
NICE Trust Closures, Page: 0

Distributed Trust Closures in NICE

Seungjoon Lee

Rob Sherwood

Bobby Bhattacharjee

University of Maryland

www.cs.umd.edu/projects/nice

NICE Trust Closures, Page: 1

Cooperative Applications

• Applications that allocate some resources for use by other application

peers

- Resources include processing, b/w, and storage

• Examples: on-line media streaming, peer-to-peer applications including

file sharing and lookup

NICE Trust Closures, Page: 2

Cooperative Application Models

• Centralized trust repository (Mojonation, ebay)

- requires central registry and authority

NICE Trust Closures, Page: 2

Cooperative Application Models

• Centralized trust repository (Mojonation, ebay)

- requires central registry and authority

• Implicit cooperation (p2p apps)

- any individual user may choose not to cooperate

but they still get full benefits from the system

- integrity and correctness depends on all users cooperating

- Current solutions don’t work well, e.g. quotas in CFS, or require

centralized certificate authorities, e.g. secure routing in Pastry

NICE Trust Closures, Page: 2

Cooperative Application Models

• Centralized trust repository (Mojonation, ebay)

- requires central registry and authority

• Implicit cooperation (p2p apps)

- any individual user may choose not to cooperate

but they still get full benefits from the system

- integrity and correctness depends on all users cooperating

- Current solutions don’t work well, e.g. quotas in CFS, or require

centralized certificate authorities, e.g. secure routing in Pastry

• NICE: decentralized robust cooperation

- enable open cooperative applications

NICE Trust Closures, Page: 3

NICE: Services

• Efficient Signaling

• Resource Advertisement and Location

• Secure resource bartering and trading

• Distributed “trust” valuation

NICE Trust Closures, Page: 4

NICE: Preliminaries

• Each user chooses a NICE identifier

- NICE id contains a public key

- Key does not need to be published or certified

- Users may simultaneously use multiple ids

• Each host has a owner

- Owners set per-host policies

- Host policies determine resource allocation and pricing

NICE Trust Closures, Page: 5

NICE in Operation

alice bob carol

eve foo trudy

NICE Trust Closures, Page: 5

NICE in Operation

alice bob carol

eve foo trudy

principal: alice

Nice id: public key, loc. info

Resources (for barter)
Policy database (for pricing)

NICE Trust Closures, Page: 5

NICE in Operation

alice bob carol

eve foo trudy

resource
requests

resource
advertisements

NICE Trust Closures, Page: 5

NICE in Operation

alice bob carol

eve foo trudy

resource
 barter

foo and alice
exchange
resource
certificates

trudy and
carol exch.
resource
certificates

NICE Trust Closures, Page: 5

NICE in Operation

alice bob carol

eve foo trudy

alice may
redeem foo’s
resource certificate
and use resources at
foo

foo
can trade
alice’s certificate
to carol for other
resources

NICE Trust Closures, Page: 5

NICE in Operation

alice bob carol

eve foo trudy

trudy may decide
NOT to redeem
certificates she
issued!

NICE Trust Closures, Page: 6NICE: Component Architecture

pricing

 local
resources

secure
bartering/
trading

trust inference

resource
location

 resource
advertisement

NICE

applications node
owner

 local policy

 secure
exchange

• Users set local resource and pricing policy

• Applications request specific resources

• NICE locates appropriate resources and securely exchanges/trades

resource certificates

• Resources certificates are redeemed for named resources

NICE Trust Closures, Page: 7

Resource Pricing

• Two main objective of default policies:

- Form robust cooperative groups

- Not lose large amounts of resources to malicious users

• Policies:

- Trust-based pricing

- Trust-based trading limits

• Default policies curb difficult DoS attacks

NICE Trust Closures, Page: 8

Trust Evaluation in NICE

• Integrity of entire NICE platform depends on trust computations

• A→ B trust is a local measure (at A) of how likely A believes a

transaction with B will be successful

• Users can use past experience to assign trust values

- Trust can also be inferred through other trusted users

NICE Trust Closures, Page: 9

Goals of Trust Inference Schemes

• Users should be able to use local policy to assign trust

• Good nodes should find other good nodes efficiently . . .

. . . and not lose large amounts of resources

• Inference should be resilient against cooperating malicious groups

- Malicious users disseminate arbitrary trust information

- Good node cliques should be immune to such attacks

NICE Trust Closures, Page: 10

Centralized Trust Evaluation

• Trust Graph

- Vertices are unique user identifiers

- Directed edges represent how much source trusts dest.

• Many different inference algorithms feasible

- Strongest Path

- Weighted sum of disjoint strongest paths

NICE Trust Closures, Page: 11

Centralized Evaluation Examples

(Alice)

E

C D

F

B

0.6

0.9

0.7

0.7

0.8

0.9

0.9

0.8 A
(Bob)

• Strongest Path: (AEFB, 0.8)

- Inferred trust: 0.8

• Weighted sum of strongest disjoint paths:

- Two disjoint paths: (AEFB, 0.8; wt. .9), (ACBD, 0.6; wt. .6)

- Inferred trust: 0.72

NICE Trust Closures, Page: 12

Distributed Trust Inference

• Two main problems to distribute

- Storage of trust information

- Efficiently locate relevant edges

• If trust graph can be efficiently reproduced, then users can use any

centralized algorithm to infer trust

NICE Trust Closures, Page: 13

Storing trust values in Cookies

• Suppose Alice redeems a resource certificate signed by Bob

• Alice assigns a [0,1] value to the transaction quality and signs a

transaction record — called a cookie

• Bob stores the cookie signed by Alice

- Alice does not keep a record of the transaction!

- The set of Alice’s cookies stored by Bob determines the value of the

Alice→Bob edge

NICE Trust Closures, Page: 14

Using cookies: base case

• Suppose Bob later wants to use Alice’s resources:

- Bob presents Alice a cookie(s) signed by Alice herself

- Alice can verify her own signature . . .

. . . and use the cookie values to price her resources

NICE Trust Closures, Page: 15

Using Cookies: recursive case

• Bob wants to use Carol’s resources but does not have cookies from

Carol

- Suppose Alice does have cookies from Carol

• Bob searches for Carol’s cookies amongst users from whom he has

cookies (Alice)

• Alice gives Bob a copy of the Carol→Alice cookies

• Bob presents Carol with a Carol→Bob cookie path

i.e. Bob produces a {Carol→Alice, Alice→Bob} cookie set

• Carol can now infer a trust value for Bob

NICE Trust Closures, Page: 16

Properties of cookie-based trust storage

• If Bob wants to use resources at Carol, he has to initiate a cookie search

- Guards against a DoS attack

• Bob only stores statements of the form “X trusts Bob”

- Clearly, Bob will discard any low valued cookies he gets

- Users store cookies most beneficial to their own cause

• Transaction record storage is completely distributed

- Fabricated transactions don’t affect legitimate users

NICE Trust Closures, Page: 17

Properties of cookie-based trust storage

• If Bob wants to use resources at Carol, he has to initiate a cookie search

- Guards against a DoS attack

• Bob only stores statements of the form “X trusts Bob”

- Clearly, Bob will discard any low valued cookies he gets

- Users store cookies most beneficial to their own cause

• Transaction record storage is completely distributed

- Fabricated transactions don’t affect legitimate users

How to locate cookies?

easy answer: flood queries for specific cookies

NICE Trust Closures, Page: 18

Flooding Example

a c

b

f

e

d

a

b, e

c

b, d

d, f

c, d, e

• Initial cookie state

NICE Trust Closures, Page: 18

Flooding Example

a c

b

f

e

d

a

b, e

c

b, d

d, f

c, d, e

NICE Trust Closures, Page: 18

Flooding Example

a c

b

f

e

d

a

b, e

c

b, d

d, f

c, d, e

NICE Trust Closures, Page: 18

Flooding Example

a c

b

f

e

d

a

b, e

c

b, d

d, f

c, d, e

• The b→a component of the trust graph is reconstructed via flooding

NICE Trust Closures, Page: 19

Analysis

• Flooding is “guaranteed” to reconstruct relevant trust graph component

• Problems:

- Inefficient

- Bad nodes can erase information about failed transactions by

simply deleting low valued cookies!

NICE Trust Closures, Page: 20

Refinements

• Search efficiency

- Use cookie-digests to direct searches

- Limit search outdegree

• Store failed transaction information in “negative cookies”

• Quickly discover good nodes using “preference lists”

NICE Trust Closures, Page: 21

Using digests to speed up search

• Suppose Alice gives a cookie to Bob

• Along with the cookie, Alice also gives Bob a digest of all users from

whom she has cookies

- Cookie digests efficiently implemented using Bloom filters

• Searches proceed along random edges only for a hop or two

- After a random search phase, searches are forwarded only if there is

a hit in a cookie digest

NICE Trust Closures, Page: 22

Digest-based search example

a c

b

f

e

d

a: c, d, e

b: c
e: d, f

c: b, e

b: c
d: a

d: a
f: b, d

c: b, e
d: a
e: d, f

NICE Trust Closures, Page: 22

Digest-based search example

a c

b

f

e

d

a: c, d, e

b: c
e: d, f

c: b, e

b: c
d: a

d: a
f: b, d

c: b, e
d: a
e: d, f

NICE Trust Closures, Page: 22

Digest-based search example

a c

b

f

e

d

a: c, d, e

b: c
e: d, f

c: b, e

b: c
d: a

d: a
f: b, d

c: b, e
d: a
e: d, f

no digest hit hit in digest

NICE Trust Closures, Page: 22

Digest-based search example

a c

b

f

e

d

a: c, d, e

b: c
e: d, f

c: b, e

b: c
d: a

d: a
f: b, d

c: b, e
d: a
e: d, f

NICE Trust Closures, Page: 23

Negative Cookies

• Suppose Eve uses Alice’s resources, but does not provide the

negotiated resources she promised

• In the original scheme, Eve would receive a low-valued cookie from

Alice. . . and promptly discard it

• Instead, Alice stores the low-valued “negative” cookie herself

- Alice won’t trust Eve as long as she stores the negative cookie

• The negative cookie can also be used by Bob (who trusts Alice)

- Before accepting a transaction with Eve, Bob searches for

negative cookies for Eve at users he trusts

NICE Trust Closures, Page: 24

Preference Lists

• To quickly discover other good nodes, each user (say Bob) keeps a

preference list

• Bob’s preference list contains potential high trust nodes (with whom Bob

has not interacted yet)

• Bob interacts with nodes in the preference list with higher probability

• As Bob discovers new nodes during cookie searches, they are included

in Bob’s preference list iff they have high trust values

NICE Trust Closures, Page: 25

Results: Experimental Setup

• Simulations on 64-2K node groups

• Simulations include good and bad users

• Two types of results:

- Scalability

- Robustness

NICE Trust Closures, Page: 26

Scalability

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Number of random hops

Success Ratio

Fraction of Nodes Visited

Number of nodes=512
Number of nodes=1024
Number of nodes=2048

NICE Trust Closures, Page: 27

Good, Bad, and Regular users

• Three user models:

- Good users: implement entire protocol correctly

- Good-good transactions always result in 1.0 valued cookie

- Regular users: implement entire protocol correctly

- Good-regular transactions result in [0,1] range cookies

- Mean cookie value: 0.7

- Bad users: form a clique before simulation begins

- Always report 1.0 value for all bad users

- Bad-other transactions produce 1.0 cookies with prob. .5 . . .

- . . . and produce a 0.05 valued cookie with prob. 0.5

NICE Trust Closures, Page: 28

Simulation setup

• Simulation includes preference lists, negative cookies, and digests

• At each time step, a user (Alice) is chosen

• Alice chooses another user (Bob) from her pref. list to start a transaction

• Alice-Bob transaction proceeds if Alice can find a 0.85 Alice-Bob path

(and if Bob cannot find a negative cookie for Alice)

• After two unsuccessful tries with different users, the simulator allows a

transaction without checking Alice’s credentials

NICE Trust Closures, Page: 29

Behavior with Regular Users

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

Number of transactions involving good users

cookies between good nodes
paths between good nodes

NICE Trust Closures, Page: 30

Failed Transactions with Bad Users

0

0.1

0.2

0.3

0.4

2000 4000 6000 8000 10000 12000

Number of transactions involving good users

bad users=48
bad users=128
bad users=256

NICE Trust Closures, Page: 31

Related Work

• Centralized trust inference
- Mojonation

- Intertrust DRM

- Commercial web sites, e.g. e-bay, avogato. . .

• Distributed trust inference

- PGP (one hop reference)

• p2p database to store user complaints, Aberer et. al.

• Previous work in centralized trust inference

- Direct experience & reputation-based inference (Abdul-Rahman

et. al.)

NICE Trust Closures, Page: 32

Status

• Initial scheme will be presented at INFOCOM 2003.

• Current work on applying scheme to existing systems, specifically

quotas in CFS, and robust routing in DHTs

• Prototype implementation underway

