Scalable Application-Layer Multicast for Content Distribution

Bobby Bhattacharjee, Suman Banerjee University of Maryland

http://www.cs.umd.edu/projects/nice

Scalable Wide-Area Content Delivery

 Wide-area content delivery is an important, emerging application Multicast *primitive* is certainly useful for scalability However, network layer multicast not widely deployed yet ...

Possible Solution: Implement multicast in the application layer
 Advantages: no change to infrastructure → instant deployment
 Disadv.: Higher b/w usage, longer latency, more state at end nodes

Goal: Devise an app.-layer multicast protocol with "good" scalability and efficiency properties

"Good" Properties for App.-layer Multicast

st Application Layer Multicast

 Low Stress — minimize copies of the same data sent over a link Requires level topology information

- Low Stretch minimize overlay latency w.r.t. unicast shortest path latency
 If topology known, e2e stretch bounded by constant factor (UCB)
- Low Per-node state ideally constant amount of state
 NICE
- Comparable robustness and security

Node failures must be accounted for

Approaches for Building Overlay Trees

• Mesh-first:

Creates a more densely connected structure first Data delivery path is a spanning tree of the mesh nodes Examples: Narada (CMU), Gossamer (UCB)

• Tree-first:

The data delivery tree is created first Robustness via additional edges Examples: Yoid (ACIRI), ALMI (WU)

Narada Protocol (CMU)

• Canonical mesh-first scheme

New members choose random set of existing hosts as neighbors Mesh quality is improved over time Mechanism for recovery from mesh partitions

• Data delivery using source-specific trees

All members participate in a routing protocol over the mesh Members forward data to other members using RPF check

- Requires O(num. of members) state and comm. at each member
- Simulated [Sigmetrics '00] and implemented [SIGCOMM '01]
 Ideal for small groups

NICE Overlay Trees

Consists of

A control topology

Structure with high connectivity

A data delivery topology

The control topology implicitly defines a base data delivery tree

However, the data tree can be independent of the control topology

• Main idea: Reduce state by using a hierarchy

End-hosts arranged in hierarchy of layers and clusters

NICE Hierarchy

• Structure Invariants

An end-host belongs to a single cluster at any layer

Cluster sizes have lower and upper bounds — between k and 2k

The cluster leader is the center of the cluster

Cluster leaders at a layer join a cluster in the next higher layer

Bhattacharjee 8

Example Control and Data Paths

- Control path is the union of all the intra-cluster peerings.
 Usually, within a cluster, connectivity is high
- The control topology *implicitly* defines a data delivery topology Possible to define other, better, data delivery trees

Join Procedure

• Join overhead: $O(\log N)$ RTTs and $O(k \log N)$ messages

Some optimizations possible

Maintaining the Invariants

- Clusters split/merge to maintain size bounds
- Cluster Split:

Leader partitions the cluster into two equal-sized clusters

• Cluster Merge:

Small clusters merge with neighboring clusters at the same layer

Leader Elections

- Heartbeat messages within each cluster
- Leader election protocol requires knowledge of all cluster members

State and Messages

- Members keep state for all members in each cluster to which they belong
- On average, state kept at each member is constant
- On average, control traffic overhead per member is constant

In the worst case, both state and traffic overhaed is $O(k \log N)$

Simulation Study

- Packet-level simulations using 10 000 node TS graphs
- Hosts join and leave the multicast group arbitrarily
- Experiments with groups of size upto 2048
- Comparisons with NARADA protocol

Metrics

• Tree quality

Stretch (Relative Delay Penalty)

Stress

Tree degree

• Failure recovery

Fraction of (remaining) members that receive a packet as end-hosts join (and leave) the group

• Protocol overheads

Byte overheads at routers and end-hosts

Tree Quality: Stress

128 end-hosts join

Join Phase: 128 members join in the first 200s; 5×16 members leave after time 1000s

Tree Quality: Stretch

128 end-hosts join

Failure recovery: Fr. of Group that receives data

Overhead

Summary

Group	Router Stress		Link Stress		Path Length		Overhead (KB)	
Size	Narada-5	NICE	Narada-5	NICE	Narada-5	NICE	Narada-30	NIC
32	2.13	2.42	1.54	1.90	20.42	17.23	9.23	1.03
128	3.04	2.36	2.06	1.63	21.55	21.61	65.62	1.19
512	4.09	2.34	2.57	1.62	24.74	22.63	199.96	1.93
2048	-	2.92	-	1.93	-	24.08	-	5.18

• Path lengths and failure recovery similar for NARADA and NICE

- Stress (and variance of stress) is lower with NICE
- NICE has much lower control overhead

Current work

• Implementation

Application: streaming-media delivery

- Interoperability with network layer multicast
- Incorporating security

NICE security component

• An incentive based cooperation framework