
ward to, we always choose nodes whose digests indicate
they have the cookie for which we are searching. How-
ever, it is possible that there are no hits in any digest at
a node; in this case, we once again choose nodes to for-
ward to uniformly at random. However, we only forward
to randomly chosen nodes if the query is within a pre-
determined number of hops away from the query source.
Thus, in the final version of the search, a query spreads
from the source, possibly choosing nodes at random, but
the flooding is quickly stopped unless there is a hit in a
next-hop digest.

Note that for most applications, the cost of keeping the
digests fresh will be small. With respect to Alice, digests
are only kept at nodes that hold a cookie from her. Thus,
when Alice updates her local cookie cache, she need only
contact nodes that are one hop away from her on the trust
graph. Rather than force Alice to maintain a list of nodes
who hold her cookies, nodes could periodically contact
Alice to refresh their digests.

Example Before we describe other extensions to the
base protocol, we illustrate the digest-based search pro-
cedure with an example (corresponding to Figure 3). Al-
ice wants to use resources Bob has, but does not have a
cookie from him. She initiates a search for a cookie path
to Bob. In Figure 3-0, we show the initial state of cookies
and digests at each user, e.g., Alice has a cookie of value
0.9 from C, and her digest from C shows that C has a
cookie from D. For this example, we assume the search
out-degree is 3, and the random flooding hop limit is 1.
Alice first sends a query not only to nodes with a digest
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hit (e.g. E), but also to random nodes (e.g. C and D)
as illustrated in Figure 3-1. After receiving the query, E

finds Bob’s cookie and returns the query to Alice. When
C receives the query, he finds that none of his neighbors
have a digest hit for Bob, so does not forward the query
further. On the other hand, D does forward the query to G

(Figure 3-2) who has a digest hit for Bob, and G returns
the query to Alice with the cookie she received from Bob.
Figure 3.3 shows two paths Alice finds, with the strongest
path in bold.

4.4.2 Negative Cookies

A major flaw with the original scheme is that low-valued
transactions are potentially not recorded in the system.
Consider the following scenario: Eve uses a set of Alice’s
resources, but does not provide the negotiated resources
she promised. In our original scheme, Alice would sign
over a low-valued cookie to Eve. Eve would have no in-
centive to keep this cookie and would promptly discard it,
thus erasing any record of her misdeed.

Instead, Alice creates this cookie and stores it herself.
It is in Alice’s interest to hold on to this cookie; at the
very least, she will not trust Eve again as long as she has
this cookie. However, these “negative cookies” can also
be used by users who trust Alice. Suppose Eve next wants
to interact with Bob. Before Bob accepts a transaction
with Eve, he can initiate a search for Eve’s negative cook-
ies. This search proceeds as follows: it follows high trust
edges out of Bob and terminates when it reaches a nega-
tive cookie for Eve. In effect, the search returns a list of
people whom Bob trusts who have had negative transac-
tions with Eve in the past. If Bob discovers a sufficient set
of negative cookies for Eve, he can choose to disregard
Eve’s credentials, and not go through with her proposed
transaction. It is important to note that Bob only initiates
a negative cookie search when Eve produces a sufficient
credible set of credentials; otherwise, Bob is subject to a
denial of service attack where he continuously searches
for bad cookies. For efficiency, if Eve presents a cookie
directly from Bob, Bob need only do a local search for
negative cookies. For example, if Bob issued Eve a high
valued cookie, and Eve later cheats Bob, Bob would then
store a negative cookie for Eve locally. Afterward, when
Eve presents Bob with the original high-valued cookie,
Bob need only check his local cache for a negative cookie
about Eve before rejecting the transaction.

In our implementation, we keep a set of digests for neg-
ative cookies as well, but perform Bloom filter-directed
searches for these negative cookies only on neighboring
nodes.

4.4.3 Preference Lists

In order to discover potentially “good” nodes efficiently,
each user keeps a preference list. Intuitively, Alice’s pref-
erence list contains nodes that she has yet to contact, but
which have a higher probability of being good than purely
random nodes. Nodes are added to a preference list as fol-
lows: suppose Alice conducts a successful cookie search
for Bob, and let P be the cookie path that is discovered
between Alice and Bob. If the transaction with Bob goes
well, Alice adds all users in P who have very high trust
value (1.0 in our implementation) to her preference list.
Alice knows that these nodes have a higher probability of
being good than purely random nodes, because she now
trusts Bob, and Bob trusts them, creating an implicit trust
path. Obviously, only users for whom Alice does not have
transaction records are added to her preference list.

In summary, the NICE distributed trust valuation algo-
rithm works as follows:

Nodes that request resources present their cre-
dentials to the resource owner. Each credential
is a signed set of certificates which originate at
the resource owner. Depending on the set of
credentials, the resource owner may choose to
conduct a reference search. The trust ultimately
computed is a function of both the credentials,
and of the references.

There are a number of other pragmatic issues pertain-
ing to cookies that we address in NICE, e.g., cookie revo-
cations, and cookie time limits. Specifically, cookies is-
sued from departed nodes no longer have value to the sys-
tem. Additionally, nodes may change the behavior over
time, so cookies should reflect their most current behav-
ior. To address these concerns, cookies are created with
an expiration timestamp, and nodes periodically flush ex-
pired cookies. The length of the timestamp is application-
dependent, and creates a trade off between lookup effi-
ciency versus data freshness. Finally, if a node loses its
private key, the only effect is that useless cookies will per-
sist in the network until they expire.

5 Results
We present simulations from different sets of experiments.
In the first set (this section), we analyze the scalability and
robustness of our inference scheme. In these experiments,
our goal is to understand how well the cookies work, with-
out regard to how a real system might use cookies. For ex-
ample, in these experiments, “good” nodes continually in-
teract with unknown nodes, even when they already know
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of a large set of other good nodes. While this assump-
tion helps demonstrate how cookies propagate and nodes
discover each other in the system, in a real system, we
expect good nodes to find a set of other nodes they trust
and interact with these trusted nodes much more heavily.
We examine this further in section 6, we present exper-
iments in which cookies are used to establish trust, but
then nodes follow a more conventional pattern, and try to
interact with their trusted peers with higher frequency.

Experiments with the search algorithm In the rest
of this section, we present results from our simulations
of the trust inference algorithm proposed in Section 4.
In all our results, we use the minimum cookie value as
path strength, and use the highest valued path strength
as the inferred trust between users. We have experi-
mented with other functions as well, and the results from
this simple inference function are representative. Each
search carries with it the minimum acceptable strength,
and searches stop if no cookies of the minimum accept-
able value are present at the current node. Using the
minimum cookie value as the strength measure (instead
of product of cookie values) consumes up to an order of
magnitude more resources in the network and represents
a worst-case scenario for our schemes.

We divide our results into two parts. First, we analyze
the cost of running the path search algorithm in terms of
storage and run time overhead. The storage cost is en-
tirely due to the caching of positive and negative cookies;
the run-time overhead comes from the number of nodes
that are visited by each query, and the computation cost
for forwarding a query. The computation cost of forward-
ing each query is negligible: we have to generate random
numbers, compute eight MD5 hash functions, and check
eight bits in a 1000-bit Bloom filter. In these experiments,
the digests were assumed to be always fresh. We did not
simulate updating of the digest, but we believe a periodic
soft-state refreshing algorithm will work adequately. The
main overhead of the search algorithm comes in terms of
the number of messages sent and number of nodes visited.
The bandwidth consumed by the searches is proportional
to the number of nodes visited, and we report this metric
in the results that follow. In the second part of our results
(Section 5.2), we show that our trust inference schemes
do indeed form robust cooperative groups, even in large
systems with large malicious cliques and with small frac-
tions of good nodes. We begin with an analysis of the
scalability and overhead of our path searches.
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5.1 Scalability
In this first set of results, we simulate a stable system con-
sisting of only good users. Thus, we assume that all users
implement the entire search protocol correctly. Before the
simulations begin, we populate the cookie cache of each
user with cookies from other users chosen uniformly at
random. Each query starts at a node s chosen uniformly
at random and specifies a search for cookies of another
node t chosen uniformly at random. In the next section,
we will show how long the system takes to converge start-
ing from no cookies in the system, and how robust groups
are formed when there are malicious users in the system.

In our first experiment, we fix the number of good cook-
ies at each user to 40. The cookie values are exponentially
distributed between [0,1], with a mean of 0.75. Note that

5It is not clear how cookie values should be distributed. We have
also experimented with uniformly distributed cookie values with similar
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all nodes with constant number of cookies is a worst case
for searching performance. If cookies were distributed un-
evenly, for example, with a Zipf distribution, then the av-
erage diameter of the trust graph would reduce, and the
lookup times would decrease [8].

We conducted 500 different searches for cookies of
value at least 0.85, where the search out-degree at each
node is set to 5. In Figure 4, we plot the average success
ratio and the average fraction of nodes in the system vis-
ited by the searches. The x-axis in the plot corresponds
to the number of hops after which random forwards were
not allowed, and the search proceeded only if there was
a hit in a Bloom filter. There are four curves in the fig-
ure, each corresponding to a different system size, ranging
from 512 users to 2048 users. From the figure, it is clear
that only one hop of random searching is enough to sat-
isfy the vast majority of queries, even with large system
sizes. It is interesting to note that even when the system
size increases, the average number of nodes visited remain
relatively constant. For example, the average number of
nodes visited with 2 hop random searches range from 42.4
(for a 512 node system) to 36.2 (for the 2048 node sys-
tem). Thus, the search scheme scales well with increas-
ing system size. As we show next, the success ratio and
the number of nodes visited depend almost entirely on the
number of cookies held at each node, and the out-degree
of each search.

In Table 1, we fix the number of nodes to 2048 and
show the effect of changing the search out-degree. Each
row shows searches corresponding to a different minimum
threshold ranging from 0.8 to 0.95. Each node holds 40
cookies, the average cookie value is still fixed at 0.7, and
the number of random hops is set to 2. In the table, #N

is the average number of nodes visited by a query and
#P denotes the number of paths found on average. As
expected, the number of nodes visited increases as the
search threshold decreases, and also as the out-degree in-
creases. In all cases, as the search threshold increases,
the number of distinct paths found decreases. In Table 2,
we show the effects of changing the number of cookies
at each node. These experiments were conducted using
the same parameters, except the out-degree was fixed at
5. With small numbers of cookies and high thresholds,
searches do result in no paths being found. In Table 2, the
0.9 and 0.95 threshold searches had 10% and 42% unsuc-
cesful queries respectively; all other searches returned at
least one acceptable path. In our simulator, when a search
returns no acceptable paths, we retry the search once more
with a different random seed. The numbers of nodes vis-
ited in the results above include visits during the retries

results.

and account for why the number of nodes visited does not
decrease when the search threshold is increased.

In our system, there is a clear trade-off between how
much state individual nodes store (number of cookies)
and the overhead of each search (fraction of nodes vis-
ited). Note that unlike in systems such as [2], users in
our system do not benefit by storing fewer cookies since
this effectively decreases their own expected trust at other
nodes. There is a built-in incentive for users to store more
cookies, which, in turn, increases search efficiency. Users
may choose to store a large number of cookies but not for-
ward searches on behalf of others. We comment on this
issue when we discuss different models of malicious be-
havior in the next section. Lastly, we note that it is possi-
ble to further increase the efficiency of the searches by ad-
justing the two search parameters — out-degree and num-
ber of random hops — based on the threshold and results
found. Such a scheme will minimize the number of nodes
visited for “easy” searches (low search threshold) and find
better results for searches with high thresholds. We have
not implemented this extension yet.

The previous two results have shown that the number
of cookies and search out-degree provides an effective
mechanism to control the overhead of individual searches.
However, in each case, we have only shown that each
search returns a set of results. It is possible that the
searches find paths that are above the search threshold, but
are not the best possible paths. For example, suppose that
a search for threshold set to .85 returns a path with mini-
mum cookie value .90 . While this is an acceptable result,
there may be a better path that the search missed (e.g. with
minimum cookie value .95). In this case, the best path re-
turned had an absolute error of .05. To quantify the qual-
ity of the found paths, we plot the absolute error in the
paths returned by our searches as compared to an optimal
search (full flooding). In Figure 5, we plot the CDF of
the absolute error for the best path that we find versus the
best possible cookie path given an infinitely knowledge-
able oracle as the search threshold is changed. The higher
threshold searches have a smaller possible absolute mar-
gin of error, and thus produce the best paths. However,
very high threshold searches are also more likely to pro-
duce no results at all.

5.2 Robustness
We analyze two components of the system: how long it
takes for the system to stabilize and how well our sys-
tem holds up against malicious users. Modeling mali-
cious users is an important open research question: one
for which we do not provide any particular insights in this
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K=3 K = 5 K = 7 K = 20
thrsh. # N # P # N # P # N # P # N # P

.8 14.5 4.2 37.5 10.7 71.1 20 499.1 132.5
.85 14.6 3.6 36.2 8.7 68.7 16.5 380.6 88.3
.9 14.6 2.9 35.1 6.8 66.0 12.8 222.9 41.5

.95 15.7 2.0 33.2 4.2 55.9 7 89.2 11.2

Table 1: Effect of changing out-degree (K):
N, P=nodes, paths traversed

C=20 C=40 C=102
thresh. # N # P # N # P # N # P

0.8 34.4 2.9 37.5 10.7 32.8 23.6
0.85 34.7 2.4 36.2 8.7 37.3 25.4
0.9 34.7 1.9 35.1 6.8 40.8 25.4

0.95 28.6 1.4 33.2 4.2 41.9 21.5

Table 2: Effect of changing number of cookies
stored (C)

paper. Instead, we use a relatively simplistic user model
with three different types of users:

• Good users: Good users always implement the en-
tire protocol correctly. If a good user interacts with
another good user, then the cookie value assigned is
always 1.0. Good users do not know the identity of
any other good (or otherwise) users at the beginning
of the simulation.

• Regular users: Regular users always implement the
entire protocol correctly; however, when a regular
user interacts with another user, transactions result
in cookie value that range exponentially between 0.0
and 1.0, with a mean of 0.7. Regular users also do
not know the identities of any other users when the
simulations begin.

• Malicious users: All malicious users form a coop-
erating clique before the simulation begins. Specif-
ically, each malicious user always reports implicit
trust (cookie value 1.0) for every other malicious
user. Once a malicious user interacts with a non-
malicious user, there is a 20% probability that the
transaction is completed faithfully, else the malicious
user cheats the other party. The intuition behind this
model is that nodes that are consistently malicious,
i.e., that fail transactions 100% of the time, are eas-
ily detected and defeated. With malicious nodes that
periodically complete transactions, we are consider-
ing a slightly more sophisticated attack model.

At each time step in the simulation, a user (Alice),
is chosen uniformly at random. Alice selects another
user (Bob) from her preference list with whom to initi-
ate a transaction. If Alice’s preference list is empty, she
chooses the user Bob uniformly at random. This trans-
action commences if Bob can find at least one path of
strength at least 0.85 between himself and Alice and if
Bob cannot locate a negative cookie for Alice. If no
cookie path can be found, i.e., the transaction between
Alice and Bob cannot proceed, Alice tries her transaction
with a different user. After two unsuccessful tries, Alice

chooses a random user Carol and the simulator allows a
transaction without checking Alice’s credentials. (Recall
that in these first set of experiments, good users only want
to form a large good user clique, and do not initiate trans-
actions with other good users they know of with higher
probability). When the cookie cache is full, cookies are
removed from a user’s cookie cache using the following
rule: cookies of value 1.0 are not replaced; other cookies
are discarded with uniform probability.

In the first result, we only consider good and regular
users (there were 488 regular users and 24 good users in
this experiment). In Figure 6, we plot the fraction of trans-
actions between good users and the fraction of paths be-
tween good users. The x-axis shows the total number of
transactions in which at least one party was a good node.
(We choose this measure as the x-axis because in a real
system, malicious nodes can fabricate any number of spu-
rious transactions, and the only transactions that matter
are the ones involving good nodes). The effect of the pref-
erence lists is clear from the plot: even though there is a
less than 5% chance of a good node interacting with an-
other good node, there is a path between any two good
node within 1500 transactions. By 2500 total transactions,
the majority of which were between good nodes and regu-
lar nodes, all good nodes have cookies from all other good
nodes, and the robust cooperative group has formed. This
good clique will not be broken unless a good node turns
bad, since 1.0 valued cookies are not flushed from the sys-
tem.

In the next set of results, we introduce malicious nodes.
Figure 7 illustrates the fraction of failed transactions in-
volving good nodes normalized by the total number of
transactions involving good nodes. The curves in the fig-
ure show the number of failed transactions involving good
nodes for varying numbers of bad nodes in the system,
averaged over 1000 transaction intervals. For these re-
sults, we define failed transactions as those that produce a
cookie of value less than 0.2. In the beginning of the sim-
ulation, the number of failed transactions are proportional
to the number of bad users in the system. However, for all
bad user populations, the good users identify all bad users
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and the number of good-bad transactions approaches zero.
The effect of the preference lists is again apparent in this
experiment: recall that all bad nodes always report 1.0
trust for other bad nodes. Thus, bad nodes rapidly fill the
preference lists of good nodes, but are quickly identified
as malicious.

In our experiments, good users do not preferentially in-
teract with other good users (as would be expected in a
real system). Instead, if their preference lists are empty,
they pick a random user to interact with. Recall that there
are an order of magnitude more regular users in the sys-
tem than good users. Thus, good users continue to inter-
act with regular users and approximately 5% of good user
transactions result in failures (not shown in Figure 7). In a
deployed system, the fraction of failed transactions would
be much smaller, since the vast majority of transactions
initiated by good users would involve other good users.

It is important to note that even with many malicious
users, a robust cooperative group eventually emerges in
our system. This property is true, regardless of the number
of positive or negative cookies good users keep, as long
as good users can choose random other users to conduct
transactions with and can withstand failed transactions
proportional to the fractions of malicious users. Without
random node selection, bad cliques can stop good users
from ever communicating with another good user. How-
ever, as long as bad users cannot stop to whom good users
communicate, a cooperative group emerges. In our simu-
lations, this translates to assuming that the bootstrap node
or topology server is trusted. However, in practice the
boot strapping service could be logically implemented us-
ing a more secure system [19]. The good users eventually
find and keep state from other good users, and this state
cannot be displaced by malicious users. Obviously, the

number of transactions required for good cliques to form
depends on the number of malicious nodes in the system,
but good users rapidly find other good users by using their
preference lists. It is possible for a malicious node to infil-
trate good cliques for prolonged periods, but as these bad
nodes conduct transactions that fail, the negative cookies
will cause these users to be rapidly discarded from the
good clique.

We have varied other parameters in our experiments,
and present a summary of our findings. We experimented
with a different malicious node model in which the bad
nodes do not forward queries from non-malicious nodes.
The results for this model were not appreciably different
from the model we have used in our above results. Also,
it is not immediately clear how to choose the probability
with which transactions with malicious users fail (recall
that bad nodes succeed 20% of the time). If this probabil-
ity is low, then malicious users can be identified relatively
easily (usually after one transaction). If this probability
is set too high, then in effect, the user is not malicious
since it acts much like a regular user. In our experiments,
as the bad nodes reduce the transaction failure probabil-
ity, the number of transactions required to identify all bad
nodes increases, but the total number of bad transactions
remain similar. We have also experimented with mod-
els in which bad users actively publish negative cookies
for good users. As these users are identified as bad by
the good users, these negative cookies are rendered use-
less. Lastly, we note that our good user model is probably
too simplistic. Even good users may be involved in failed
transactions, possibly due to no fault of their own. How-
ever, we believe our results will still hold as long as there
is a definite and marked difference between the behavior
of good and bad users.
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6 Simulations on a Realistic System
As noted above, we have implemented the cookies proto-
col in a different simulator, which admits much larger user
populations (O(105) users). The goal of the new simula-
tor is to model a more realistic resource discovery model,
attempts to model work loads, and quantify the effect of
our trust based trade limits (Section 3.1). We assume that
there is a single bootstrap node that keeps track of the
last 100 nodes to join the system. Each node periodically
queries the bootstrap node to obtain a set of neighbors (if
a node already has sufficient neighbors, it does not query
the bootstrap node). The bootstrap node is not part of the
trust inference system, and is used only to start the simu-
lation. Each node in the system starts with a fixed number
of “jobs” that they need completed, and a fixed number
of jobs that they can serve for others. Of course, mali-
cious nodes need not complete any job they accept. After
discovering each other, pairs of nodes conduct a “transac-
tion” to trade a set of jobs.

Node model Each good node maintains the following
state:

• For each jobs, a status indicating whether that job is
complete or not. If completed, the node remembers
which node completed the job. Finally, the node also
maintains state about jobs that have been issued but
not completed.

• A fixed set of good cookies and a fixed set of negative
cookies. These are used exactly as described above.
Recall that if a node n has a good cookie from node
p, then it also has a digest of the set of bad cookies
that p has recorded.

• A preference list, which is a set of nodes to whom
the next set of jobs will be issued.

In the simulator, bad nodes accept jobs but do not com-
plete them with a fixed probability. We assume that there
is a post-verification protocol that allows good nodes to
realize that their jobs were not completed properly.

6.1 System Behavior
The simulations proceed as follows: the nodes initially
populate their preference list using random information
from the bootstrap server. Each node issues a maximum
number of transaction requests (nominally set at 10 for
each simulation) to nodes in their preference list. Each
node maintains its preference list sorted in order of frac-
tion of successful transactions with the nodes in the list

ties are broken using the actual number of good transac-
tions, and the transactions are issued in this sorted order.

Assume that n requests a transaction to be completed
at node p. Each transaction requests a specific number of
jobs to be completed. The number of jobs issued from
node n to p increases exponentially with the number of
successful transactions. (We have also experimented with
a linear increase scheme, which we present in the results).
With each transaction request, n tries to present a valid
cookie path to p.

Node p accepts the request from n as follows: if n can-
not present a valid cookie path, p searches the network for
a bad cookie for n. If a bad cookie is found, then p rejects
the transaction request. If a bad cookie is not found,i.e.,
p has no information about n good or bad, then p will ac-
cept the request with a fixed probability, 50%, else ask n

to retry its request later. If p accepts the request, then it
will, initially do one job for n. Recall that the number of
jobs accepted at a node will increase with each successful
transactions, as per the trust-based trading limits.

After p completes a set of jobs for n, it does not ac-
cept any other jobs from n until n performs an equivalent
set of jobs for p. In general, the set of jobs accepted is
constrained by the number of available resources at each
node, the number of actual outstanding jobs each node
has, etc.

After a transaction completes, n issues a “verification”
message. This is how good nodes realize that malicious
nodes have not completed their tasks properly. Once n

finds that it had issued jobs to a bad node (say b), it records
a bad cookie for b, and marks all the previous jobs done by
b as failed. Note that allows us to model a relatively broad
notion of a job. For example, jobs could be data blocks
stored at other nodes, or jobs could be computations con-
ducted at other nodes.

All simulation messages have latency between 10-
11ms, distributed uniformly at random. Also, nodes issue
the verification message a random amount of time after
the transaction has occurred.

Preference List updates The efficiency of this system
(like real systems) depends on which nodes are contacted
in what order when node n wants to place jobs. In the
simulator, this is reflected in the way the preference lists
are maintained. When node n issues a bad cookie for any
node b, n takes b out of its preference list. If n issues p a
good cookie, then p gives n a copy of its preference list; n

integrates this information into its own preference list as
follows. Initially, all new nodes in p’s preference list are
assigned the same trust (and transaction success parame-
ters) as p. Then, these nodes replace existing nodes with

14



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  1  2  3  4  5  6  7  8

Fa
ile

d 
Jo

bs
 p

er
 0

.1
s 

In
te

rv
al

Simulator Time

0 Malicious Nodes
1000 Malicious Nodes
2000 Malicious Nodes

10000 Malicious Nodes
20000 Malicious Nodes

Figure 8: Failed jobs over time; 80 cookies
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Figure 9: CDF of job completion times; 80 cookies

lower trust value in n’s preference list.

6.2 Simulation Results
Given our system description, there are two key metrics
that we chose to measure in the simulation. Specifically,
we consider how quickly good nodes place all of their
jobs, i.e. completion time, and how many jobs are lost
to bad nodes in the process, i.e. loss rate. Then we show
results where we vary the number of malicious nodes rela-
tive to “good” nodes, and we vary the amount of state each
node is allowed to hold. In all experiments, transactions
only involving malicious users are disregarded.

Number of Malicious Nodes In this experiment, we fix
the number of good users (as defined in Section 5) at 1000
nodes. Each node carries state for 80 cookies, and joins
the system distributed uniformly at random during the first
second of the simulation. Each node has 100 jobs to place,
and capacity to serve 100 jobs. A node stays in the system
until it can place all of its jobs successfully; nodes time
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Figure 11: Cumulative distribution of failed jobs; 2000
malicious nodes

out after 30 seconds of inactivity. In all experiments, less
than 1% of nodes time out. Malicious users fail jobs with
80% probability.

Figure 8 illustrates the number of failed jobs over time,
as measured in 0.1 second intervals. As expected, the
number of failed jobs initially increases as the ratio of
malicious to good nodes increases. However, over time
as good nodes discover each other, the number of failed
jobs approaches zero. Specifically, in the case with 20,000
malicious nodes, i.e. a 20-to-1 ratio of malicious to good
nodes, good nodes are still able to make progress as shown
in Figure 10. By simulation time 3 seconds, over 62% of
the total jobs in the system have been placed (Figure 9).

Note that in Figure 10, the number of successful jobs
also reduces over time (unlike in Figure 7 from Section
5). This is because, in these simulations, good nodes leave
the system after all of their jobs are satisfied. Since new
nodes do not join, after a few simulation seconds, almost
all the good jobs in the system are done (unlike in the pre-
vious case, where there was an unbounded number of jobs
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Figure 12: Failed jobs over time; 2000 malicious
nodes
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Figure 13: CDF of completed jobs; 2000 malicious
nodes

in the system). We believe that a system that incorporated
continuous node arrivals and departures, as would be ex-
pected in a practical system, could result in better average
performance.

Amount of State Per Node Even in this more realis-
tic system (in which good nodes visit each other prefer-
entially), the number of cookies a node keeps is impor-
tant. We have experimented with varying the amount of
cookie state each node keeps. In this experiment, 1000
good nodes join uniformly at random within the first sec-
ond of simulation time. The number of malicious nodes
is fixed at 2000, and the amount of state varies. As above,
each node has 100 jobs to place, and capacity for 100 jobs.
Malicious users fail jobs with 80% probability.

Figure 11 depicts the cumulative distribution of failed
job placements over time. As expected, the number of
failed jobs is initially high, but reduces as time progresses
and as cookies are traded throughout the system. Figure

12 represents a count per 0.1 second interval of failed
job placements over time. Note that as the number of
cookies increase, the completion times and the number of
failed jobs decrease. Observe the benefit from doubling
the number of cookies from 100 to 200 is minimal, and
thus a node can achieve practically full benefit from the
cookie protocol from storing merely 100 cookies. Figure
13 shows the cumulative distribution of completed jobs.
Note that nodes place over 90% of their jobs in the first 7
seconds in all experiments.

7 Summary and Conclusions
The main contribution of this paper is a low overhead trust
information storage and search algorithm which is used
to implement a range of trust inference and pricing poli-
cies. Our scheme is unique in that the search and infer-
ence performance for the whole group increases as users
store more information, and information is explicitly ben-
eficial for the storer’s cause. We have presented a scal-
ability study of our algorithms, and have shown that our
technique is robust against malicious users. We have ex-
perimented with networks with over 20,000 nodes. Our
results show that the protocol presented here scales to net-
works of this size, however, it is not clear that the proto-
col presented here will be efficient on systems an order
of magnitude larger. It is likely that in very large sys-
tems, a fundamentally more sophisticated solution, e.g.
based upon a DHT [20, 18] or random walks [15] would
be preferred. We should note that structures such as a
DHT implicitly assume that all participants are trustwor-
thy, and we expect a solution such as ours will be required
as the basis for booting a trusted DHT. We also believe
techniques presented in this paper are a crucial piece for
building large peer-to-peer systems for deployment over
the Internet.
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