
Cooperative Peer Groups in NICE
�

Rob Sherwood Seungjoon Lee Bobby Bhattacharjee
Department of Computer Science, University of Maryland, College Park, Maryland�

capveg, slee, bobby � @cs.umd.edu.

Abstract
We present a distributed scheme for trust inference in
peer-to-peer networks. Our work is in the context of the
NICE system, which is a platform for implementing co-
operative applications over the Internet. We describe a
technique for efficiently storing user reputation informa-
tion in a completely decentralized manner, and show how
this information can be used to efficiently identify non-
cooperative users in NICE. We present a simulation-based
study of our algorithms, in which we show our scheme
scales to thousands of users using modest amounts of stor-
age, processing, and bandwidth at any individual node.
Lastly, we show that our scheme is robust and can form
cooperative groups in systems where the vast majority of
users are malicious.

1 Introduction
NICE1 is a platform for implementing cooperative appli-
cations over the Internet. We define a cooperative ap-
plication as one that allocates a subset of its resources,
typically processing, bandwidth, and storage, for use by
other peers in the application. We believe a large class of
applications, including on-line media streaming applica-
tions, multi-party conferencing applications, and emerg-
ing peer-to-peer applications, can all significantly benefit
from a cooperative infrastructure. However, cooperative
systems perform best if all users do, in fact, cooperate
and provide their share of resources to the system. In this
paper, we present techniques for identifying cooperative�

This work is supported by a NSF CAREER award (ANI0092806).
1NICE is a recursive acronym for “NICE is the Internet Coopera-

tive Environment” (See http://www.cs.umd.edu/projects/
nice).

and non-cooperative users. Using our schemes, individual
users can assign and infer “trust” values for other users.
The inferred trust values represent how likely a user con-
siders other users to be cooperative, and are used to price
resources in the NICE system.

We focus on distributed solutions for the trust inference
problem. We decompose the distributed trust inference
problem into two parts: a local trust inference component
that requires trust information between principals in the
system as input and a distributed search component that
efficiently gathers this individual trust information to be
used as input for local inference algorithms. There al-
ready exist systems, e.g. e-bay, that have a centralized
user-evaluation system. Other resource bartering systems,
e.g. MojoNation, have also implemented centralized trust
inference solutions. Our goal is to enable open appli-
cations where users do not have to register with an au-
thority to be a part of the system. Centralized solutions
do not scale in open systems, since malicious users can
overwhelm the central “trust” server with spurious trans-
actions. The most widely used decentralized trust infer-
ence scheme is probably the PGP web of trust [20], which
allows one level of inference. We present a new decen-
tralized trust inference scheme that can be used to infer
across arbitrary levels of trust. There is no trusted-third-
party or centralized repository of trust information in our
scheme. Users in our system only store information they
explicitly can use for their own benefit. We show that our
algorithms scale well even with limited amount of stor-
age at each node, and can be used to efficiently imple-
ment large distributed applications without involving ex-
plicit authorities. Further, our solutions allow individual
users to compute local trust values for other users using
their own inference algorithm of choice, and thus can be
used to implement a variety of different policies.

1

1.1 Cooperative Systems
The notion of a cooperative system is not unique in net-
working; in fact, packet forwarding in the Internet is
a cooperative venture that utilizes shared resources at
routers. Our overall goal in NICE is to extend this no-
tion to include end-applications and provide an incentive-
based framework for implementing large distributed ap-
plications in a cooperative manner. Clearly, an immense
amount of distributed resources can be harvested over the
Internet in a cooperative manner. This observation is key
in the recent surge of peer-to-peer (p2p) applications, and
we believe the next generation of such p2p applications
will be based upon the notions of cooperative distributed
resource sharing.

A number of interesting distributed algorithms for p2p
systems, most notably in the area of distributed resource
location, have recently been introduced. All of these
schemes, however, assume that all peers in the system im-
plicitly cooperate and implement the underlying protocols
perfectly, even though it may not be explicitly beneficial
to do so. Consider the following examples:

� In Gnutella [1], peers forward queries flooded on
behalf of other users in the system. Each for-
warded message consumes bandwidth and process-
ing at each node it visits.

� In Chord [17], a document is “mapped” to a particu-
lar node using a hash function. Thus, a peer serves a
document that is, in fact, owned by some other node
in the system. Thus, peers in the system expend their
own resources to serve documents for other nodes in
the system. This situation is not unique to Chord; all
hash-based location systems, including CAN [13],
Bayeux [19], Pastry [15], have this property. It is
possible to build a system in which nodes only serve
a pointer to the document data and also to imple-
ment various load balancing schemes; however, even
in the best load-balanced system, there can be tem-
porary overloads when a large amount of local re-
sources are expended due to external serving.

� A number of relay-based streaming media protocols
have been developed and demonstrated. In these pro-
tocols, nodes devote resources such as access band-
width for serving their child nodes.

In each example above, any individual user may choose
not to devote local resources to external requests, and still
get full benefit from the system. On the other hand, the
integrity and correct functioning of the system depends
on each user implementing the entire distributed proto-
col correctly and selflessly. However, experience with de-
ployed systems, such as Gnutella and previously Napster,
show that only a small subset of peers offer such selfless
service to the community, while the vast majority of users
use the services offered by this generous minority [4]. The
goal of this work is to efficiently locate the generous mi-
nority, and form a clique of users all of whom offer local
services to the community.

1.2 Model
In this paper, we assume that a (p2p) system can be de-
composed into a set of of two-party transactions. A sin-
gle transaction can be a relatively light-weight operation
such as forwarding a Gnutella query or a potentially re-
source intensive operation such as hosting a Chord docu-
ment. Next, we assume that the system consists of a set of
“good” nodes that always implement the underlying pro-
tocols correctly and entirely, i.e. good users always fulfill
their end of a transaction. The goal of our work is de-
velop algorithms that will allow “good” users to identify
other “good” users, and thus, enable robust cooperative
groups. These are peer groups in which, with high prob-
ability, each participant successfully completes their end
of each transaction. Specifically, we propose a family of
distributed algorithms which can be used by users to cal-
culate a per-user “trust” value. The trust value for node B
at a node A is a measure of how likely node A believes
a transaction with node B will be successful. In our sys-
tem, users store a limited amount of information about
how much other users trust them, and we present algo-
rithms for choosing what information to store and how to
retrieve this trust information. Once relevant information
has been gathered, individual users may use different lo-
cal inference algorithms to compute trust values.

It is important to note that we assume that good nodes
are able to ascertain when a transaction is successful.
Clearly, in many cases, it is not possible to efficiently
determine whether a transaction fails (e.g. when a node
sometimes does not serve Chord documents that it hosts).
It is even more difficult to determine whether a transac-

2

tion fails because of a system failure or because of non-
cooperative users. For example, consider the case when
all users are cooperative but a document cannot be served
due to a network failure. We believe this problem is inher-
ent in any trust-inference system that is based on transac-
tion “quality”. We discuss different policies for assigning
values to transaction quality in Section 4.

The overall goal of this work is to identify coopera-
tive users. An ideal trust inference system would, in one
pass, be able to classify all users into cooperative or non-
cooperative classes with no errors. However, this is not
possible in practice because non-cooperative users may
start out as cooperative users. The specific goals of our
work are as follows:

� Let the “good” nodes find each other quickly and
efficiently: Good nodes should be able to locate
other good nodes without losing a large amount of
resources interacting with malicious nodes. This
will allow NICE to rapidly form robust cooperative
groups.

� Malicious nodes and cliques should not be able
to break up cooperating groups by spreading mis-
information to good nodes. Specifically, we want
to develop protocols in which malicious nodes are
rapidly pruned out of cooperative groups. Further,
we assume malicious nodes can disseminate arbi-
trary trust information, and the cliques formed of
good nodes should be robust against this form of at-
tack.

In Section 4, we describe algorithms that achieve our
goals with low run-time overhead, both in terms of pro-
cessing and network bandwidth usage. We believe this
algorithm is the first practical, robust, trust inference
scheme that can be used to implement large cooperative
applications.

The rest of this paper is structured as follows: in the
next section, we discuss prior work in distributed trust
computations. In Section 3, we present an overview of
the NICE system, and describe how distributed trust com-
putations are used by NICE nodes. We describe our algo-
rithms and local node policies in Section 4, present sim-
ulation results of the trust search in Section 5, and sim-
ulated results of a NICE resource trading system in Sec-
tion 6. We discuss our conclusions in Section 7.

2 Related Work
In this section, we discuss prior work in trust inference
and present a brief overview of systems that are based on
notions of trust and incentive.

The concept of “trust” in distributed systems is formal-
ized in [11] using social properties of trust. This work
considers an agent’s own experience to obtain [-1, 1]-
valued trust, but does not infer trust across agents. Abdul-
Rahman et al. [2] describe a trust model that deals with di-
rect experience and reputational information. This model
can be used, as is, in NICE to infer trust. Yu et al. [18] pro-
pose a way to compute a real-valued trust in [-1, 1] range
from direct interactions with other agents. A product of
trust values is used for reputation computation, and unde-
sirable agents are avoided by having an observer of bad
transactions disseminate information about the bad agent
throughout the network. This work is primarily about us-
ing social mechanisms for regulating users in electronic
communities, and the techniques developed here can be
used in NICE. In this paper, we focus on algorithms for
efficiently storing and locating trust information.

Another scheme [3] focuses on management and re-
trieval of trust-related data, and uses a single p2p dis-
tributed database which stores complaints about individu-
als if transactions with them are not satisfactory. When an
agent � wants to evaluate trust for another agent � , it sends
a query for complaint data which involves � , and decides� ’s trustworthiness with returned data, using a proposed
formula. However, this system implicitly assumes that
all participants are equally willing to share the communal
data load, which may not be true in many p2p systems [4].
Such a system is also vulnerable to DoS attacks, as there is
no preventative measure from inserting arbitrary amounts
of complaints into the system.

PGP [20] is another distributed trust model that focuses
on proving the identity of key holders. PGP uses user de-
fined thresholds to decide whether a given key is trusted
or not, and different introducers can be trusted at finite
set of different trust levels. Unlike NICE, trust in PGP is
only followed through one level of indirection; i.e. if � is
trying to decide the trust of � , there can be at most one
person, 	 , in the trust path between � and � . There are
also a number of popular web sites, e.g. e-bay and Ad-
vogato (see www.advogato.org) that use trust mod-
els to serve their users. However, all data for these sites

3

is stored at a trusted centralized database, which may not
be ideal for open systems, and lead to the usual issues of
scalability and single point of failure.

The Eigentrust [9] system focuses on taking pairwise
trust values, i.e. the trust
���
 � for all pairs ����� , and attempts
to calculate a single global trust value for each principal.
It accomplishes this task by computing in a distributed
manner the principal eigenvector of the entire pair-wise
trust matrix. In the current Eigentrust system, when node �
and node � have not interacted,
���
 � is assumed to be zero.
The protocol presented in this paper is complementary to
Eigentrust, and can be used to infer unknown
 ��
 � values.

A system similar to NICE is Samsara[10]. While NICE
attempts to solve distributed resource allocation problems
in resource neutral manner, Samsara focuses strictly on
remote file storage. In Samsara, nodes exchange chunks
of objects, and periodically query each other to verify that
nodes are correctly storing the objects they claim to. If a
particular node fails a query, other nodes in the system be-
gin to probabilistically drop the node’s objects. The prob-
ability of a given object being dropped increases as the
number of consecutive failed queries increases. The ar-
gument is made that it is not possible under current band-
width conditions for a malicious node to replace dropped
objects fast enough to counteract the rate at which they are
dropped. There is no notion of trust inference in Samsara.

However, it is not clear how Samsara’s bandwidth re-
striction defense fairs against a slightly more sophisti-
cated attacker, specifically one that employs forward error
correction (FEC) to entangle multiple objects.

3 Overview of NICE
In this section, we present a brief overview of the NICE
platform. Our goal is to provide context for the dis-
tributed trust computation algorithms presented in Sec-
tion 4. NICE is a platform for implementing coopera-
tive distributed applications. Applications in NICE gain
access to remote resources by bartering local resources.
Transactions in NICE consist of secure exchanges of re-
source certificates. These certificates can be redeemed
for the named (remote) resources. Non-cooperative users
may gain “free” access to remote resources by issuing cer-
tificates that they do not ever redeem.

NICE provides a service API to end-applications, and

pricing

 local
resources

secure
bartering/
trading

trust inference

resource
location

 resource
advertisement

NICE

applications node
owner

 local policy

 secure
exchange

Figure 1: NICE component architecture: the arrows show
information flow in the system; each NICE component
also communicates with peers on different nodes. In
this paper, we describe the trust inference component of
NICE.

is layered between the transport and application protocols.
The NICE component architecture is presented in Fig-
ure 1. Applications interact with NICE using the NICE
API, and issue calls to find appropriate resources. All of
the bartering, trading, and redeeming protocols are im-
plemented within NICE and are not exposed to the ap-
plication. These sub-protocols share information within
themselves and are controlled by the user using per-node
policies. NICE peers are arranged into a signaling topol-
ogy using our application-layer multicast protocol [5].
All NICE protocol-specific messages are sent using direct
unicast or are multicast over this signaling topology.

The NICE user identifier Until now, we have used the
term user and node in a generic manner. In NICE, each
user chooses a PGP style identifier (See www.pgpi.
org). The identifier includes a plaintext identification
string and a public key. The key associated with a NICE
identifier is used for signing resource certificates, for trad-
ing resources, and for assigning trust values.

It is important to note that neither the NICE identifier
nor the associated key needs to be registered at any central
authority; thus, even though NICE uses public keys, we
do not require any form of a global PKI. Thus, NICE can
be used to implement open p2p applications without any
centralized authority. Since there is no central registration
authority in NICE, a single user can generate an arbitrary
number of keys and personas. However, in NICE, pricing
is coupled with identity (See Section 3.1) and it is advan-
tageous to maintain a single key per user and not to change

4

keys frequently. This property makes NICE applications
robust against a number of denial-of-service attacks that
are possible on other p2p systems.

In NICE, remote application actions are translated to
local resource requests, and if feasible, the local resources
are bartered for some resources at the remote node. (It is
also possible to trade third-party resources instead of just
bartering local resources). Obviously, not every remote
request passes through NICE; instead, users barter and
trade configurable units of resources (e.g. 100MB stor-
age for 10 days, etc.). The resources are specified using
a simplified version of the W3 RDF. NICE provides the
following services:

� Resource advertisement and location

� Secure bartering and trading of resources

� Distributed “trust” valuation

Peers in NICE barter resources by exchanging “trans-
action” messages. A transaction message identifies sets
of resources a principal is willing to barter. The integrity
of a transaction message is ensured using a signed hash
carried along with the message.

We use a Beaconing-based [16] scheme to scalably ad-
vertise and locate available resources. NICE uses a new
fair exchange algorithm based on oblivious transfer proto-
cols [12] to exchange resource certificates. This protocol
assures that no party can gain a usable certificate with-
out issuing a valid certificate; however, for the lack of
space, we do not discuss the protocol in this paper. These
resources certificates are eventually redeemed at the is-
suer nodes. Good nodes always redeem any certificate
that they issue, while malicious nodes may choose not
to. In the context of NICE, the specific goal of this pa-
per is to develop algorithms to identify the nodes that is-
sue good (eventually redeemable) certificates. Before we
describe the trust inference component, we describe how
the results of these schemes are used to price resources in
NICE.

3.1 Pricing and Trading Policies
The goal of the default policies in NICE is to limit the
resources that can be consumed by cliques of malicious
users. These policies work in conjunction with the trust

computation which is used to identify the misbehaving
nodes. In practice, NICE users may use any particular
policy, and may even try to maximize the amount of re-
sources they gain by trading their own resources. The pri-
mary goal of the default policies is to allow good users
to efficiently form cooperating groups, and not lose large
amounts of resources to malicious users. The pricing and
trading policies are used to guard against users who issue
spurious resource certificates using multiple NICE iden-
tities. We use two mechanisms to protect the integrity of
the group:

� Trust-based pricing

In trust-based pricing, resources are priced pro-
portional to mutually perceived trust. Assume
trust values range between 0 and 1, and con-
sider the first transaction between Alice and Bob
where the inferred trust value from Alice to Bob is����� �����! ��#"!$�%'&)(+*-, , and

��.0/21 3�54���
768%9&;:<* (. Under
trust-based pricing, Alice will only barter with Bob if
Bob offers significantly more resources than he gets
back in return. Note however that as Bob conducts
more successful transactions with Alice, the cost dis-
parity will decrease. This policy is motivated by the
observation that as Alice trades with a principal with
lower trust she incurs a greater risk of not receiving
services in return, which, in turn, is reflected in the
pricing.

� Trust-based trading limits

In these policies, instead of varying the price of the
resource, the policy varies the amount of the resource
that Alice trades. For example, in the scenario with
Alice and Bob, Alice may allow Bob to store 1 MB
of data at her host for one day, and gradually increase
the storage and duration as she successfully redeems
Bob’s resource certificates. This policy assures that
when trading with a principal with relatively low
trust, Alice bounds the amount of resources she can
lose. The simulated results presented in Section 6
use trust based pricing.

5

4 Distributed Trust Computation

We assume that for each transaction in the system,
each involved user produces a signed statement (called a
cookie) about the quality of the transaction. For exam-
ple, consider a successful transaction = between users Al-
ice and Bob in which Alice consumes a set of resources
from Bob. After the transaction completes, Alice signs a
cookie
 stating that she had successfully completed the
transaction = with Bob. Bob may choose to store this
cookie
 signed by Alice, which he can later use to prove
his trustworthiness to other users, including Alice 2. As
the system progresses, each transaction creates new cook-
ies which are stored by different users. (Clearly, cookies
have to be expired or otherwise discarded; the algorithms
we present later in this section require constant storage
space.)

We will describe the trust inference algorithms in terms
of a directed graph

�
called the trust graph. The vertices

in
�

correspond exactly to the users in the system. There
is an edge directed from Alice to Bob if and only if Bob
holds a cookie from Alice. The value of the Alice > Bob
edge denotes how much Alice trusts Bob, and depends
on the set of Alice’s cookies Bob holds. Note that each
transaction in the system can either add a new directed
edge in the trust graph, or relabel the value of an existing
edge with its new trust value.

Assume that a current version of the trust graph
�

is
available to Alice, and suppose Alice wishes to compute
a trust value for Bob. If Alice and Bob have had prior
transactions, then Alice can just look up the value of
Alice > Bob edge in

�
. However, suppose Alice and Bob

have never had a prior transaction. Alice could infer a
trust value for Bob by following directed paths (ending at
Bob) on the trust graph.

4.1 Inferring Trust on the Trust Graph

Consider a directed path �5?@>A�CBD>E*�*�*F>A�HG on
�

.
Each successive pair of users have had direct transactions

2It is also possible for Alice to keep a record of this transaction in-
stead of Bob. In this alternate model of trust information storage, users
themselves store information about whom they trust, and can locally
compute the trust of the remote nodes they know of. This model, how-
ever, is susceptible to a denial of service attack that we describe later in
this section.

with each other, and the edge values are a measure of how
much �I� trusts �I��JFB . Given a such a path, �I? could in-
fer a number of plausible trust values for � G , including
the minimum value of any edge on the path or the product
of the trust values along the path; we call these inferred
trust values the strength of the � ? >K� G path. The infer-
ence problem is somewhat more difficult than computing
strengths of trust paths since there can be multiple paths
between two nodes, and these paths may share vertices or
edges. Centralized trust inference is not the focus of this
paper (or of our work), but it is important to use a robust
inference algorithm. We have experimented with different
inference schemes, and we describe two simple but robust
schemes. In the following description, we assume A (Al-
ice) has access to the trust graph, and wants to infer a trust
value for B (Bob):

(Alice)

E

C D

F

B

0.6

0.9

0.7

0.7

0.8

0.9

0.9

0.8 A
(Bob)

Figure 2: Example trust graph: the directed edges repre-
sent how much the source of edge trusts the sink.

� Strongest path: Given a set of paths between Alice
and Bob, Alice chooses the strongest path, and uses
the minimum trust value on the path as the trust value
for Bob. The strength of a path can be computed
as the minimum valued edge along the path or the
product of all edges along a path. Given the trust
graph, this trust metric can easily be computed using
depth-first search. In the example shown in Figure 2,
we use the min. function to compute the strength of
a path. In this example, the strongest path is �ILNMO� ,
and Alice infers a trust level of 0.8 for Bob.

� Weighted average of strongest disjoint paths: In-
stead of choosing only the strongest path, Alice
could choose to use contributions from all disjoint

6

paths. The set of disjoint paths is not unique, but the
set of strongest disjoint paths (modulo equi-strength
paths) is and can be computed using network flows
with flow restrictions on vertices. Given the set
of disjoint paths, Alice can compute a trust value
for Bob by computing the weighted average of the
strength of all of the strongest disjoint paths. The
weight assigned to the Alice > X >P*�*�*F> Bob path
is the value of the Alice > X edge (which represents
how much Alice directly trusts X). In the example
in Figure 2, �H	CQR� is the other disjoint path (with
strength 0.6), and the inferred trust value from Alice
to Bob is 0.72.

Both these algorithms are robust in the sense that no edge
value is used more than once, and trust values computed
are always upper-bounded by the minimum trust on a
path. Before any of these local algorithms can be used,
the trust graph has to be realized in a scalable manner,
and (edge) values have to be assigned to cookies. Note
that in order to infer trust for Bob, Alice does not need the
entire trust graph, but only needs the set of paths from her
to Bob. In the rest of this section, we describe schemes
to store the trust graph and to produce sets of paths be-
tween users in a completely decentralized manner over
an untrusted infrastructure. We begin with a discussion
of different techniques for assigning cookie values, and
describe our distributed path discovery protocol in Sec-
tion 4.3.

4.2 Assigning Values to Cookies
Ideally, after each transaction, it would be possible to as-
sign a real number in the [0,1] real-valued interval to the
quality of a transaction and assign this as the cookie value.
In some cases, transactions can be structured such that this
indeed is possible: e.g. assume that Alice transcodes and
serves a 400Kbps video stream to Bob at 128Kbps, and
according to a prior agreement, Bob signs over a cookie
of value 0.75 to Alice. The same transaction may have
resulted in a cookie of value 0.9 if Alice had been able to
serve the stream at 256Kbps. In many cases, however, it
is not clear how to assign real-valued quality metrics to
transactions. For example, in the previous example, Al-
ice could claim that she did serve the stream at 256Kbps,
while network congestion on Bob’s access link caused the

eventual degradation of the quality to 128Kbps. It is, in
fact, easy to construct cases when it is not easily feasible
to check the quality of service. In most cases, however,
we believe it is somewhat easier to assign a S 0,1 T value
to a transaction, i.e. either the transaction was success-
ful, or it was not. In the previous example, Bob and Alice
negotiate a threshold rate (say 64Kbps) at which point he
considers the entire transaction successful, and assigns a
1-valued cookie to Alice regardless of whether the data
was delivered at 64.5Kbps or 400Kbps. Further, for many
transactions, such as streaming media delivery, it is pos-
sible for one party to abort the transaction if the initial
service quality is not beyond the 0-value threshold.

In the rest of this paper, we assume that cookies are
assigned values on the [0,1] interval. However, it is possi-
ble to assign arbitrary labels to cookies, and to conduct
arbitrary policy-based searches as long as the requisite
state is kept at each user. For example, it is possible to
construct a system where cookies take one of four values
(e.g., “Excellent”, “Good”, “Fair”, and “Poor”), and users
search for “Excellent”-valued cookies that are less than
one week old. All of the NICE path enumeration and in-
ference schemes work correctly as long as cookies have
a comparable value, regardless of how users assign these
values, and what range these values take.

4.3 Distributed Trust Inference: Basic Al-
gorithm

In this section, we describe how users locate trust infor-
mation about other users in our system. This distributed
algorithm proceeds as follows: each user stores a set of
signed cookies that it receives as a result of previous trans-
actions. Suppose Alice wants to use some resources at
Bob’s node. There are two possibilities: either Alice al-
ready has cookies from Bob, or Alice and Bob have not
had any transactions yet. (There is yet a third possibil-
ity in which Alice has discarded cookies from Bob, but
we assume that this case is equivalent to Alice having no
cookies from Bob). In the case Alice already has cook-
ies from Bob, she presents these to Bob. Bob can verify
that these indeed are his cookies since he has signed them.
Given the cookies, Bob can now compute a trust value for
Alice.

The more interesting case is when Alice has no cookies

7

Bob

G

ED

C

Alice

Bob

G

ED

C

Alice

Bob

G

ED

C

AliceC: 0.9,D
D: 0.8,G
E: 0.8,Bob

D: 0.9,G

G: 0.8,Bob Bob: 0.9

Bob: 0.6

fwd
along
random
edges

Directed
Forward

C does not
 fwd (no
digest hits)

Bob

G

ED

C

Alice

0.6

0.8

0. initial state: each user has cookie
and a digest from each trusted user 1. forwarding along random cookie edges

2. after rand. fwds, queries are
 only fwded along digest hits
 andresults sent back to Alice

3. trust paths (strongest
 path shown in bold)

directed
fwd

results

Figure 3: Different stages in the operation of the search protocol. Edges in this figure represent message flow. It is
important to note that corresponding edges in the trust graph point in the opposite direction.

from Bob. In this case, Alice initiates a search for Bob’s
cookies at nodes from whom she holds cookies. Suppose
Alice has a cookie from Carol, and Carol has a cookie
from Bob. Carol gives Alice a copy of her cookie from
Bob, and Alice then presents two cookies to Bob: one
from Bob to Carol, and one from Carol to Alice. Thus,
in effect, Alice tells Bob, “You don’t know me, but you
trust Carol and she trusts me!” In general, Alice can con-
struct multiple such “cookie paths” by recursively search-
ing through her neighbors. In effect, Alice floods queries
for Bob’s cookies along the cookie edges that terminate at
each node, starting with her own node. After the search is
over, she can present Bob with an union of directed paths
which all start at Bob and end at Alice. Note that these
cookie paths correspond exactly to the union of directed
edges on the trust graph which we used for centralized
trust inference. Thus, given this set of cookies, Bob can
use any centralized scheme to infer a trust value for Alice.

This basic scheme has several desirable properties:

� If Alice wants to use resources at Bob, she has to
search for Bob’s cookies. This is in contrast with the
analogous scheme in which nodes themselves keep
records of their previous transactions. Under such a
setting, if Bob did not know Alice, he would have to
initiate a search for Alice through nodes he trusted.
A malicious user Eve could mount an easy denial-of-
service attack by continuously asking other nodes to
search for Eve’s credentials.

In our system, nodes forward queries on behalf of
other nodes only if they have assigned them a cookie,
and thus, implicitly trust them to a certain extent.

� Alice stores cookies which are statements of the
form “X trusts Alice”. Thus, Alice only devotes stor-
age to items that she can use explicitly for her own
benefit, and thus, there is a built-in incentive in the
system to store cookies. In fact, if Bob assigns a low-
value cookie for Alice, she can discard this cookie
since this is, in effect, a statement that says Bob does
not trust Alice. In general, users store the cookies
most beneficial to their own cause, and do not for-
ward messages on behalf of users they do not trust.

� The transaction record storage in the system is com-
pletely distributed, and if two nodes conduct a large
number of spurious transactions, only they may
choose to hold on to the resultant state. In con-
trast, in a centralized transaction store, these nodes
could easily mount a denial-of-service attack by
overwhelming the transaction store with spurious
transaction records.

4.4 Refinements
While the flooding-based scheme we have described is
guaranteed to find all paths between users and has other
desirable properties, it is not a complete solution. Flood-
ing queries is rather an inefficient usage of distributed re-

8

sources, and as pointed out before, malicious nodes can
erase all information of their misdeeds simply by throw-
ing away any low valued cookies they receive. We next
describe three refinements to the basic scheme.

4.4.1 Efficient Searching

The recursive flooding procedure described above does
find all cookies that exist for a given principal. However,
it is extremely inefficient, since it visits an exponentially
growing number of nodes at each level. Further, unless
the flooding is somehow curtailed, e.g. by using dupli-
cate suppression or by using a time-to-live field in queries,
some searches may circulate in the system forever.

It is obvious to consider using a peer-to-peer search
structure, such as Chord, to locate cookies. However, this
is not possible since in NICE we do not assume the ex-
istence of anything more sophisticated than plain unicast
forwarding. NICE is the base platform over which other
protocols, such as Chord, can be implemented. The NICE
protocols are much like routing protocols on the Internet:
they cannot assume the existence of routing tables etc.,
and must be robust against packet loss and in the case of
NICE, against malicious nodes. Thus, we must employ
other mechanisms to make the cookie searches more effi-
cient.

Instead of following all paths corresponding to all
cookies, we only forward a query to a number of nodes
(typically 5) from any one node. However, if we chose the
forwarding nodes at random, we would still have an ex-
ponential search, albeit with a smaller base! Instead, we
add the following extension to our base protocol: when-
ever node receives a cookie from some other node, it also
receives a digest of all other cookies at the remote node.
Since, in our implementations, the number of cookies at
each node is quite small (typically around 40 for a 2048
node system), this digest can be encoded using around
less than 1000 bits in a Bloom filter3 [7]. Thus, the stor-
age space required for the digests are trivial (around 128
bytes), but they allow us to direct the search for spe-
cific cookies with very high precision. The idea of us-
ing digests for searches has been used previously, e.g. in
lookaround caching [6] and summary caches [8]. It is, in
fact, a base case of probabilistic search using attenuated

3Such a filter, with only eight hash functions, would have a false
positive rate of UWV-XZY\[#XZ]_^a` .

Bloom filters [14]; in our experiments, we found that we
did not need to use full attenuated Bloom filters — only
one level of filters was sufficient. Lastly, each node also
keeps a digest of recently executed searches and uses this
digest to suppress duplicate queries.

In our implementation, when choosing nodes to for-
ward to, we always choose nodes whose digests indicate
they have the cookie for which we are searching. How-
ever, it is possible that there are no hits in any digest at
a node; in this case, we once again choose nodes to for-
ward to uniformly at random. However, we only forward
to randomly chosen nodes if the query is within a pre-
determined number of hops away from the query source.
Thus, in the final version of the search, a query spreads
from the source, possibly choosing nodes at random, but
the flooding is quickly stopped unless there is a hit in a
next-hop digest.

Example Before we describe other extensions to the
base protocol, we illustrate the digest-based search pro-
cedure with an example (corresponding to Figure 3). Al-
ice wants to use resources Bob has, but does not have
cookie from him. She initiates a search for a cookie path
to Bob. In Figure 3-0 we show the initial state of cook-
ies and digests at each user, e.g. Alice has a cookie of
value 0.9 from C, and her digest from C shows that C has
a cookie from D. For this example, we assume the search
out-degree is 3, and the random flooding hop limit is 1.
Alice first sends a query not only to nodes with digest hit
(e.g. L), but also to random nodes (e.g. 	 and Q) as il-
lustrated in Figure 3-1. After receiving the query, L finds
Bob’s cookie and returns the query to Alice. When 	 re-
ceives the query, he finds that none of his neighbors have
a digest hit for Bob, so does not forward the query fur-
ther. On the other hand, Q does forward the query to b
(Figure 3-2) who has a digest hit for Bob, and b returns
the query to Alice with the cookie she received from Bob.
Figure 3.3 shows two paths Alice finds, with the strongest
path in bold.

4.4.2 Negative Cookies

A major flaw with the original scheme is that low-valued
transactions are potentially not recorded in the system.
Consider the following scenario: Eve uses a set of Alice’s
resources, but does not provide the negotiated resources

9

she promised. In our original scheme, Alice would sign
over a low valued cookie to Eve. Eve would have no in-
centive to keep this cookie and would promptly discard it,
thus erasing any record of her misdeed.

Instead, Alice creates this cookie and stores it herself.
It is in Alice’s interest to hold on to this cookie; at the very
least, she will not trust Eve again as long as she has this
cookie. However, these “negative cookies” can also be
used by users who trust Alice. Suppose Eve next wants
to interact with Bob. Before Bob accepts a transaction
with Eve, he can initiate a search for Eve’s negative cook-
ies. This search proceeds as follows: it follows high trust
edges out of Bob and terminates when it reaches a neg-
ative cookie for Eve. In effect, the search returns a list
of people whom Bob trusts who have had negative trans-
actions with Eve in the past. If Bob discovers a sufficient
set of negative cookies for Eve, he can choose to disregard
Eve’s credentials, and not go through with her proposed
transaction. It is important to note that Bob only initiates
a negative cookie search when Eve produces a sufficient
credible set of credentials; otherwise, Bob is subject to a
denial of service attack where he continuously searches
for bad cookies.

In implementation, we keep a set of digests for neg-
ative cookies as well, but perform Bloom filter directed
searches for these negative cookies only on neighboring
nodes.

4.4.3 Preference Lists

In order to discover potentially “good” nodes efficiently,
each user keeps a preference list. For each user, the nodes
in her preference list consists of a set of other users that
she has not conducted a transaction with yet. However,
these nodes are preferred since the owner of the prefer-
ence list believes they may be potentially high trust peers.
Nodes are included in a preference list as follows: sup-
pose Alice conducts a successful cookie search for Bob,
and let c be the cookie path that is discovered between
Alice and Bob. Alice adds all users in c who have very
high trust value (1.0 in our implementation) to her prefer-
ence list. Obviously, only users for whom Alice does not
have transaction records are added to her preference list.

In summary, the NICE distributed trust valuation algo-
rithm works as follows:

Nodes that request resources present their cre-
dentials to the resource owner. Each credential
is a signed set of certificates which originate at
the resource owner. Depending on the set of
credentials, the resource owner may choose to
conduct a reference search. The trust ultimately
computed is a function of both the credentials,
and of the references.

There are a number of other pragmatic issues pertain-
ing to cookies that we address in NICE. These include
cookie revocations, cookie time limits, etc. Due to space
constraints, we do not describe these further in this paper.

5 Results
We will present simulations from different sets of experi-
ments. In the first set (this section), we analyze the scal-
ability and robustness of our inference scheme. In these
experiments, our goal is to understand how well the cook-
ies work, without regard to how a real system might use
cookies. For example, in these experiments, “good” nodes
continually interact with unknown nodes, even when they
already know of a large set of other good nodes. While
this is a good exercise to understand how cookies propa-
gate and can be used to discover new nodes in the system,
in a real system, we expect good nodes to find a set of
other nodes they trust and interact with these trusted nodes
much more heavily. In the next section 6, we present ex-
periments in which cookies are used to establish trust, but
then nodes follow a more conventional pattern, and try to
interact with their trusted peers with higher frequency.

Experiments with the search algorithm In the rest
of this section, we present results from our simulations
of the trust inference algorithm proposed in Section 4.
In all our results, we use the minimum cookie value as
path strength, and use the highest valued path strength
as the inferred trust between users. We have experi-
mented with other functions as well, and the results from
this simple inference function are representative. Each
search carries with it the minimum acceptable strength,
and searches stop if no cookies of the minimum accept-
able value are present at the current node. Using the
minimum cookie value as the strength measure (instead

10

of product of cookie values) consumes up to an order of
magnitude more resources in the network and represents
a worst-case scenario for our schemes.

We divide our results into two parts. First, we analyze
the cost of running the path search algorithm in terms of
storage and run time overhead. The storage cost is en-
tirely due to the caching of various positive and negative
cookies; the run-time overhead comes from the number of
nodes that are visited by each query, and the computation
cost for forwarding a query. The computation cost of for-
warding each query is negligible: we have to generate a
few random numbers, compute eight MD5 hash functions,
and check eight bits in a 1000-bit Bloom filter. In these
experiments, the digests were always fresh. We did not
simulate updating of the digest, but we believe a periodic
soft-state refreshing algorithm will work adequately. The
main overhead of the search algorithm comes in terms of
the number of messages and number of nodes visited on
the network. The bandwidth consumed by the searches is
proportional to the number of nodes visited, and we report
this metric in the results that follow. In the second part of
our results (Section 5.2), we show that our trust inference
schemes do indeed form robust cooperative groups, even
in large systems with a large malicious cliques and with
small fractions of good nodes. We begin with an analysis
of the scalability and overhead of our path searches.

5.1 Scalability

In this first set of results, we simulate a stable system con-
sisting of only good users. Thus, we assume that all users
implement the entire search protocol correctly. Before the
simulations begin, we fill the (good) cookie cache of each
user by adding cookies from other users chosen uniformly
at random. Each query starts at a node d chosen uniformly
at random and specifies a search for cookies of another
node = chosen uniformly at random. In the next section,
we will show how long the system takes to converge start-
ing from no cookies in the system, and how robust groups
are formed when there are malicious users in the system.

In our first experiment, we fix the number of good
cookies at each user to 40. The cookie values are expo-
nentially distributed between [0,1], with a mean of 0.74.

4It is not clear how cookie values should be distributed. We have
also experimented with uniformly distributed cookie values with similar

0

0.2

0.4

0.6

0.8

1

0 1 2 3
Number of random hops

Success Ratio

Fraction of Nodes Visited

Number of nodes=512
Number of nodes=1024
Number of nodes=1512
Number of nodes=2048

Figure 4: Success ratio and no. of nodes visited (40 cook-
ies at each node).

Next we conducted 500 different searches for cookies of
value at least 0.85, where the search out-degree at each
node is set to 5. In Figure 4, we plot the average success
ratio and the average fraction of nodes in the system vis-
ited by the searches. The e -axis in the plot corresponds
to the number of hops after which random forwards were
not allowed, and the search proceeded only if there was
a hit in a Bloom filter. There are four curves in the fig-
ure, each corresponding to a different system size, rang-
ing from 512 users to 2048 users. From the figure, it is
clear that only one hop of random searching is enough to
satisfy the vast majority of queries, even with large system
sizes. It is interesting to note that even when the system
size increases, the average number of nodes visited remain
relatively constant. For example, the average number of
nodes visited with 2 hop random searches range from 42.4
(for a 512 node system) to 36.2 (for the 2048 node sys-
tem). Thus, the search scheme scales extremely well with
increasing system size. As we show next, the success ra-
tio and the number of nodes visited depend almost entirely
on the number of cookies held at each node, and the out-
degree of each search.

In Table 1, we fix the number of nodes to 2048 and
show the effect of changing the search out-degree. Each
row shows searches corresponding to a different mini-

results.

11

K=3 K = 5 K = 7 K = 20
thrsh. # N # P # N # P # N # P # N # P

.8 14.5 4.2 37.5 10.7 71.1 20 499.1 132.5
.85 14.6 3.6 36.2 8.7 68.7 16.5 380.6 88.3
.9 14.6 2.9 35.1 6.8 66.0 12.8 222.9 41.5

.95 15.7 2.0 33.2 4.2 55.9 7 89.2 11.2

Table 1: Effect of changing out-degree (K)

C=20 C=40 C=102
thresh. # N # P # N # P # N # P

0.8 34.4 2.9 37.5 10.7 32.8 23.6
0.85 34.7 2.4 36.2 8.7 37.3 25.4
0.9 34.7 1.9 35.1 6.8 40.8 25.4

0.95 28.6 1.4 33.2 4.2 41.9 21.5

Table 2: Effect of changing number of cookies stored (C)

mum threshold ranging from 0.8 to 0.95. Each node holds
40 cookies, the average cookie value is still fixed at 0.7,
and the number of random hops is set to 2. In the table,fhg

is the average number of nodes visited by a query
and

f c denotes the number of paths found on average.
As expected, the number of nodes visited increases as the
search threshold decreases, and also as the out-degree in-
creases. In all cases, as the search threshold increases,
the number of distinct paths found decreases. In Table 2,
we show the effects of changing the number of cookies
at each node. These experiments are conducted using the
same parameters, except the out-degree is fixed at 5. With
small numbers of cookies and high thresholds, searches
do result in no paths being found. In Table 2, the 0.9
and 0.95 threshold searches had 10% and 42% unsucces-
ful queries respectively; all other searches returned at least
one acceptable path. In our simulator, when a search re-
turns no acceptable paths, we retry the search once more
with a different random seed. The numbers for nodes vis-
ited in the results above include visits during the retries,
and account for why the number of nodes visited does not
decrease when the search threshold is increased.

In our system, there is a clear trade off between how
much state individual nodes store (number of cookies) and
the overhead of each search (fraction of nodes visited).
Note that unlike in systems such as [3], users in our sys-

tem do not gain by storing fewer cookies since this effec-
tively decreases their own expected trust at other nodes.
There is a built-in incentive for users to store more cook-
ies, which, in turn, increases search efficiency. Users may
choose to store a large number of cookies but not forward
searches on behalf of others. We comment on this issue
when we discuss different models of malicious behavior
in the next section. Lastly, we note that it is possible to
further increase the efficiency of the searches by adjusting
the two search parameters —out-degree and number of
random hops— based on the threshold and results found.
Such a scheme will minimize the number of nodes visited
for “easy” searches (low search threshold), and find bet-
ter results for searches with high thresholds. We have not
implemented this extension yet.

0

0.2

0.4

0.6

0.8

1

0 0.03 0.06 0.09 0.12 0.15
Absolute error

search threshold=0.85
search threshold=0.90
search threshold=0.95

Figure 5: CDF of errors in results (40 cookies at each
node, out-degree set to 5) with varying thresholds.

The previous two results have shown that the number
of cookies and search out-degree provides an effective

12

mechanism to control the overhead of individual searches.
However, in each case, we have only shown that each
search returns a set of results — it is possible that the
searches find paths that are above the search threshold, but
are not the best possible paths. For example, suppose that
a search for threshold set to .85 returns a path with mini-
mum cookie value .90. This is an acceptable result; how-
ever, there may be a better path that the search missed (e.g.
with minimum cookie value .95). In this case, the best
path returned had an absolute error of .05. To quantify the
quality of the found paths, we plot the absolute error in
the paths returned by our searches as compared to an op-
timal search (full flooding). In Figure 5, we plot the CDF
of the absolute error for the best path that we find ver-
sus the best possible cookie path as the search threshold
is changed. The higher threshold searches have a smaller
possible absolute margin of error, and thus produce the
best paths. However, very high threshold searches are also
more likely to produce no results at all.

5.2 Robustness
We analyze two components of the system: how long it
takes for the system to stabilize, and how well our sys-
tem holds up against malicious users. Modeling mali-
cious users is an important open research question: one
for which we do not provide any particular insights in this
paper. Instead, we use a relatively simplistic user model
with three different types of users:

� Good users: Good users always implement the en-
tire protocol correctly. If a good user interacts with
another good user, then the cookie value assigned is
always 1.0. Good users do not know the identity of
any other good (or otherwise) users at the beginning
of the simulation.

� Regular users: Regular users always implement the
entire protocol correctly; however, when a regular
user interacts with another user, transactions result
in cookie value that range exponentially between 0.0
and 1.0, with a mean of 0.7. Regular users also do
not know of any other users when the simulations
begin.

� Malicious users: All malicious users form a coop-
erating clique before the simulation begins. Fur-

ther, each malicious user always reports implicit trust
(cookie value 1.0) for every other malicious user.
Once a malicious user interacts with a non-malicious
user, there is a 20% probability that the transaction is
completed faithfully, else the malicious user cheats
the other party. The intuition behind this model is
that nodes that are consistently malicious, i.e. that
fail transactions 100% of the time, are easily detected
and defeated. With malicious nodes that periodically
complete transactions, we are considering a slightly
more sophisticated attack model.

At each time step in the simulation, a user (Alice), is
chosen uniformly at random. Alice selects another user
(Bob) from her preference list to initiate a transaction
with. If Alice’s preference list is empty, she chooses the
user Bob uniformly at random. This transaction com-
mences if Bob can find at least one path of strength at least
0.85 between himself and Alice and if Bob cannot locate
a negative cookie for Alice. If the transaction between
Alice and Bob cannot proceed, Alice tries her transaction
with a different user. After two unsuccessful tries, Alice
chooses a random user Carol and the simulator allows a
transaction without checking Alice’s credentials. (Recall
that in these first set of experiments, good users only want
to form a large good user clique, and do not initiate trans-
actions with other good users they know of with higher
probability).

Cookies are flushed from a user’s cookie cache using
the following rule: cookies of value 1.0 are not flushed;
other cookies are discarded with uniform probability.

In the first result, we only consider good and regular
users (there were 488 regular users and 24 good users in
this experiment). In Figure 6, we plot the fraction of trans-
actions between good users and the fraction of paths be-
tween good users. The e -axis shows the total number of
transactions in which at least one party was a good node.
(We choose this measure as the e -axis because in a real
system, malicious nodes can fabricate any number of spu-
rious transactions, and the only transactions that matter
are the ones involving good nodes). The effect of the pref-
erence lists is clear from the plot: even though there is a
less than 5% chance of a good node interacting with an-
other good node, there is a path between any two good
node within 1500 transactions. By 2500 total transactions,
the majority of which were between good nodes and reg-

13

ular nodes, all good nodes have cookies from all other
good nodes, and the robust cooperative group has formed.
This good clique will not be broken unless a good node
turns bad, since 1.0 valued cookies are not flushed from
the system.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
Number of transactions involving good users

cookies between good nodes
paths between good nodes

Figure 6: System initialization with good and regular
users.

In the next set of results, we introduce bad (malicious)
nodes. Figure 7 illustrates the fraction of failed transac-
tions involving good nodes normalized by the total num-
ber of transactions involving good nodes. The curves in
the figure show failed transactions involving regular nodes
and bad nodes for varying numbers of bad nodes in the
system, averaged over 1000 transaction intervals. For
these results, we define failed transactions as those that
produce a cookie of value less than 0.2. In the begin-
ning of the simulation, the number of failed transactions
are proportional to the number of bad users in the sys-
tem. However, for all bad user populations, the good users
identify all bad users and the number of good-bad trans-
actions approaches zero. The effect of the preference lists
is again apparent in this experiment: recall that all bad
nodes always report 1.0 trust for other bad nodes. Thus,
bad nodes rapidly fill the preference lists of good nodes,
but are quickly identified as malicious.

In our experiments, good users do not preferentially in-
teract with other good users (as would be expected in a
real system). Instead, if their preference lists are empty,
they pick a random user to interact with. Recall that there

0

0.1

0.2

0.3

0.4

2000 4000 6000 8000 10000 12000
Number of transactions involving good users

bad users=48
bad users=128
bad users=256

Figure 7: Failed transactions for good users (40 cookies
at each node, 512 nodes total).

are an order of magnitude more regular users in the sys-
tem than good users. Thus, good users continue to inter-
act with regular users and approximately 5% of good user
transactions result in failures (not shown in Figure). In a
deployed system, the fraction of failed transactions would
be much smaller, since the vast majority of transactions
initiated by good users would involve other good users.

It is important to note that even with many malicious
users, a robust cooperative group emerges in our system.
This property is true, regardless of the number of posi-
tive or negative cookies good users keep, as long as good
users can choose random other users to conduct transac-
tions with. Otherwise, bad cliques can stop good users
from ever communicating with another good user. How-
ever, as long as bad users cannot stop whom good users
talk to, a cooperative group emerges. The good users
eventually find and keep state from other good users, and
this state cannot be displaced by malicious users. Ob-
viously, the number of transactions required for good
cliques to form depends on the number of malicious nodes
in the system, but good users rapidly find other good users
by using their preference lists. It is possible for a mali-
cious node to infiltrate good cliques for prolonged peri-
ods, but as these bad nodes conduct transactions that fail,
the negative cookies will cause these users to be rapidly
discarded from the good clique.

14

Other user models We have varied other parameters in
our experiments, and present a summary of our findings.
We experimented with a different malicious node model
in which the bad nodes do not forward queries from non-
malicious nodes. The results for this model were not ap-
preciably different from the model we have used in our re-
sults. Also, it is not immediately clear how to choose the
probability with which transactions with malicious users
fail. If this probability is high, then malicious users can
be identified relatively easily (usually after one transac-
tion). If this probability is set too low, then in effect,
the user is not malicious since it acts much like a reg-
ular user. In our experiments, as the bad nodes reduce
the transaction failure probability, the number of trans-
actions required to identify all bad nodes increases, but
the total number of bad transactions remain similar. We
have also experimented with models in which bad users
actively publish negative cookies for good users. As these
users are identified as bad by the good users, these nega-
tive cookies are rendered useless. Lastly, we note that our
good user model is probably too simplistic. Even good
users may be involved in failed transactions, possibly due
to no fault of their own. However, we believe our results
will still hold as long as there is a definite and marked
difference between the behavior of good and bad users.

6 Simulations on a Realistic System
As noted before, we have implemented the cookies pro-
tocol in a different simulator, which admits much larger
user populations (ij k:W(<l�% users). The new simulator also
has a more faithful resource discovery model, attempts
to model work loads, and allows multiple resources to
be traded during a single transaction. We assume that
there is a single bootstrap node that keeps track of the
last 100 nodes to join the system. Each node periodically
queries the bootstrap node to obtain a set of neighbors (if
a node already has sufficient neighbors, it does not query
the bootstrap node). The bootstrap node is not part of the
trust inference system, and is used only to start the simu-
lation.

Each node in the system starts with a fixed number of
“jobs” that they need completed, and a fixed number of
jobs that they can serve for others. (Of course, malicious
nodes need not complete any job they accept). In the sim-

ulator, pairs of nodes conduct a “transaction”. In these
simulations, a transaction encompasses a set of jobs.

Node model Each good node maintains the following
state:

� For each of its jobs, it maintains a status indicating
whether that job is complete or not. If completed,
the node remembers which node completed the job.
Finally, the node also maintains state about jobs that
have been issued but not completed.

� A fixed set of good cookies and a fixed set of bad
cookies. These are used exactly as described previ-
ously. (Recall that if a node m has a good cookie
from node � , then it also has a digest of the set of
bad cookies that � has recorded).

� A preference list, which is a set of nodes to whom
the next set of jobs will be issued.

In the simulator, bad nodes accept jobs but do not com-
plete them with a fixed probability. We assume that there
is a post-verification protocol that allows good nodes to
realize that their jobs were not completed properly.

6.1 System Behavior
The simulations proceed as follows: the nodes initially
populate their preference list using information from the
bootstrap server. If idle, each node issues a maximum
number of transaction requests (nominally set at 10 for
each simulation) to nodes in their preference list. Each
node maintains its preference list sorted in order of frac-
tion of successful transactions with the nodes in the list
(ties are broken using the actual number of good transac-
tions), and the transactions are issued in this sorted order.

Assume that m requests a transaction to be completed
at node � . Each transaction requests a specific number of
jobs to be completed. The number of jobs issued from
node m to � increases exponentially with the number of
successful transactions. (We have also experimented with
a linear increase scheme, which we present in the results).
With each transaction request, m tries to present a valid
cookie path to � .

Node � accepts the request from m as follows: if m can-
not present a valid cookie path, � searches for a bad cookie

15

for m . If a bad cookie is found, then � rejects the trans-
action request5. If a bad cookie is not found, then � will
accept the request with a fixed probability (nominally set
to 0.5), or ask m to retry its request. If � accepts the re-
quest, then it will, initially do one job for m . (Recall that
the number of jobs will increase for subsequent transac-
tions).

After � completes a set of jobs for m , it does not ac-
cept any other jobs from m until m performs an equivalent
set of jobs for � . In general, the set of jobs accepted is
constrained by the number of available resources at each
node, the number of actual outstanding jobs each node
has, etc.

After a transaction completes, m issues a “verification”
message. This is how good nodes realize that malicious
nodes have not completed their tasks properly. Once m
finds that it had issued jobs to a bad node (say $), it records
a bad cookie for $, and marks all the previous jobs done
by $ as failed. Note that allows us to model a relatively
broad notion of a job. For example, jobs could be data
blocks stored at other nodes, or jobs could be computa-
tions conducted at other nodes.

All simulation messages have latency between 10-
11ms, distributed uniformly at random. Also, nodes issue
the verification message a random amount of time after
the transaction has occurred.

Preference List updates The efficiency of this system
(like real systems) depends on which nodes are contacted
in what order when node m wants to place jobs. In the
simulator, this is reflected in the way the preference lists
are maintained. When node m issues a bad cookie for any
node $, m takes $ out of its preference list. If m issues � a
good cookie, then � gives m a copy of its preference list; m
integrates this information into its own preference list as
follows:

� All new nodes in � ’s preference list are assigned the
same trust (and transaction success parameters) as � .

� These nodes replace existing nodes with lower trust
value in m ’s preference list.

5In the simulator, bad cookies do not expire; in a real system, we
would expect cookies to have bounded lifetimes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8

Fa
ile

d
Jo

bs
 p

er
 0

.1
s

In
te

rv
al

Simulator Time

0 Malicious Nodes
1000 Malicious Nodes
2000 Malicious Nodes

10000 Malicious Nodes
20000 Malicious Nodes

Figure 8: Failed jobs over time; 80 cookies

6.2 Simulation Results

Given our system description, there are two key metrics
that we chose to measure in the simulation. Specifically,
we consider how quickly good nodes place all of their
jobs, i.e. completion time, and how many jobs are lost
to bad nodes in the process, i.e. loss rate. Then we
perform experiments where we vary the number of ma-
licious nodes relative to “good” nodes, and we vary the
amount of state each node is allowed to hold. In all ex-
periments, transactions only involving malicious users are
disregarded.

Number of Malicious Nodes In this experiment, we fix
the number of good users (as defined in Section 5) at 1000
nodes. Each node carries state for 80 cookies, and joins
the system distributed uniformly at random during the first
second of the simulation. Each node has 100 jobs to place,
and capacity to serve 100 jobs. A node stays in the system
until it can place all of its jobs successfully; nodes time
out after 30 seconds of inactivity. In all experiments, less
than 1% of nodes time out. Malicious users fail jobs with
80% probability.

Figure 8 illustrates the number of failed jobs over time,
as measured in 0.1 second intervals. As expected, the
number of failed jobs initially increases as the ratio of
malicious to good nodes increases. However, as time con-
tinues and good nodes discover each other, the number of

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

C
D

F
of

 J
ob

 C
om

pl
et

io
n

Ti
m

es

Time

0 Malicious Nodes
1000 Malicious Nodes
2000 Malicious Nodes

10000 Malicious Nodes
20000 Malicious Nodes

Figure 9: CDF of job completion times; 80 cookies

failed jobs reduces to zero. Specifically, in the case with
20,000 malicious nodes, i.e. a 20-to-1 ratio of malicious
to good nodes, good nodes are still able to make progress
as shown in Figure 10. By simulation time 3 seconds,
over 62% of the total jobs in the system have been placed
(Figure 9).

Note that in Figure 10, the number of successful jobs
also reduces over time (unlike in Figure 7 from Section
5). This is because, in these simulations, good nodes leave
the system after all of their jobs are satisfied. Since new
nodes do not join, after a few simulation seconds, almost
all the good jobs in the system are done (unlike in the pre-
vious case, where there was an unbounded number of jobs
in the system). We believe that a system that incorporated
continuous node arrivals and departures, as would be ex-
pected in a practical system, could result in better average
performance.

Amount of State Per Node Even in this realistic system
(in which good nodes visit each other preferentially), the
number of cookies a node keeps is important. We have ex-
perimented with varying the amount of cookie state each
node keeps. In this experiment, 1000 good nodes join
uniformly at random within the first second of simulation
time. The number of malicious nodes is fixed at 2000, and
the amount of state varies. As above, each node has 100
jobs to place, and capacity for 100 jobs. Malicious users
fail jobs with 80% probability.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1 2 3 4 5

Jo
bs

 p
er

 0
.1

s
In

te
rv

al

Time

Failed: 0 Malicious Nodes
Successes: 0 Malicious Nodes
Failed: 20000 Malicious Nodes

Successes: 20000 Malicious Nodes

Figure 10: Succeed vs. Failed Jobs; 80 cookies

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F
of

 F
ai

le
d

Jo
bs

Simuation Time

1 Cookie
10 Cookies

100 Cookies
200 Cookies

Figure 11: Cumulative distribution of failed jobs; 2000
malicious nodes

17

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10

Fa
ile

d
Jo

bs
 p

er
 0

.1
s

In
te

rv
al

Simulator Time

1 Cookie
10 Cookies

100 Cookies
200 Cookies

Figure 12: Failed jobs over time; 2000 malicious nodes

Figure 11 depicts the cumulative distribution of failed
job placements over time. As expected, the number of
failed jobs is initially high, but reduces as time progresses
and as cookies are traded throughout the system. Figure
12 represents a count per 0.1 second interval of failed job
placements over time. Note that as the number of cook-
ies increase, the completion times, and the number of
failed jobs decrease. Observe the benefit from doubling
the number of cookies from 100 to 200 is minimal, and
thus a node can achieve full benefits from the cookie pro-
tocol from storing merely 100 cookies. Figure 13 shows
the cumulative distribution of completed jobs. Note that
nodes place over 90% of their jobs in the first 7 seconds
in all experiments.

7 Summary and Conclusions

The main contribution of this paper is a low overhead trust
information storage and search algorithm which is used in
the NICE system to implement a range of trust inference
algorithms. Our scheme is unique in that the search and
inference performance for the whole group increases as
users store more information that is explicitly beneficial
for their own cause. We have presented a scalability study
of our algorithms, and have shown that our technique is
robust against a variety of attacks by malicious users. We
believe techniques presented in this paper are a crucial

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

C
D

F
of

 C
om

pl
et

ed
 J

ob
s

Simulator Time

1 Cookie
10 Cookies

100 Cookies
200 Cookies

Figure 13: CDF of completed jobs; 2000 malicious nodes

piece for building large peer-to-peer systems for deploy-
ment over the Internet.

References
[1] Gnutella home page. http://gnutella.wego.com.

[2] Alfarez Abdul-Rahman and Stephen Hailes. Supporting
Trust in Virtual Communities. In In Proceedings Hawaii
International Conference on System Sciences 33, 2000.

[3] Karl Aberer and Zoran Despotovic. Managing trust in
a Peer-2-Peer information system. In Henrique Paques,
Ling Liu, and David Grossman, editors, Proceedings
of the Tenth International Conference on Information
and Knowledge Management (CIKM-01), pages 310–317,
New York, November 5–10 2001. ACM Press.

[4] E. Adar and B.A. Huberman. Free riding on gnutella.
Technical report, Xerox PARC, August 2000.

[5] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. In Proc. ACM Sigcomm,
August 2002.

[6] Samrat Bhattacharjee, Ken Calvert, and Ellen Zegura.
Self-organizing wide-area network caches. In IEEE In-
focom’98, 1998.

[7] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the Association
for Computing Machinery, 13(7):422–426, 1970.

[8] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder.
Summary cache: A scalable wide-area web cache sharing

18

protocol. Proc. SIGCOMM’98, 28(4):254–265, September
1998.

[9] Sepandar D. Kamvar, Mario T. Schlosser, and Hector
Garcia-Molina. The EigenTrust Algorithm for Reputation
Management in P2P Networks. WWW, 2003.

[10] Landon P. Cox and Brian D. Noble. Samsara: Honor
Among Thieves in Peer-to-Peer storage. pages 120–132.
Symposium on Operating Systems Principals, October
2003.

[11] S. Marsh. Formalising Trust as a Computational Concept.
PhD thesis, University of Sterling, 1994.

[12] M. Naor and B. Pinkas. Efficient Oblivious Transfer Pro-
tocols. In Proceedings of SODA, January 2001.

[13] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A scalable content addressable
network. In In Proceedings of the ACM SIGCOMM 2001
Technical Conference, 2001.

[14] Sean C. Rhea and John Kubiatowicz. Probabilistic location
and routing. In Proceedings of INFOCOM 2002, 2002.

[15] Antony Rowstran and Peter Druschel. Pastry: Scalable,
distributed object location and routing for large-scale peer-
to-peer systems. In Proceedings of the 18th IFIP/ACM In-
ternational Conference on Distributed Systems Platforms
(Middleware 2001), 2001.

[16] Narendar Shankar, Christopher Komareddy, and Bobby
Bhattacharjee. Finding Close Friends over the Internet. In
Proceedings of Internation Conference on Network Proto-
cols, November 2001.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In
Proceedings of the ACM SIGCOMM ’01 Conference, San
Diego, California, August 2001.

[18] Bin Yu and Munindar P. Singh. A social mechanism of
reputation management in electronic communities. In Pro-
ceedings of Fourth International Workshop on Cooperative
Information Agents, 2000.

[19] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Ku-
biatowicz. Bayeux: An architecture for scalable and fault-
tolerant wide-area dat a dissemination. In Eleventh In-
ternational Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 2001),
2001.

[20] P. Zimmermann. Pretty good privacy user’s guide. Dis-
tributed with PGP software, June 1993.

19

