
1

Trust-Preserving Set Operations
Ruggero Morselli Bobby Bhattacharjee Jonathan Katz Pete Keleher

Department of Computer Science, University of Maryland, College Park, Maryland, USA
{ruggero, bobby, jkatz, keleher}@cs.umd.edu

Abstract— We describe a method of performing trust-
preserving set operations by untrusted parties. Our moti-
vation for this is the problem of securely reusing content-
based search results in peer-to-peer networks. We model
search results and indexes as data sets. Such sets have value
for answering a new query only if they are trusted. In the
absence of any system-wide security mechanism, a data set
is trusted by a node a only if it was generated by some node
trusted by a.

Our main contributions are a formal definition of the
problem, and an efficient scheme that solves this problem
by allowing untrusted peers to perform set operations on
trusted data sets, and to produce unforgeable proofs of cor-
rectness. This is accomplished by requiring trusted nodes
to sign appropriately-defined digests of generated sets; each
such digest consists of an RSA accumulator and a Bloom
filter. The scheme is general, and can be applied to other
applications as well. We give an analysis that demonstrates
the low overhead of the scheme and we include experimen-
tal data which confirm the analysis.

Index Terms— Security, peer-to-peer, trusted computa-
tion, simulations, system design.

I. INTRODUCTION

This paper describes a method of performing trust-
preserving computations on sets. The party performing
the computation does not need to be trusted, but the result
is a set which is trusted to the same extent as the original
input. These properties allow the scheme to be used in
distributed environments with many untrusted hosts. Our
motivation for addressing this issue is the problem of se-
curely reusing content-based search results in peer-to-peer
(P2P) networks. However, the result is more general than
result caching, and can potentially be used in other areas.

For purposes of this work, we define a P2P network as
a large, distributed, and decentralized structure that allows
autonomous peers to cooperatively provide access to a po-
tentially large set of data. A number of approaches to pro-
viding lookup services on such data have been proposed.
Distributed hash tables (DHTs) (Chord [1], CAN [2],
Tapestry [3], Pastry [4] etc.), for example, use crypto-
graphic hashes to provide near-random association of ob-
jects to sites that “publish” the object to the rest of the

system. Objects are “looked up” by using the hash of
the object name to route to the corresponding peer, usu-
ally in O(log n) or so overlay hops. DHTs provide excel-
lent balance of routing load because paths to a given node
vary widely based on the path’s origin, and because re-
lated objects (even with only slightly different names) are
randomly distributed through the system.

This random distribution is the strength of the ap-
proach, but it also destroys object locality. A set of ob-
jects chosen by common attributes or characteristics must
necessarily include members mapped to peers through-
out the system. This distribution, together with the sheer
scale and diversity of the source data, makes it impracti-
cal to consider approaches to providing content searches
that (even periodically) flood the network in order to sat-
isfy queries. Similarly, flooding the network should not
be considered a practical primitive when creating indexes
for satisfying queries.

Instead, searches must rely on incrementally created
and maintained indexes. Each “index” (or attribute in-
dex) records nodes that have a particular attribute, or at-
tribute value. Given the nature of P2P applications, the
indexes should be as distributed and as decentralized as
the underlying system. However, a straightforward use of
distributed indexes is still potentially quite expensive. A
simple conjunction of two indexes will usually requires
the contents of at least one of the indexes to be sent across
the network. These indexes may be large, as their size po-
tentially grows linearly with the number of system peers.

The costs of satisfying queries can be reduced by
caching query results in the system. Locality in query
streams and object attributes can then be exploited by us-
ing prior results to help satisfy subsequent queries. The
key feature is that only conjunctions of two or more at-
tributes are stored. Such results are typically much smaller
than the original attribute indexes, and can reduce the cost
of satisfying multi-item queries by several orders of mag-
nitude. Using such views efficiently is non-trivial, but has
been addressed in other work [5].

Our motivation is the problem of making such cached
results secure. Our main contribution is to show an effi-
cient scheme that allows an untrusted peer to perform set

2

S1, D1, σ1 S2, D2, σ2

S1∩ S2=? I, D1, D2, σ1, σ2, ...

s1

c

d

untrusted

trusted

S1a

b

c

d

e

S1a

b

c

d

e

a

d

g

h

i

S2 D1

D2

σ1

σ2

s2

trusted

a

d

g

h

i

S2

Fig. 1: The problem: an untrusted node computes inter-
section of two sets obtained from two trusted nodes. D1

and D2 are the digests of S1 and S2 respectively. σ1 (resp.
σ2) is s1’s (resp. s2’s) signature on D1 (resp. D2). I is
the intersection of S1 and S2.
figure

operations on trusted data sets, and to supply an unforge-
able proof to the client of the correctness of the result.
The approach we take is to reduce the trustworthiness of
the derived value (the cached result) to a function of the
trustworthiness of the sources (the original attribute val-
ues). The latter are more easily secured, as they are long-
lived and fairly heavyweight. Cached results, however,
are light-weight, ephemeral, and hence may be stored at
arbitrary (possibly untrusted) nodes.

We briefly introduce an example of the problem we are
trying to solve, along with some terminology. We model
each index or cached query as a set of elements. The op-
erations we wish to perform are standard set operations,
such as union, difference, and intersection.

Two trusted source nodes, s1 and s2, each store an in-
dex in the form of a set S1 and S2 (stored by s1 and s2,
respectively, cf. Fig. 1). An untrusted directory d caches
the result of some set operation on S1 and S2; for this
example, we assume it stores their intersection. The fol-
lowing also assumes that the computation of S1 ∩ S2 is
performed by d, although this need not necessarily be the
case.

The problem that we analyze in this paper is how to
construct a scheme that allows an arbitrary client c to ver-
ify that d did not falsify the result of the query. If such
a verification can be performed, c can obtain the cached
result from d and use it during evaluation of a new query
that includes the same expression.

We assume that s1 and s2 each possess a private-public
key pair for a signature scheme, and that c knows these
public keys. We do not necessarily require the existence
of a public key infrastructure; the public key will be tied
to the concept of identity in the system. The fact that c
knows and trusts s1 and s2 implies that c also knows their
public keys.

The idea we exploit is the following: when s1 sends

a copy of S1 to d, it also appends a digest of S1, which
contains authenticity information, together with a signa-
ture produced using s1’s signing key. Source s2 supplies
similar information. In the figure, s1 sends to d the digest,
D1, of S1, and the digest signature, σ1, on D1.

When d is queried for the intersection of the two sets, it
provides the intersection I , the two digests, and other in-
formation derived during the intersection evaluation. To-
gether, this information should be sufficient to prove the
result accurate (at least at the time it was created).

The dangers are that a malicious directory could insert
extraneous elements in the reply, (but still include all the
elements of the intersection; we will call this an insertion
attack), or it could fail to include elements that really are
in the intersection (without inserting; we will call this a
deletion attack). More generally, it could both insert and
delete elements.

As a trivial solution, the two sources could sign the re-
spective sets. The directory could then provide both of
the original sets in response to the query, together with
the signatures. (This is equivalent to choosing D1 = S1

and D2 = S2.) This is secure, because the client would
be able to verify the authenticity of the two original sets
and compute the intersection himself. Unfortunately, this
solution is very expensive, because the two original sets
might be much bigger than their intersection, so the com-
munication overhead for the response may be excessive.

Our detailed study shows that, of the three basic set
operations, intersection is indeed the most challenging to
compute in provably correct fashion. We therefore first
solve the intersection problem, and then show how to con-
struct solutions for the case of union and set difference.

The rest of the paper is organized as follows. In Sec-
tion II we give a formal definition for an intersection
scheme that solves the sample intersection problem de-
scribed above. In Section III, we summarize two exist-
ing techniques that we will use in our construction. In
Section IV, we introduce a first scheme to solve the in-
tersection problem and we discuss its limitations. In Sec-
tion V, we give a secure and efficient intersection scheme
that solves the problems of the previous one. In Section V-
C, we show how to make the scheme composable, that is
to say, how to securely compute intersections of sets that
are themselves intersections performed by other untrusted
nodes. In Section VI we show how the scheme can be
easily extended to include the other two sets operations,
union and difference. In Section VI-C we discuss imple-
mentation details. Finally, in Section VII, we give experi-
mental results showing the efficiency of our approach and
in Section IX we summarize and conclude.

3

II. DEFINING AN INTERSECTION SCHEME

We define an intersection scheme formally in order to
make it usable as a cryptographic primitive, like signature
schemes or encryption schemes. As mentioned above, the
secure computation of intersection is the most challeng-
ing of the secure set operations; it is easy to extend this
definition to include union and difference.

Definition 1—Intersection scheme: An intersection
scheme is a triple of efficient algorithms (Dgst,CV,Vrfy)
(called, respectively, digest, check value and verify
algorithm) with the following properties:

• Dgst takes as input a set S of elements in some uni-
verse U and outputs a bit string D ← Dgst(S) that
we will call a digest of S.

• CV takes as input two sets S1, S2 and two
digests D1, D2 and outputs a bit string
C ← CV(S1, S2, D1, D2), that we will call a
check value for that quadruple of inputs.

• Vrfy takes as input one set I , two digests D1 and
D2 and a check value C; it produces a boolean value
b = Vrfy(D1, D2, I, C).

• The following correctness property holds. For all
S1, S2, I if:

D1 ← Dgst(S1) ∧D2 ← Dgst(S2)

∧ C ← CV(S1, S2, D1, D2) ∧ I = S1 ∩ S2

then Vrfy(D1, D2, I, C) = 1.
• The following security property holds. It is com-

putationally infeasible for an adversary, on input
S1, S2, D1, D2 to find a set I ′ and a value C ′, such
that I ′ 6= I and Vrfy(D1, D2, I

′, C ′) = 1.
In words an intersection scheme is used as follows.

In the setting of the introduction, s1 computes D1 ←
Dgst(S1) and a signature σ1 on D1 (computed using its
private key); s2 computes D2 ← Dgst(S2) and σ2 anal-
ogously. d has a copy of D1 and D2, together with sig-
natures σ1, σ2 plus a copy of S1 and S2 (Fig. 1). When
c queries d, then a honest d computes I = S1 ∩ S2 and
C ← CV(S1, S2, D1, D2); finally d sends to c the values
(I,D1, σ1, D2, σ2, C).

Node c, in response to its query, receives
(I ′, D1, σ1, D2, σ2, C

′). If d is malicious, then I ′

and C ′ might be different from I and C . The signature
scheme prevents the attacker d from lying on the remain-
ing values. The client first checks that the signatures
are valid and then it runs Vrfy(D1, D2, I

′, C ′); this will
output 1, if the answer to the query is correct, by the
definition above; we would like this to return 0 if I ′ 6= I .
Indeed the security property states that it is hard for the
directory to find an incorrect response that passes the
verification test.

III. BACKGROUND

In this section we briefly summarize two existing tech-
niques that we will use in the secure intersection scheme.
The first is the RSA accumulator, which allows an un-
trusted directory to securely prove membership of ele-
ments in a set. The second is the (counting) Bloom filter.

A. The RSA accumulator

Previous work [6], [7], [8] has shown how to use cryp-
tographic accumulators to solve a related problem. A
source entity s generates some set S. A copy of the set
S is stored in the untrusted directory entity d. A client
entity c queries the directory asking whether an element
xi belongs to the set S or not. If the directory replies with
an affirmative answer, it must be able to prove that xi is
actually in the set.

To allow for this, s computes the value of a crypto-
graphic accumulator Acc(S) from the set S, signs it and
sends a copy of the signature to d. When d wants to prove
that xi ∈ S, it computes a value wi, called the witness
of xi, from the inputs S and xi. Then it shows Acc(S),
wi and the signature on Acc(S). The client, after verify-
ing the signature, can verify from Acc(S), wi, xi that the
answer is correct.

The work cited above pertains to the RSA accumula-
tor, which has the important property that its size does not
depend on the size of the set S.

Let S = {x1, . . . , xn} be the set stored at a source
node. Each xi is represented by u bits. The source
chooses a random RSA modulus N and a random
a ∈ Z

∗

N , then it makes those public information 1.
Suppose there exists an efficient algorithm R that, on

input of a u-bit element x produces an odd integer e =
R(x), called a representative of x. We require that the al-
gorithm R implements a division intractable function [9].
That is to say, it is infeasible for an adversary to find el-
ements x1, . . . , xn, x′ such that R(x′) divides the product
R(x1) · · · · · R(xn). Appendix I discusses two possible
constructions for R.

In order to compute the accumulator of S, compute rep-
resentatives e1, . . . , en of x1, . . . , xn, then output:

Acc(S) = ae1e2...en mod N. (1)

In order to compute the witness wi of xi in S, output:

wi = ae1e2...ei−1ei+1...en mod N.

1
Z

∗

N is the set of integers between 1 and N − 1, that are relatively
prime with N

4

In order to verify the correctness of an answer
Acc(S), wi, xi, verify that:

wei

i = Acc(S) mod N.

It can be proved ([7], [9]) that, under the strong RSA
assumption, it is infeasible for an adversary to “fool” a
client into believing that some x is in S when in fact it
is not; i.e., it is infeasible for an adversary to find (x,w)
such that x 6∈ S but wR(x) = Acc(S) mod N .

B. Counting Bloom filters

We assume that the reader has some basic familiarity
with Bloom filters [10]. Suppose we use a Bloom filter as
a digest for the intersection scheme. Also suppose that the
directory answers the intersection query with a “claimed”
intersection I ′ and the two Bloom filters B1, B2 for the
two original sets S1, S2. The client can verify that each
element of I ′ appears to be in the two original sets, using
the Bloom filters. This does not prevent the attacker from
returning a subset of the real intersection, so Bloom filters
are not the whole solution. Also, the Bloom filter would
need to be prohibitively large in order to ensure that an ad-
versary would not be able to find a false positive in either
of the two original sets.

Our protocol employs a generalization of Bloom filters,
called counting Bloom filters [11], for a different purpose.
A counting Bloom filter is a data structure characterized
by two parameters k and m. It requires k independent
hash functions, which we denote h1, . . . , hk, with range
in {1, . . . ,m}. In particular, given a set S, the counting
Bloom filter of S (denoted by Bl(S)) is a vector of m non-
negative integers (counters). It can be incrementally con-
structed, starting with a vector of all zeros and then, for
each element x in S, by incrementing the counters with
indices h1(x), . . . , hk(x). We denote by Bl(S)j the j-th
counter of the filter; it represents the number of elements
that hash to that index.

IV. A FIRST ATTEMPT

In this section we show an intersection scheme based
on counting Bloom filters. This scheme, as we will dis-
cuss, is neither secure nor efficient, but it will be useful
in understanding the main idea of the correct secure inter-
section scheme.

Consider the two sets S1, S2 in Fig. 2, together with the
corresponding counting Bloom filters (with k = 2 hash
functions and m = 7 counters). The label on the side
of each Bloom filter counter is the list of items in the set
that hash to the index of that counter; e.g. in Bl(S1), the
element “dog” appears in the label of the fourth and sixth

cat

cat, dog

dog

cat

whale, chicken

whale, monkey

monkey

chicken

cat

0

1

0

2

0

1

0

1

1

0

1

2

2

1

Bl(S1) Bl(S2)

S1={cat, dog} S2={cat, chicken, monkey, whale}

Fig. 2: Counting Bloom filters of two sets
figure

cat

cat

0

1

0

1

0

1

0

0

1

0

1

0

0

0

Bl Bl(I)

I={cat}

GAP

^

Fig. 3: The elementwise minimum, the Bloom filter of the
intersection and the gap for the example in Fig. 2
figure

counters, meaning that, for example, h1(“dog”) = 4 and
h2(“dog”) = 6.

The client receives a signed copy of these two Bloom
filters, together with the supposed intersection I ′ (for a
malicious directory, this could be different from the real
intersection I). To verify correctness, the client com-
putes the Bloom filter B̂l, obtained as the element-by-
element minimum of Bl(S1) and Bl(S2), and the Bloom
filter Bl(I ′) of the returned intersection (Fig. 3). The con-
dition:

Bl(I)j ≤ B̂lj ∀j = 1, . . . ,m. (2)

holds for the correct intersection, because each element in
I also belongs to both S1 and S2; so the client can check
this condition using I ′ instead of I .

In the given example (but not in general), any insertion
attack (that is to say, any attack that would make I ′ a su-
perset of I) would be detected, because it would make at
least one of the counters of the Bloom filter of I ′ (Fig. 3
on the right) greater than the corresponding counter of B̂l

(same figure, on the left).
This test does not prevent an attacker from performing

a deletion attack, i.e. returning an I ′ that is a subset of
I (in the example, the directory could claim that the in-
tersection is empty), because the only effect of removing
elements is to decrease some of the counters. Ideally, if
B̂l and Bl(I ′) were equal, then we would know for certain
that a deletion attack was not performed (otherwise, with-
out the attack the Bloom filter of the intersection would
have some counters strictly greater than the correspond-
ing in B̂l, which is a contradiction). The problem is that,
even for the legitimate intersection I , some counters of the

5

Bloom filter could be strictly less than the corresponding
counter in B̂l. In our example, the counter with index 6 of
Bl(I) is 0 while the corresponding in B̂l is 1; this is due to
the fact that there are at least one element (“dog”) which
are only in the first set and at least one element (“whale”
and “monkey”) which are only in the second set, all of
which hash to the same index 6. We will say that index
6 is a gap, meaning that there is a gap between the two
counters in question.

Definition 2—Gap: An index j is called a gap if Bl(I)j

is strictly less than B̂lj .
A deletion attack would create more gaps, as perceived

by the client. Therefore we require the directory to justify
each gap. In our example, if the directory returns the cor-
rect intersection, it can justify the gap 6 by including in
the answer all the elements in both sets that map to index
6 (“dog” for the first set, “whale” and “monkey” for the
second set); we will say that those are the check elements
of the response. If the directory tries to return an empty
intersection, it must justify three gaps (2, 4 and 6), for ex-
ample by finding two strings that hash to indexes 2 and
4 and adding them to the check elements. The attack is
restricted but still feasible.

More formally, the untrusted directory d will include in
the answer to the intersection query a check value C that
consists of a pair of sets (C1, C2), that are respectively a
set of check elements in S1\I and S2\I . Upon receiving
the answer (I ′,Bl(S1), σ1,Bl(S2), σ2, C

′

1, C
′

2), the client
c computes the Bloom filter B̂l obtained as the element-
by-element minimum of Bl(S1) and Bl(S2). Here we de-
noted with I ′, C ′

1, C
′

2 the values that d has returned for
the intersection and the check elements; if d is malicious,
those can be different from the I, C1, C2 an honest node
would return.

The client c will check that condition (2) holds and
also will check that for each j = 1, . . . ,m such that
Bl(I)j < B̂lj :

Bl(I ′)j + Bl(C ′

1)j = Bl(S1)j (3)

Bl(I ′)j + Bl(C ′

2)j = Bl(S2)j (4)

and will reject if any of these is not satisfied. Condition
(3) states that for each gap j the check element set C1

must contain some elements {y1, . . . , ys} from S1\I that
collectively hash Bl(S1 \I)j times to index j. That is to
say:

Bl(S1\I)j = Bl({y1, . . . , ys})j .

Analogously (4) states that C2 must contain some ele-
ments from S2\I that hash Bl(S2\I)j times to index j.

In the next subsection we state some results that esti-
mate the number of gaps and the number of check ele-
ments needed by the scheme. In Section IV-B we use this

result to estimate the level of security and efficiency of the
scheme and in Section V, we will show how to make an
efficient scheme out of this.

A. Number of gaps and check elements

Definition 3—Load of the filter: The load of a count-
ing Bloom filter Bl(S) of a set S of n elements, with k
hash functions and m counters, is the expected value l of
each counter in the filter, i.e.

l =
kn

m
. (5)

Consider the counting Bloom filter intersection scheme,
where the two sets S1 and S2 have respectively n1 and n2

elements each and their intersection has |I| = q elements.
Let n be the maximum set size allowed by the scheme
(n1, n2 ≤ n). Let m be the number of counters and k the
number of hash functions. Let l1 = kn1

m
, l2 = kn2

m
be the

loads of Bl(S1), Bl(S2) and let l = kn
m

be the maximum
load of the scheme.

We assume that if we randomly generate n distinct ob-
jects x1, . . . , xn from the universe according to any distri-
bution of interest, the values {hi(xa) : i = 1, . . . , k∧a =
1, . . . , n} are independent random variables uniformly
distributed in {1, . . . ,m}.

Theorem 1: The expected number of check elements
for both sets satisfies:

E[|C1|] ≤ m(1− e−l2)l1 ≤ ml1l2 ≤ ml2 (6)

E[|C2|] ≤ m(1− e−l1)l2 ≤ ml1l2 ≤ ml2. (7)
A proof can be found in Appendix II.

B. Security and efficiency considerations

The intersection scheme described above suffers from
several kinds of attacks. For example, the attacker could
insert an element in the intersection that is not in any of
the original sets, as long as all the indices it maps to are
gaps; it can be shown that making the probability of this
attack negligible can be done only at the cost of Bloom
filters with a prohibitively large number of counters (for a
probability of 2−50 or less, we need m ≥ 37n).

Independently of the security considerations, the load
of the Bloom filters must be small enough to keep the
number of check elements small. This implies that m
must be much bigger than n, making the size of the Bloom
filters themselves bigger than the size of encoding the
original sets. We address this problem next.

In order to improve the efficiency of the count-
ing Bloom Filter scheme, we use compressed counting
Bloom filters [12]. We can reduce the size of the counting
Bloom filters by applying a compression algorithm. This

6

is still not sufficient to make the intersection scheme se-
cure and efficient, but is the first step towards the solution
to the problem. In this section we introduce some nota-
tion and some results on the compressed counting Bloom
filters that we will need in Section V.

Let S be a set of n elements and consider its counting
Bloom Filter Bl(S) with m counters and k hash functions.
We can apply a data compressor to the filter, obtaining a
compressed filter of some size z.

Claim 1: An upper bound to the size of the compressed
counting Bloom filter, assuming optimal compression, is
given by

z = mH(l) (8)

where H(l) is the entropy of a Poisson distribution with
mean l.
We believe the bound is tight. Proof available in Ap-
pendix IV.

V. A CRYPTOGRAPHICALLY SECURE INTERSECTION

SCHEME

In this section we describe our full solution to the inter-
section problem. In Section V-B, we analyze the scheme
to determine the optimal values of the parameters and the
resulting overhead.

The scheme works as follows:

• Source si, to produce the digest of a set Si, gener-
ates:

– the compressed counting Bloom filter Bl(Si);
– the RSA accumulator Acc(Si);
– a signature σi on both.

• When a directory receives a query, it returns:
– the intersection I;
– the Bloom filters Bl(S1), Bl(S2);
– the RSA accumulators Acc(S1),Acc(S2);
– the check element sets C1, C2 (computed ex-

actly as described in Section IV);
– two RSA accumulator witnesses w1, w2. The

two witnesses prove that (I ∪ C1) ⊂ S1 and
(I ∪C2) ⊂ S2 respectively.

– the two signatures σ1, σ2.
• The client verifies an answer by:

– checking that the signatures are correct;
– checking that the witnesses are correct;
– checking that, for each gap, there are enough

check elements (3, 4).
The RSA accumulators prevent any attack that inserts

elements in the intersection, because the adversary can-
not prove that any such element belongs to both sets (Sec-
tion III-A). Also the malicious directory cannot use some-

thing that is not in S1 (S2) as a check element for that set.
As a consequence, the following holds:

Claim 2: No attacker can return an incorrect intersec-
tion, unless it can break the security of the RSA accumu-
lators or of the signature scheme.
Proof in Appendix V.

We illustrate this scheme through the example in Fig. 2
and 3. When the client asks for the intersection, the
directory returns I = {“cat”}, the check element sets
({“dog”}, {“whale”, “monkey”}) and a proof (via RSA
accumulators) that “cat”, “dog” are in S1 and another
proof that “cat”, “whale”, “monkey” are in S2.

If the directory maliciously attempts to return an empty
intersection, two extra gaps (2 and 4) are created for the
Bloom filters. In order to justify gap 2, the directory has
to find a check element for the first set that maps to index
2. Such a check element must belong to S1; otherwise
it won’t be possible to find a witness for the RSA accu-
mulator. The only option, therefore, is to use “cat”. The
directory also has to find a check element for S2. Again,
the only option is “cat”. Therefore the client will detect
the attack by noticing that the same check element is re-
turned for both sets.

A. Hashing the check elements

We here show how to reduce the size of the check el-
ements, using hashing, and we introduce the parameter u
(the size of an element).

In general the set elements may belong to an arbitrary
domain and, therefore, be arbitrary length bit strings. In
the intersection scheme we propose, the directory must
include in the reply to the query several check elements,
each of which can be significantly large. The client does
not really care about what those check elements are, as
long as they exist.

With this in mind, we choose a hash function (for ex-
ample, SHA-1), then we map each element in the universe
to its hash and we run the intersection scheme, not on the
original elements, but on their hashes. When a Bloom
filter or an RSA accumulator is computed for set S, it is
actually computed for the set of the hashes of the elements
of S. The directory replies to the client with the real ele-
ments of the intersection, but it provides only the hashes
of the individual check elements. The hash function must
be collision resistant, because, if the attacker could find
two elements X1, X2 that map to the same value, it could
substitute X1 with X2 in any set that contains X1.

If we call u the length of the output of the hash function,
then we can think of the scheme as operating on elements
of u bits. The collision resistance property requires u to be

7

large enough; on the other hand the cost of the check ele-
ments is proportional to u. We believe that using u = 160
(SHA-1 output size) be a reasonable compromise; we will
use this value in numerical examples and experiments, but
our analysis holds for any value of u.

B. Choosing the parameters of the Bloom filters

Let us consider the overhead of the protocol in the size
of the response to the query. Recall that the response, in
addition to the intersection, contains the following parts:

(D1, D2, CV, σ1, σ2) =

(Acc(S1),Bl(S1),Acc(S2),Bl(S2), C1, C2, w1, w2, σ1, σ2)

The elements Acc(S1),Acc(S2), w1, w2 are 4 RSA val-
ues. If, for example, we employ 1024 bit RSA, then the
total overhead for those values is 512 bytes. The two sig-
natures σ1, σ2 have a size that depends on the signature
scheme considered. For example, they could be 1024 bits
each for RSA signatures, bringing the total of these 6 com-
ponents to 768 bytes.

From the analysis in Section IV-B, the size of the
compressed Bloom filter is z = mH(l). The en-
coded size of the check element set C1 (or C2) is u bits
for each element; if we use the upper bound of theo-
rem 1 as an estimate for the number of check elements,
|C1| = ml2 = knl. Therefore the total overhead of the
protocol (in the size of the response) is given by:

Ov =
z

n
+

u|C1|

n
= k(

H(l)

l
+ ul) = kf(l) (9)

The overhead of the protocol is evaluated as a fraction of
the total number of elements 2n in the two original sets.

The optimal parameters are k = 1 and the choice lopt of
l that minimizes f(l). Note that, for k = 1, the counting
Bloom filter is actually a hash table, where each bucket is
replaced by the number of elements in the bucket.

For u = 160, plotting f numerically shows that it has a
minimum approximately at lopt = 0.01, for which it takes
a value f(lopt) ≈ 9.7. This means that the overhead of
the protocol is, in the worst case, approximately of 9.7
bits per element in the original set. In practice, a more
careful analysis (12) shows that the overhead decreases
significantly whenever the size of the intersection is non-
negligible compared to the two original sets or when the
sizes of S1 and S2 are quite different from each other; e.g.
it’s below 2 bits per element if n1/n2 = 1000. Compare
this with the overhead of the trivial protocol, in which the
directory returns to the client the entire sets S1 and S2

(signed by the sources), which incurs in a overhead of u =
160 bits per element.

For example, if the two original sets contain both n =
100000 elements, the intersection contains 100 elements
(so we are in the worst-case scenario), in our scheme the
directory needs to send 2 Kbytes for the intersection and
about 250 Kbytes for the accumulators and the Bloom fil-
ters; it saves a factor of 16 compared to the trivial scheme
that would instead require 4 Mbytes and it still offer an
arbitrarily high level of security (for example 1024 or
2048 bit strong RSA security). In a better scenario, for
|S1| = 100000, |S2| = 100 and |I| = 10, our scheme
requires 200 bytes for the intersection and about 27.5
Kbytes of overhead, compared to the 2 Mbytes of the triv-
ial scheme.

For the optimal configuration, the Bloom filter uses
m
n

= 100 counters for each element in the original set.
If the cost of that many counters, in terms of storage of
the uncompressed Bloom filter and of processing time, is
considered excessively high, then a suboptimal and larger
value of the load can be used. For example, for l = 0.03,
we can get away with m = 33n counters and the overhead
increases only to f(l) = 11.3 bits per element (plus the
constant overhead due to the accumulators and the signa-
tures).

C. Composability

In this section we show that the scheme is composable;
i.e. an untrusted directory can perform a trust-preserving
intersection of two sets, even if one or both of the two sets
was obtained by another untrusted directory, as a different
trust-preserving intersection.

Consider the following example, involving four source
nodes and three untrusted directories (Fig. 4). The source
nodes generate sets S1, S2, S3, S4 respectively. The first
directory has a copy of S1 and S2, together with certifi-
cates Cert1, Cert2 for those two sets, respectively; the
certificate for a set consists, as described in the previous
sections, in the digest of the set (a counting Bloom filter
plus an RSA accumulator) and a signature on the digest by
the source. The second directory, analogously, has a copy
of S3 and S4 and the corresponding certificates. The third
directory (d3) queries the first directory (d1) for the inter-
section S12 = S1 ∩ S2. The answer will contain a certifi-
cate for the set S12, consisting of the certificates for the
two base sets and of a check value CV1, (which in turn
consists of the two check element sets and the two wit-
nesses). Analogously, d3 obtains S34 = S3 ∩ S4 from d2,
also with a certificate. When a client (c) queries the third
directory for I = S12 ∩ S34, the composability property
of the scheme means that the directory can construct a
certificate proving that I was computed correctly, using

8

s3

s4

S4

d1

d2

S3

s1

S1

s2

S2

c

S12 S34 Cert4

Cert3

Cert2

Cert1

CV1 CV2

S1, Cert1

S1 S2

Cert2

Cert1

S2, Cert2 S12, Cert1, Cert2, CV1

S1, Cert1

S2, Cert2

S34, Cert3, Cert4, CV2

S3 S4

Cert4

Cert3

d3

I, Cert1-4, CV

Fig. 4: Four trusted nodes (s1 through s4) and three un-
trusted directories (d1 through d3) involved in a two-level
intersection computation.
figure

as inputs the sets S12 and S34 and their certificates, with-
out seeing any of the original sets and without having to
send the whole S12 and S34 to the client.

We now illustrate the algorithm to produce such certifi-
cate for the second-level intersection, through the exam-
ple in Fig. 4, with the specific sets and Bloom filters as in
Fig. 5.

The directory d3 knows, among other things, the check
values CV1 and CV2. We have CV1 = (C1, C2, w1, w2),
where C1 = {“dog”} and C2 = {“whale”, “monkey”}
are the check elements for S1 ∩ S2, and w1, w2

are the corresponding witnesses (e.g. w1 witnesses that
{“cat”, “mouse”, “horse”, “dog”} ⊂ S1). Analogously
CV2 = (C3, C4, w3, w4), where C3 and C4 are empty.

The directory d3 computes the Bloom filters Bl(S12)
and Bl(S34) from the two sets, then it computes the check
elements for the intersection, using the same algorithm
described in Section V for intersecting two basic sets; let
C12 and C34 be the two check element sets thus obtained;
in this example C12 = {“mouse”} and C34 = {“sheep”}.
The check value returned by d3 is given by:

CV = (C1, C2, C3, C4;C12, C34;w
′

1, w
′

2, w
′

3, w
′

4). (10)

Here w′

1 is a witness that I ∪C1 ∪ C12 ⊂ S1. The direc-
tory can compute this, because it knows w1 (which proves
S12 ∪ C1 ⊂ S1) and by construction I ∪ C12 ⊂ S12. The
remaining w′

i are analogously defined.
Note that the client can perform verification and that the

scheme inherits the security guarantee of claim 2.
We claim that the performance of the scheme does not

degrade. Equation (10) shows that the size of a certifi-
cate for the set I is the same as the sum of the sizes of
the certificates for the two intermediate intersections, plus
the second-level check element sets C12 and C34; those do
not represent a problem, because the worst-case overhead

cat

dog

sheep

Bl(S3) Bl(S4)

chicken

cat

sheep

cow

goatgoat

S1={cat, dog, horse, mouse}

S2={cat, chicken, horse,

 monkey, mouse, whale}

cat

dog

mouse

Bl(S1) Bl(S2)

1

1

1

1

0

0

horse

cat

whale, monkey

mouse

chicken, horse

GAP

Bl(S34)

cat

sheep

goat

GAP

S12={cat, horse, mouse}

S34={cat, sheep, goat}

cat

mouse

Bl(S12)

1

0

1

1

0

0

horse

cat

Bl(I)

1

0

0

0

0

0

1

1

1

1

0

1

1

0

1

0

1

1

I={cat}

1

2

1

2

0

0

1

0

1

0

0

1

S3={cat, chicken, dog, goat, sheep}

S4={cat, cow, goat, sheep}

Fig. 5: An example of the scheme of an intersection of
intersections. The figure shows the four original sets, the
two intermediate intersections and the final intersection,
together with the corresponding Bloom filters
figure

happens exactly in the case when their size is negligible.
We will now justify this, with reference to C12. If S12 has
a negligible size compared to S1 and S2, then the load of
its Bloom filter will be very low and therefore C12 will
have almost no elements. In cases where S12 is progres-
sively larger compared to the two original sets, the size of
C12 increases, but the size of both C1 and C2 decreases
accordingly, making the total size of the response from d3

to c smaller.

VI. FROM SECURE INTERSECTION TO SECURE FULL

SET ALGEBRA

In Sections II through V-C, we have given a solution to
the problem of secure intersection. In particular we have
shown a recursive scheme that, from two sets, each ac-
companied by a suitable certificate, can generate a certifi-
cate for their intersection. In this section, we describe how
to construct a suitable certificate for their union and their
difference. With this extension, our proposed scheme al-
lows untrusted directories to perform arbitrarily complex
set operations on data from trusted nodes, and to prove the
correctness of the result.

The described scheme satisfies the following important
property:

Given a certificate for the set S, it is always pos-
sible to construct Bl(S), without knowing S

(11)

Note that, in the case of the intersection, this is true: if
S = S1∩S2, the certificate of S includes either the Bloom
filter of S1 and S2 or enough information to reconstruct
them; it also includes the check element sets C1, C2 of
the intersection. Therefore the Bloom filter of S can be
obtained as the elementwise minimum of the two vectors
Bl(S1)− Bl(C1) and Bl(S2)− Bl(C2).

9

A. Performing set difference

We now show how to perform set difference, through
a modified version of the example described in Fig. 4
and 5. Suppose that the query that c asks of d is, in-
stead, S12\S34 = (S1 ∩ S2)\(S3 ∩ S4). The answer to
the query is: A = {“horse”, “mouse”}.

To prove the correctness of the answer, the directory
needs to compute the check element sets C12 and C34 for
the set difference.

• The check element set for the first set consists of all
the elements of the intersection: C12 = S12∩S34. In
this case C12 = {“cat”}. Note that the client, during
verification, will reconstruct Bl(S12) and Bl(S34). It
will notice that the counter at index 1 is equal to 1
for both Bloom filters (Fig. 5). By showing “cat”,
which maps to index 1, and proving that “cat” is in
the intersection, the directory assures the client that
it did not delete an element that happened to map to
that index from the difference.

• The check element set C34 for the second set con-
sists of all the elements of the opposite set differ-
ence (S34\S12) that map to a gap. In this case
C34 = {“sheep”}. By showing this element, we
prove to the client that “mouse” is indeed in the set
difference and not in the intersection. Note that no
such proof is required for “horse”, since it does not
map to a gap.

Once the check sets are known, d3 can answer the
query from c in the same form as in Fig. 4, with a check
value of the form (10), but this time w′

1 is a witness that
C1 ∪C12 ∪A ⊂ S1 and analogously w′

2, while w′

3 is a
witness that C3 ∪ C12 ∪ C34 ⊂ S3 and analogously w′

4.

B. Performing set union

Suppose the directory is queried for S = S1 ∪ S2; the
directory has a certificate for both S1 and S2: it can simply
provide the two sets along with their certificates.

The catch is that, if the result S of the union is used
as operand in a subsequent operations, then Property (11)
does not hold anymore. To fix this, we add the following
rule: the certificate for S1∪S2 includes the check element
sets C1 and C2 computed exactly as in the intersection
case, in addition to the certificates of S1 and S2.

Additionally, when S is later used as operand in an in-
tersection or in a difference, each element of S that ap-
pears in the final result, or in a check element set, should
carry the information about whether it belongs to S1 only,
or to S2 only, or to both S1 and S2.

C. Standard Bloom filter sizes

When a source computes the digest of its set S, it does
not know the size of the sets S will be intersected with.
As a practical matter, then, we introduce a set of stan-
dard set sizes {n̂1, n̂2, . . . } and the corresponding stan-
dard Bloom filter sizes {m̂1, m̂2, . . . }, with the property
that m̂i = n̂i/l, and l is the desired value of the load (for
example, the optimal l = 0.01). For example, we sug-
gest the following standard set sizes {n̂1 = 103, n̂2 =
105, n̂3 = 107} and a maximum set size of 4 · 107.

When the source generates the digest for S, it gen-
erates one different Bloom filter for each standard size.
In the suggested configuration, it would generate three
Bloom filters with respectively 105, 107, 109 counters.
The source will then sign each of these Bloom filters indi-
vidually and provide all of the signatures to the directory.

When the directory computes the intersection of two
sets, it will choose the standard Bloom filter size that min-
imizes the communication overhead with the client. For
example, if the two sets contain n = 8 · 103 elements
each, then the choice is between a Bloom filter with 105

counters, which corresponds to a load of l = 0.08 and
therefore to an overhead of f(l) ≈ 18 or a filter with 107

counters, which corresponds to a load of l = 8 · 10−4 and
therefore to an overhead of f(l) ≈ 12; this second choice
is obviously better.

We can extend the analysis of the overhead per element,
(Section V-B) to handle the case when the size of the two
original sets are different. We obtain, for k = 1:

Ov =
u(|C1|+ |C2|) + z1 + z2

n1 + n2
=

=
2ul1l2 + H(l1) + H(l2)

l1 + l2
. (12)

Interestingly, we note that if we are intersecting a set of
size n1 = 105, with a set of size n2 = 100 (therefore
much smaller), then choosing the standard Bloom filter
size of 107, leads to Ov = 8.1 bits per element, while
the filter size of 105, leads to Ov = 2.2 bits per ele-
ment, which is much better. The maximum overhead of
the scheme (found using numerical unconstrained opti-
mization in Matlab) happens for |S1| = |S2| ≈ 4.2 · n̂i

(for n̂i = 103, 105) with a value of Ov = 12.7 bits per
element.

VII. EXPERIMENTAL RESULTS

We implemented a prototype of the scheme algorithms
(digest, check value and verification) and we used them
to test the performance of the scheme. For simplicity, we
tested separately the RSA accumulator computation and

10

TABLE I: Time required to compute an RSA accumulator
table

Set Size Source time Directory/Client time
(sec) (sec)

100 0.021s 0.79
1000 0.033s 7.8

10000 0.17s 79
100000 1.5s 780

the remaining components of the scheme. Our experi-
ments concentrate mostly on the intersection of two base
sets, because we believe intersection to be the most chal-
lenging of the operations.

a) Cost of RSA accumulator: We implemented a C
program that takes as input an RSA modulus N , a base
a, and a set S, and outputs the corresponding RSA ac-
cumulator. We use the PARI library [13] for big number
computation.

Observe that all the principals in this scheme need this
computation: the source has to compute the accumulator
of the whole original set S; the directory has to compute
two accumulators (witnesses), for the sets S1\(I ∪C1)
and S2\(I ∪ C2); the client has to compute also an accu-
mulator operation, for sets I ∪ C1 and I ∪ C2 (using the
witnesses as a base). Analogously to what is done for
RSA signatures, note that the source can store the prime
factors p1, p2 of the modulus N , taking care to keep them
secret. Instead of using (1), it can, then, compute:

Acc(S) mod pi = ae1e2...en mod (pi−1) mod pi

for i = 1, 2, and reconstruct Acc(S) from Acc(S) mod p1

and Acc(S) mod p2 using Chinese remaindering.
We computed the accumulators for sets of different

sizes. We employed a 512-bit RSA modulus and 962-bit
representatives, generated with SHA-1 (Appendix I). We
ran the experiments on a 3 GHz Intel P4 with 2 GBytes
RAM. Table I shows the effective CPU time required for
the computation of an accumulator of one set as a func-
tion of the set size. For each set size, we repeated the
experiment for 10 randomly generated sets of strings rep-
resenting small integers; times were averaged. There are
two columns: the first one for the source (which can em-
ploy the optimization mentioned above), the second for
the directory and the client (which cannot).

As expected, the cost grows linearly with the set size.
Note that the computation for the source is very efficient.
Also note that, in practice, the costs at the client would be
much lower because the client performs its computations
on sets that are usually much smaller than the source sets.

b) Cost of Bloom filters and check elements: We
created an unoptimized Perl implementation of the three

TABLE II: Optimal Bloom filter load for different ratios
of the sizes of the two source sets
table

n2/n1 l1
1 0.010

0.1 0.065
0.01 0.51

0.001 2.9

TABLE III: Execution times of the scheme algorithms
(accumulator excluded) in seconds
table

n1 n2/n1 dig. S1 dig. S2 inters. verif.
1000 1.000 0.449 0.446 0.137 0.413

0.100 0.169 0.151 0.112 0.168
0.010 0.126 0.105 0.125 0.126
0.001 0.122 0.099 0.107 0.111

10000 1.000 3.400 3.630 0.681 2.720
0.100 0.881 0.651 0.421 0.671
0.010 0.389 0.167 0.346 0.275
0.001 0.304 0.098 0.312 0.159

100000 1.000 34.10 35.20 6.520 24.10
0.100 7.570 4.940 3.470 5.180
0.010 3.300 0.736 3.130 1.900
0.001 2.430 0.201 2.710 0.705

algorithms that comprise the intersection scheme (digest,
check value and verification) and used it to measure the
communication overhead (encoded size of Bloom filters
and check elements) and the computation overhead (CPU
time to perform the algorithm). Our Perl program calls
arith_coder [14] to perform Bloom filter compres-
sion.

We ran the set of experiments on the host described in
the previous paragraph. Each experiment runs the four
steps of the scheme (two digests, one intersection with
check value computation, one verification) on a pair of
random sets S1, S2, of sizes n1, n2, with an intersection
of size q. The experiment is run ten times on different
pairs of sets and the results are averaged. For each exper-
iment the number of counters m of the Bloom filters is
chosen in order to obtain a value l1 of the load of Bl(S1)
according to Table II; this is the value that minimizes (12),
for the given value of n2/n1. In all runs, the size of the
intersection is q = 0.01n2.

Table III shows the values of the running time for the
computation, not including the time to compute the RSA
accumulators, of (column 3 to 6): the digest of S1, the
digest of S2, the operations performed by the directory
(intersection and check elements) and verification.

In the third column of Table IV, we report the absolute

11

TABLE IV: Communication overhead (accumulator ex-
cluded)
table

Absolute Relative
n1 n2/n1 overhead (bytes) overhead (bits)

1000 1.000 3431 13.7
0.100 1725 12.5
0.010 1042 8.26
0.001 478 3.82

10000 1.000 27533 11.0
0.100 12450 9.06
0.010 7025 5.56
0.001 3158 2.52

100000 1.000 269572 10.8
0.100 118924 8.65
0.010 64699 5.12
0.001 27334 2.18

overhead of the scheme (also accumulators excluded), i.e.
the total number of bytes required to encode the two com-
pressed Bloom filters of the source sets and the hashes of
the check elements (u = 160). In the fourth column, we
show the relative overhead Ov as defined in Section V-B
(absolute overhead divided by n1 + n2) expressed in bits
per element.

Note that if the bigger set is large enough (n1 ≥
10000), the measured overhead is essentially what is
yielded by the analysis (12). The slightly larger overhead
for n1 = 1000 is due to the non-optimality of the com-
pression algorithm, which is more evident for small input
sizes.

We also ran experiments (not reported in the tables) for
different values of q and we noticed that this parameter has
little influence on the computation times and the scheme
overhead.

c) Overhead of complex queries: Finally, we ran a
simple experiment to test the complete scheme, including
the extensions in Sections V-C through VI-C. We gen-
erated six random sets (S1, . . . , S6), of sizes resp. 1000,
2000, 5000, 10000, 50000, 100000, from a universe of
500000 elements (small integers); then we executed our
scheme for five sample queries, using our Perl implemen-
tation. Results are shown in Table V: the second column
shows the measured absolute overhead of our scheme,
while the third column shows the ratio between the ab-
solute overhead of the trivial scheme and the value in the
second column. We note that, in all cases, our scheme
offers significant savings.

TABLE V: Overhead of complex queries
table

Absolute Saving
Query overhead (bytes) factor
S1\S2 4457 13.5

(S5 ∩ S6)\(S1 ∪ S2) 209633 109.0
(S1 ∩ S4) ∩ S3 17880 17.9
(S5\S4) ∩ S2 105062 11.8

(S3 ∪ (S5 ∩ S2))\S5 122927 9.3

VIII. RELATED WORK

Our work may be viewed as extending the concept of
authenticated data structures [7], [15], [8], [16], [17].
Briefly, these allow an untrusted host to answer queries
about a single trusted data set in a trustworthy way (e.g.,
given a set S generated by a trusted source, they allow an
untrusted directory d to answer queries of the form “is x
in S?”). Our work focuses on the more challenging (and
more broadly-applicable) case of answering queries about
multiple data sets in an efficient way (e.g., the intersec-
tion problem can be cast as a query “give me every x in
S1 ∩ S2”).

Reference [18]

IX. CONCLUSIONS

In this paper we have formally defined the notion of se-
cure set operations. Secure set operations allow any prin-
cipal to perform a set operation on a pair of trusted sets,
and to provide a proof of the result’s validity. We then
show an efficient construction of a set operation scheme
that, recursively, allows secure operations on certified re-
sults. We demonstrate, through analysis and experiments,
that our scheme produces certificates that are a factor of 9
to 100 smaller than the trivial scheme, in which a signed
copy of all the original sets is used as a certificate. To the
best of our knowledge, no other scheme that solves this
problem is known. A more exhaustive description of our
algorithms can be found in Appendix ??.

We believe that this scheme has an important applica-
tion in the context of efficient searches in P2P systems.
Clients in such systems can profit from reusing the results
of previous queries, which are cached at untrusted peers.
With a secure set operation scheme, a client can retrieve
such a result from an untrusted peer, and use the corre-
sponding certificate to verify that the data was not polluted
during the computation. Therefore, if the client trusts the
sources, then it can also trust the retrieved data.

Finally, we note that our results are not specific to result
caching. The results hold for any type of set, and therefore
may have other applications.

12

REFERENCES

[1] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” in Proceedings of the ACM
SIGCOMM ’01 Conference, San Diego, California, August 2001.

[2] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker, “A scalable content addressable network,” in
Proceedings of ACM SIGCOMM 2001, 2001.

[3] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location and routing,”
Tech. Rep. UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

[4] Antony Rowstron and Peter Druschel, “Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems,” in IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 2001, pp. 329–350.

[5] Bobby Bhattacharjee, Sudarshan Chawathe, Vijay Gopalakrish-
nan, Pete Keleher, and Bujor Silaghi, “Efficient peer-to-peer
searches using result-caching,” in The 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS’03), February 2003.

[6] Jan Camenisch and Anna Lysyanskaya, “Dynamic accumula-
tors and application to efficient revocation of anonymous creden-
tials,” in CRYPTO, 2002.

[7] Niko Baric and Birgit Pfitzmann, “Collision-free accumulators
and fail-stop signature schemes without trees,” in EUROCRYPT,
1997, pp. 480–494.

[8] M. Goodrich, A. Schwerin, and R. Tamassia, “An efficient dy-
namic and distributed cryptographic accumulator,” Tech. Rep.,
Johns Hopkins Information Security Institute, 2000.

[9] Rosario Gennaro, Shai Halevi, and Tal Rabin, “Secure hash-and-
sign signatures without the random oracle,” in EUROCRYPT,
1999, pp. 123–139.

[10] Burton H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7,
pp. 422–426, 1970.

[11] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder, “Sum-
mary cache: a scalable wide-area web cache sharing protocol,”
IEEE/ACM Transactions on Networking (TON), vol. 8, no. 3, pp.
281–293, 2000.

[12] M. Mitzenmacher, “Compressed bloom filters,” in 20th Annual
ACM Symposium on Principles of Distributed Computing, 2001,
pp. 144–150, To appear in IEEE/ACM Trans. on Networking.

[13] The PARI Group, Bordeaux, PARI/GP, Version 2.1.5, 2000,
available from http://www.parigp-home.de/.

[14] John Carpinelli et al., “arith coder: Word, character, in-
teger, and bit based compression using arithmetic coding,”
http://www.cs.mu.oz.au/˜alistair/arith_coder/,
1999.

[15] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine, “Authentic
third-party data publication,” in IFIP Conf. Database Security,
2000.

[16] M.T. Goodrich and R. Tamassia, “Efficient authenticated dic-
tionaries with skip lists and commutative hashing,” Tech. Rep.,
Johns Hopkins Information Security Institute, 2000.

[17] M.T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen,
“Authenticated data structures for graph and geometric search-
ing,” in CT-RSA, 2003.

[18] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stu-
art G. Stubblebine, “Authentic data publication over the internet,”
Journal of Computer Security, vol. 11, pp. 291–314, 2003.

[19] Jean-Sbastien Coron and David Naccache, “Security analysis of
the gennaro-halevi-rabin signature scheme,” in EUROCRYPT,
2000, pp. 91–101.

[20] Mihir Bellare and Phillip Rogaway, “Random oracles are prac-
tical: A paradigm for designing efficient protocols,” in ACM
Conference on Computer and Communications Security, 1993,
pp. 62–73.

[21] R. J. Evans, “The entropy of a poisson distribution,” SIAM Re-
view, vol. 30, pp. 314–315, 1988.

APPENDIX I
REPRESENTATIVE GENERATION ALGORITHMS

We now mention two efficient algorithms for genera-
tion of representatives.

The first algorithm is suggested in [9] and consists in
repeated applications of SHA-1.

R(x) = 1|SHA1(x|1)| . . . |SHA1(x|r)|1. (13)

Reference [19] analyzes this representative algorithm,
when SHA-1 is replaced by a random oracle [20]; their
conclusion is that, in order to obtain division intractabil-
ity with a level of security comparable with 1024 bit RSA,
the length of the output should be approximately 1000 bits
long or more. So we can set r = 6, which implies 962 bit
representatives.

The second algorithm follows the idea suggested in [9]
of choosing a representative algorithm that only outputs
primes and is collision-resistant, but with a different con-
struction. To obtain R(x), compute:

y1 = SHA1(x|1)|1

y2 = SHA1(x|2)|1

y3 = SHA1(x|3)|1

· · ·

until you find a value yi, which is prime; then set R(x) =
yi.

If we assume that SHA-1 is a random oracle, taking
into account that the number of 161-bit primes is approx-
imately

2161

ln(2161)− 1
≈

2161

110

then computing a representative takes, on the average,
110
2 = 55 SHA-1 computations and primality tests on 161

bit inputs.
In the setting of Section III-A, note that only the source

needs to pay this cost. When the source sends a copy
of the set to the directory, it can include, for each ele-
ment x the corresponding value of i, for which R(x) =
SHA1(x|i) is prime; therefore the directory can compute
the representatives paying only one SHA-1 computation.
Similarly the directory can provide to the client the value
of i, when she is required to prove that x is in the set;
the client can, then, compute the representative with one

13

SHA-1 computation and one primality test (note that the
directory can maliciously lie on the value of i, so it’s im-
portant that the client checks that SHA1(x|i) is indeed
prime). The value of i can be encoded in, for example,
one byte, so it introduces a small communication over-
head.

APPENDIX II
PROOF OF THEOREM 1

Fix a counter index j. What is the probability that it
contains a gap? Assume that the sets S1 and S2 are ran-
domly generated sets of n1, n2 elements respectively and
that |I| = q. If we call n the maximum set size that our
scheme supports, then n1, n2 ≤ n.

Pr[gap at j] = Pr[Bl(S1\I)j > 0∧Bl(S2\I)j > 0] =

= Pr[Bl(S1\I)j > 0] · Pr[Bl(S2\I)j > 0]

where we used the fact that the elements of S1 \ I and
S2\I are distinct, therefore the two events are independent.
Remembering the derivation in [11]

Pr[Bl(S1\I)j > 0] = [1− (1−
1

m
)k(n1−q)]

' [1− e−
k(n1−q)

m] ≤ [1− e−
kn1
m] ≤ [1− e−

kn
m].

Any gap j requires Bl(S1 \I)j check elements for S1

and Bl(S2\I)j check elements for S2. In the worst case,
no check element will be useful to cover more than one
gap. Therefore, the expected number of check elements
in C1 needed for an index j is given by:

Pr[gap in j]E[Bl(S1\I)j |gap at index j] =

Pr[Bl(S1\I)j > 0] Pr[Bl(S2\I)j > 0]

E[Bl(S1\I)j |Bl(S1\I)j > 0] =

Pr[Bl(S1\I)j > 0] Pr[Bl(S2\I)j > 0]

E[Bl(S1\I)j]

Pr[Bl(S1\I)j > 0]
=

Pr[Bl(S2\I)j > 0]E[Bl(S1\I)j] ≤ (1− e−l2)l1

≤ l1l2.

The claim follows from linearity of expectation.

APPENDIX III
ASYMPTOTIC BEHAVIOR OF THE ENTROPY OF

POISSON DISTRIBUTION

If we expand the definition of H(l) (15)

H(l) = −

+∞∑

i=1

li

i!
e−li log l

+

+∞∑

i=1

li

i!
e−li log(i!) +

+∞∑

i=1

li

i!
e−ll log(e)

and then we consider l→ 0+, the order of the three terms
is:

H(l) =
[
−le−l log l + O(l2 log l)

]

+

[
1

2
l2e−l + O(l3)

]
+

[
le−l log e + O(l2)

]

= −l log l + O(l). (14)

[21] analyzes the behavior of H(l) for l→ +∞:

H(l) =
1

2
log(2πel) + O(

1

l
).

APPENDIX IV
PROOF OF CLAIM 1

If the compressor is optimal, z will be equal to the en-
tropy of Bl(S); an upper bound to that entropy is given by
m·H(χ), where χ is the random variable representing any
of the counters and H is the entropy of a random variable.

χ turns out to be a binomial random variable with kn
trials and probability 1

m
for each trial; its mean value is

therefore :

l =
kn

m

which is the load of the filter.
If kn� l, then the probability distribution of χ can be

approximated by the Poisson distribution with mean l:

Pr[χ = i] =

(
kn

i

)(
1

m

)i (
1−

1

m

)kn−i

' pi ≡
li

i!
e−l.

So, we can express the entropy of a counter as the entropy
H(l) of the Poisson distribution with mean l:

H(χ) ' H(l) ≡ −

+∞∑

i=0

pi log(pi) (15)

14

APPENDIX V
PROOF OF CLAIM 2

Suppose the attacker can return an incorrect intersec-
tion I ′ 6= I , along with some (potentially incorrect) check
value:

(C ′

1, C
′

2, w
′

1, w
′

2)

and the verification algorithm outputs 1.
The security of the element RSA accumulators

Acc(S1),Acc(S2) guarantees that (I ′ ∪ C ′

1) ⊂ S1 and
(I ′ ∪ C ′

2) ⊂ S2. This implies I ′ ⊂ I , therefore the at-
tack is a deletion attack.

So, there exist one or more values x1, . . . , xd ∈ I \I ′.
For any such value xi, consider any counter j such that
hl(xi) = j, for some l = 1, . . . , k (h1, . . . , hk are the k
hash functions employed by the Bloom filter).

Bl(I)j = Bl(I ′)j + Bl(I\I ′)j (16)

Bl(I ′)j < B̂lj (17)

Bl(I ′ ∪ C ′

1)j = (B1)j (18)

Bl(I ′ ∪ C ′

2)j = (B2)j (19)

where the first equality (16) is due to the additive defi-
nition of the Bloom filter; the second is a direct conse-
quence; (18), (19) are due to (17) and to the fact that
we assumed the incorrect query answer is accepted by the
Vrfy algorithm.

The fact that I ′ ∪ C ′

1 ⊂ S1 and that Bl(I ′ ∪ C ′

1)j =
(B1)j implies that C ′

1 must contain the value xi that was
removed from the intersection. For the same reason C ′

2

must contains xi. But this is a contradiction, because one
of the test that the verification algorithm performs is that
C ′

1 and C ′

2 are disjoint. So, no attack is possible.

APPENDIX VI
DESCRIPTION OF THE SECURE OPERATION SCHEME

ALGORITHMS

15

type BaseCertificate
begin

sign; {for each standard Bloom filter size m, sign[m] is the signature
of the source on the pair (Bl, acc) where Bl is the Bloom filter
of the set with m counters.}

acc; {the RSA accumulator of the set}
witn; {an witness for the RSA accumulator}
modulus; {the modulus for the RSA accumulator}
bf; {a Bloom filter of this set}

end

Fig. 6: An object of this type is a certificate for some base set S, or a component for some CompoundCertificate
figure

function CS = digest(S)
begin

CS := new BaseCertificate();
CS.modulus := the public RSA accumulator modulus of this node;
CS.witn := the public RSA accumulator base of this node;
compute representatives y1, . . . , yc of the elements of S;
CS.acc := (CS.witn)ˆ(y1 · · · · · yc) mod CS.modulus;
foreach m in {standard Bloom filter sizes}
begin
auxbf := Bl(S, m);
CS.sign[m] := signature on (CS.acc, auxbf);

end
end

Fig. 7: Returns a BaseCertificate for the set S
figure

type CompoundCertificate
begin

comp; {comp[1] is the certificate for S1 and
comp[2] is the certificate for S2}

operation; {the operation that generated the set S from S1 and S2.
Can be union, intersection or difference}

refsize; {the reference size of the Bloom filter. With this certificate,
it is possible to reconstruct the Bloom filter of S of size
refsize, without knowing S}

check; {check[1] and check[2] are the two check element sets for the
operation}

tag; {Valid only if operation=union. For each element x in S,
tag[x] can be either left, right or both. It means, respectively,
that x is in S1-S2, x is in S2-S1 and x is in both S1 and S2}

end

Fig. 8: An instance of this type represents the certificate for some set S obtained applying a set operation on two sets
S1 and S2.
figure

16

function (S,CS) = secureOperation(S1,S2,CS1,CS2,operation)
begin
I := S1 ∩ S2;
S := operation(S1, S2);
CS := new CompoundCertificate();
CS.comp[1] := CS1;
CS.comp[2] := CS2;
CS.operation := operation;

if CS1 and CS2 {are both} BaseCertificate
begin
CS.refsize:=bestRefSize(S1.size, S2.size);
CS.comp[1].bf := Bl(S1, CS.refsize);
CS.comp[1].bf := Bl(S2, CS.refsize);

end
else if CS1 is Compound and CS2 is Base
begin
CS.refsize := CS1.refsize;
CS.comp[2].bf := Bl(S2.set, CS.refsize);

end
else if CS1 is Base and CS2 is Compound
begin
CS.refsize := CS2.refsize;
CS.comp[1].bf := Bl(S2.set, CS.refsize);

end
else
begin
CS.refsize := min(CS1.refsize, CS2.refsize);
(CS.check[1], CS.check[2]) := checkElements(S1-I, S2-I, CS.refsize);

end

if operation = union
foreach x in S

if x in S1 - S2
then

CS.tag[x] := left;
else if x in S2 - S1

CS.tag[x] := right;
else if x in I

CS.tag[x] := both;

if operation = difference
begin
CS.check[1] := I;
updateWitnesses(CS.comp[2], S2-CS.check[2]);

end
else if operation = intersection
begin
updateWitnesses(CS.comp[1], S1-I-CS.check[1]);
updateWitnesses(CS.comp[2], S2-I-CS.check[2]);

end

Fig. 9: This function performs the specified operation on the two sets S1, S2. Available operations are union,
intersection and difference. Arguments CS1 and CS2 are the certificates for the sets S1 and S2. The function
returns the set S that is the result of the operation and the certificate CS for it.
figure

17

function m = bestRefSize(n1, n2)
begin

{choose} m {out of the standard Bloom filter sizes, such that
} m(H(l1) + H(l2) + 2ul1l2) {is minimized,
where} l1 =n1/m , l2 =n2/m;

end

Fig. 10: Returns the best Bloom filter size to be used when performing an operation between two sets of size n1 and
n2, respectively.
figure

procedure updateWitnesses(CSi, Si)
begin
{compute representatives y1, . . . , yc of} Si;
foreach BC BaseCertificate {in subtree of} CSi

BC.witn := (BC.witn)y1·····yc mod BC.modulus;
end

Fig. 11: Modifies all the witnesses in the certificate CSi, in order to exclude the elements in set Si. That is, for each
witness w in CSi, if before this call w was the witness for A ⊂ B, for some sets A, B, then, after this call, w is a
witness for (A\Si) ⊂ B
figure

function (C1, C2) = checkElements(S1, S2, refsize)
begin

C1 := empty;
C2 := empty;
{build hashtables} T1 {of} S1 {and} T2 {of} S2 {with} refsize {buckets};
for b = 1 to refsize
if T1[b] <> empty and T2[b] <> empty
begin

C1 := C1 ∪ T1[b];
C2 := C2 ∪ T2[b];

end
end

Fig. 12: Computes the check elements of pair of disjoint sets (S1, S2), assuming Bloom filters of size refsize.
T1[b] represents the set of elements in bucket b of hashtable T1
figure

18

function auxbf = recursiveVerify(CS, Set0)
begin

if CS is BaseCertificate
begin
{verify that }CS.sign[CS.bf.size]{ is correct signature for }(CS.acc, CS.bf);
{compute representatives y1, . . . , yc of the elements in} Set0;
{verify that} (CS.witn)ˆ({y1 · · · · · yc})mod CS.modulus = CS.acc;
auxbf := CS.bf;

end
else if CS.operation = intersection or CS.operation = union
begin
if CS.operation = intersection
begin

Set1 := Set0;
Set2 := Set0;

end
else
begin

Set1 := {x ∈Set0: CS.tag[x]=left or CS.tag[x]=both };
Set2 := {x ∈Set0: CS.tag[x]=right or CS.tag[x]=both };

end
auxbf1 := recursiveVerify(CS.comp[1], Set1 ∪ CS.check[1]);
auxbf2 := recursiveVerify(CS.comp[2], Set2 ∪ CS.check[2]);
{shrink} auxbf1 {and} auxbf2 {to size} CS.refsize;
auxbf := new {Bloom filter of size} CS.refsize;
for j=1 to auxbf.size
begin

c1[j] = {number of elements of} CS.check[1] {that map to index} j;
c2[j] = {number of elements of} CS.check[2] {that map to index} j;
if c1[j] = c2[j] = 0
auxbf[j] := min(auxbf1[j], auxbf2[j])

else
begin
{verify that} auxbf1[j] - c1[j] = auxbf2[j] - c2[j];
auxbf[j] := auxbf1[j] - c1[j];

end
end

end
else if CS.operation = difference
begin
auxbf1 := recursiveVerify(CS.comp[1], Set0 ∪ CS.check[1]);
auxbf2 := recursiveVerify(CS.comp[2], CS.check[1] ∪ CS.check[2]);
{shrink} auxbf1 {and} auxbf2 {to size} CS.refsize;
auxbf := new {Bloom filter of size} CS.refsize;
for j=1 to auxbf.size
begin
c1[j] = {number of elements of} CS.check[1] {that map to index} j;
c2[j] = {number of elements of} CS.check[2] {that map to index} j;
if c1[j] < auxbf1[j]
begin

{verify that} auxbf2[j] = c1[j] + c2[j];
auxbf[j] := auxbf1[j] - c1[j];

end
else

auxbf[j] := 0;
end

end

Fig. 13: Helper function for verify
figure

19

procedure verify(S, CS)
begin

auxbf := recursiveVerify(CS, S);
{verify that} auxbf = Bl(S, auxbf.size);

end

Fig. 14: Verifies that the set S is authentic, given the certificate CS. Returns in case S is authentic, generates an error
otherwise.
figure

