Scalable Application-Layer Multicast for Content Distribution

Bobby Bhattacharjee, Suman Banerjee
University of Maryland

http://www.cs.umd.edu/projects/nice
Scalable Wide-Area Content Delivery

- Wide-area content delivery is an important, emerging application

 Multicast *primitive* is certainly useful for scalability

 However, network layer multicast not widely deployed yet . . .

- Possible Solution: Implement multicast in the application layer

 Advantages: no change to infrastructure \rightarrow instant deployment

 Disadv.: Higher b/w usage, longer latency, more state at end nodes

Goal: Devise an app.-layer multicast protocol with “good” scalability and efficiency properties
“Good” Properties for App.-layer Multicast

- **Low Stress** — minimize copies of the same data sent over a link

 Requires level topology information

- **Low Stretch** — minimize overlay latency w.r.t. unicast shortest path latency

 If topology known, e2e stretch bounded by constant factor (UCB)

- **Low Per-node state** — ideally constant amount of state

 NICE

- **Comparable robustness and security**

 Node failures must be accounted for
Approaches for Building Overlay Trees

● Mesh-first:
 Creates a more densely connected structure first
 Data delivery path is a spanning tree of the mesh nodes
 Examples: Narada (CMU), Gossamer (UCB)

● Tree-first:
 The data delivery tree is created first
 Robustness via additional edges
 Examples: Yoid (ACIRI), ALMI (WU)
Narada Protocol (CMU)

- Canonical mesh-first scheme
 - New members choose random set of existing hosts as neighbors
 - Mesh quality is improved over time
 - Mechanism for recovery from mesh partitions
- Data delivery using source-specific trees
 - All members participate in a routing protocol over the mesh
 - Members forward data to other members using RPF check
- Requires $O(\text{num. of members})$ state and comm. at each member
- Simulated [Sigmetrics ’00] and implemented [SIGCOMM ’01]
 - Ideal for small groups
NICE Overlay Trees

- Consists of

 A control topology

 Structure with high connectivity

 A data delivery topology

 The control topology implicitly defines a base data delivery tree

 However, the data tree can be independent of the control topology

- Main idea: Reduce state by using a hierarchy

 End-hosts arranged in hierarchy of layers and clusters
- Structure Invariants

An end-host belongs to a single cluster at any layer

Cluster sizes have lower and upper bounds — between k and $2k$

The cluster leader is the center of the cluster

Cluster leaders at a layer join a cluster in the next higher layer
• Control path is the union of all the intra-cluster peerings.
 Usually, within a cluster, connectivity is high

• The control topology *implicitly* defines a data delivery topology
 Possible to define other, better, data delivery trees
Join Procedure

- Assume a Rendezvous Point (RP)

- Join overhead: $O(\log N)$ RTTs and $O(k \log N)$ messages

Some optimizations possible
Maintaining the Invariants

- Clusters split/merge to maintain size bounds

- Cluster Split:
 Leader partitions the cluster into two equal-sized clusters

- Cluster Merge:
 Small clusters merge with neighboring clusters at the same layer
Leader Elections

- Heartbeat messages within each cluster
- Leader election protocol requires knowledge of all cluster members
State and Messages

- Members keep state for all members in each cluster to which they belong.
- On average, state kept at each member is constant.
- On average, control traffic overhead per member is constant.

In the worst case, both state and traffic overhead is $O(k \log N)$.
Simulation Study

- Packet-level simulations using 10 000 node TS graphs
- Hosts join and leave the multicast group arbitrarily
- Experiments with groups of size upto 2048
- Comparisons with NARADA protocol
Metrics

- Tree quality
 - Stretch (Relative Delay Penalty)
 - Stress
 - Tree degree
- Failure recovery
 - Fraction of (remaining) members that receive a packet as end-hosts join (and leave) the group
- Protocol overheads
 - Byte overheads at routers and end-hosts
Join Phase: 128 members join in the first 200s; 5×16 members leave after time 1000s
128 end-hosts join

Average receiver path length (hops)

Time (in secs)

NICE
Narada-5
IP Multicast
Unicast
Failure recovery: Fr. of Group that receives data

128 end-hosts join followed by periodic leaves in sets of 16

Fraction of hosts that correctly received data

Time (in secs)

16 X 5
Leave

NICE
Narada-5
Overhead

Control traffic bandwidth at the access links

- NICE (Avg)
- Narada-5 (Avg)
Summary

<table>
<thead>
<tr>
<th>Group Size</th>
<th>Router Stress</th>
<th>Link Stress</th>
<th>Path Length</th>
<th>Overhead (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narada-5</td>
<td>NICE</td>
<td>Narada-5</td>
<td>NICE</td>
<td>Narada-30</td>
</tr>
<tr>
<td>32</td>
<td>2.13</td>
<td>1.54</td>
<td>20.42</td>
<td>9.23</td>
</tr>
<tr>
<td>128</td>
<td>3.04</td>
<td>2.06</td>
<td>21.55</td>
<td>65.62</td>
</tr>
<tr>
<td>512</td>
<td>4.09</td>
<td>2.57</td>
<td>24.74</td>
<td>199.96</td>
</tr>
<tr>
<td>2048</td>
<td>-</td>
<td>2.92</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Path lengths and failure recovery similar for NARADA and NICE
- Stress (and variance of stress) is lower with NICE
- NICE has much lower control overhead
Current work

● Implementation

 Application: streaming-media delivery

● Interoperability with network layer multicast

● Incorporating security

 NICE security component

● An incentive based cooperation framework