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Cooperative Applications

• Applications that allocate some resources for use by other application

peers

- Resources include processing, b/w, and storage

• Examples: on-line media streaming, peer-to-peer applications including

file sharing and lookup
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Cooperative Application Models

• Centralized trust repository (Mojonation, ebay)

- requires central registry and authority

• Implicit cooperation (p2p apps)

- any individual user may choose not to cooperate

but they still get full benefits from the system

- integrity and correctness depends on all users cooperating

- Current solutions don’t work well, e.g. quotas in CFS, or require

centralized certificate authorities, e.g. secure routing in Pastry

• NICE: decentralized robust cooperation

- enable open cooperative applications
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NICE: Services

• Efficient Signaling

• Resource Advertisement and Location

• Secure resource bartering and trading

• Distributed “trust” valuation
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NICE: Preliminaries

• Each user chooses a NICE identifier

- NICE id contains a public key

- Key does not need to be published or certified

- Users may simultaneously use multiple ids

• Each host has a owner

- Owners set per-host policies

- Host policies determine resource allocation and pricing
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NICE in Operation

alice bob carol

eve foo trudy

principal: alice

Nice id: public key, loc. info

Resources (for barter)
Policy database (for pricing)
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NICE in Operation

alice bob carol

eve foo trudy

resource
requests

resource
advertisements
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NICE in Operation

alice bob carol

eve foo trudy

resource
  barter

foo and alice 
exchange
resource
certificates

trudy and
carol exch.
resource 
certificates
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NICE in Operation

alice bob carol

eve foo trudy

alice may
redeem foo’s
resource certificate
and use resources at
foo

foo
can trade
alice’s certificate
to carol for other
resources
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NICE in Operation

alice bob carol

eve foo trudy

trudy may decide
NOT to redeem
certificates she
issued!
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pricing

   local
resources

secure
bartering/
trading

trust inference

resource
location

   resource
advertisement

NICE

applications node
owner

  local policy

 secure
exchange

• Users set local resource and pricing policy

• Applications request specific resources

• NICE locates appropriate resources and securely exchanges/trades

resource certificates

• Resources certificates are redeemed for named resources
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Resource Pricing

• Two main objective of default policies:

- Form robust cooperative groups

- Not lose large amounts of resources to malicious users

• Policies:

- Trust-based pricing

- Trust-based trading limits

• Default policies curb difficult DoS attacks



NICE Trust Closures, Page: 8

Trust Evaluation in NICE

• Integrity of entire NICE platform depends on trust computations

• A→ B trust is a local measure (at A) of how likely A believes a

transaction with B will be successful

• Users can use past experience to assign trust values

- Trust can also be inferred through other trusted users
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Goals of Trust Inference Schemes

• Users should be able to use local policy to assign trust

• Good nodes should find other good nodes efficiently . . .

. . . and not lose large amounts of resources

• Inference should be resilient against cooperating malicious groups

- Malicious users disseminate arbitrary trust information

- Good node cliques should be immune to such attacks
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Centralized Trust Evaluation

• Trust Graph

- Vertices are unique user identifiers

- Directed edges represent how much source trusts dest.

• Many different inference algorithms feasible

- Strongest Path

- Weighted sum of disjoint strongest paths
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Centralized Evaluation Examples
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• Strongest Path: (AEFB, 0.8)

- Inferred trust: 0.8

• Weighted sum of strongest disjoint paths:

- Two disjoint paths: (AEFB, 0.8; wt. .9), (ACBD, 0.6; wt. .6)

- Inferred trust: 0.72
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Distributed Trust Inference

• Two main problems to distribute

- Storage of trust information

- Efficiently locate relevant edges

• If trust graph can be efficiently reproduced, then users can use any

centralized algorithm to infer trust
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Storing trust values in Cookies

• Suppose Alice redeems a resource certificate signed by Bob

• Alice assigns a [0,1] value to the transaction quality and signs a

transaction record — called a cookie

• Bob stores the cookie signed by Alice

- Alice does not keep a record of the transaction!

- The set of Alice’s cookies stored by Bob determines the value of the

Alice→Bob edge
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Using cookies: base case

• Suppose Bob later wants to use Alice’s resources:

- Bob presents Alice a cookie(s) signed by Alice herself

- Alice can verify her own signature . . .

. . . and use the cookie values to price her resources
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Using Cookies: recursive case

• Bob wants to use Carol’s resources but does not have cookies from

Carol

- Suppose Alice does have cookies from Carol

• Bob searches for Carol’s cookies amongst users from whom he has

cookies (Alice)

• Alice gives Bob a copy of the Carol→Alice cookies

• Bob presents Carol with a Carol→Bob cookie path

i.e. Bob produces a {Carol→Alice, Alice→Bob} cookie set

• Carol can now infer a trust value for Bob
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Properties of cookie-based trust storage

• If Bob wants to use resources at Carol, he has to initiate a cookie search

- Guards against a DoS attack

• Bob only stores statements of the form “X trusts Bob”

- Clearly, Bob will discard any low valued cookies he gets

- Users store cookies most beneficial to their own cause

• Transaction record storage is completely distributed

- Fabricated transactions don’t affect legitimate users
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Properties of cookie-based trust storage

• If Bob wants to use resources at Carol, he has to initiate a cookie search

- Guards against a DoS attack

• Bob only stores statements of the form “X trusts Bob”

- Clearly, Bob will discard any low valued cookies he gets

- Users store cookies most beneficial to their own cause

• Transaction record storage is completely distributed

- Fabricated transactions don’t affect legitimate users

How to locate cookies?

easy answer: flood queries for specific cookies
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Flooding Example
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• Initial cookie state
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Flooding Example
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Flooding Example
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• The b→a component of the trust graph is reconstructed via flooding
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Analysis

• Flooding is “guaranteed” to reconstruct relevant trust graph component

• Problems:

- Inefficient

- Bad nodes can erase information about failed transactions by

simply deleting low valued cookies!
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Refinements

• Search efficiency

- Use cookie-digests to direct searches

- Limit search outdegree

• Store failed transaction information in “negative cookies”

• Quickly discover good nodes using “preference lists”
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Using digests to speed up search

• Suppose Alice gives a cookie to Bob

• Along with the cookie, Alice also gives Bob a digest of all users from

whom she has cookies

- Cookie digests efficiently implemented using Bloom filters

• Searches proceed along random edges only for a hop or two

- After a random search phase, searches are forwarded only if there is

a hit in a cookie digest
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Digest-based search example
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Digest-based search example
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Digest-based search example
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Digest-based search example
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Negative Cookies

• Suppose Eve uses Alice’s resources, but does not provide the

negotiated resources she promised

• In the original scheme, Eve would receive a low-valued cookie from

Alice. . . and promptly discard it

• Instead, Alice stores the low-valued “negative” cookie herself

- Alice won’t trust Eve as long as she stores the negative cookie

• The negative cookie can also be used by Bob (who trusts Alice)

- Before accepting a transaction with Eve, Bob searches for

negative cookies for Eve at users he trusts
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Preference Lists

• To quickly discover other good nodes, each user (say Bob) keeps a

preference list

• Bob’s preference list contains potential high trust nodes (with whom Bob

has not interacted yet)

• Bob interacts with nodes in the preference list with higher probability

• As Bob discovers new nodes during cookie searches, they are included

in Bob’s preference list iff they have high trust values
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Results: Experimental Setup

• Simulations on 64-2K node groups

• Simulations include good and bad users

• Two types of results:

- Scalability

- Robustness
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Scalability
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Good, Bad, and Regular users

• Three user models:

- Good users: implement entire protocol correctly

- Good-good transactions always result in 1.0 valued cookie

- Regular users: implement entire protocol correctly

- Good-regular transactions result in [0,1] range cookies

- Mean cookie value: 0.7

- Bad users: form a clique before simulation begins

- Always report 1.0 value for all bad users

- Bad-other transactions produce 1.0 cookies with prob. .5 . . .

- . . . and produce a 0.05 valued cookie with prob. 0.5
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Simulation setup

• Simulation includes preference lists, negative cookies, and digests

• At each time step, a user (Alice) is chosen

• Alice chooses another user (Bob) from her pref. list to start a transaction

• Alice-Bob transaction proceeds if Alice can find a 0.85 Alice-Bob path

(and if Bob cannot find a negative cookie for Alice)

• After two unsuccessful tries with different users, the simulator allows a

transaction without checking Alice’s credentials
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Behavior with Regular Users
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Failed Transactions with Bad Users
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Related Work

• Centralized trust inference
- Mojonation

- Intertrust DRM

- Commercial web sites, e.g. e-bay, avogato. . .

• Distributed trust inference

- PGP (one hop reference)

• p2p database to store user complaints, Aberer et. al.

• Previous work in centralized trust inference

- Direct experience & reputation-based inference (Abdul-Rahman

et. al.)
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Status

• Initial scheme will be presented at INFOCOM 2003.

• Current work on applying scheme to existing systems, specifically

quotas in CFS, and robust routing in DHTs

• Prototype implementation underway


