
The ADMS Project: Views \ R" Us �

Nick Roussopoulos Chungmin M. Chen Stephen Kelley

Department of Computer Science

and

Institute of Advanced Computer Studies

University of Maryland

College Park, MD 20742

fnick,ming@cs.umd.edu, skelley@umiacs.umd.edu

Alex Delis Yannis Papakonstantinou

Department of Information Systems

Queensland University of Technology

Brisbane, Australia

ad@icis.qut.edu.au

Stanford University

Department of Computer Science

Stanford, CA 94305

yannis@DB.Stanford.EDU

Abstract

The goal of the ADMS project is to create a framework for caching materialized views, access

paths, and experience obtained during query execution. The rationale behind this project is to

amortize database access cost over an extended time period and adapt execution strategies based

on experience. ADMS demonstrates the versatility of the views and their role in performance,

data warehousing, management and control of data distribution and replication.

1 Introduction and Motivation for ADMS

The main goal of the Adaptive Database Management System (ADMS) project is to capitalize on the

reuse of retrieved data and data paths in order reduce execution time of follow-up queries. From

its inception, ADMS is trying to satisfy a need that has been neglected, that is, learning to perform

better with experience obtained by query execution. Although database management systems use

sophisticated query optimization techniques and access methods, they neither gather nor retain any

experience from query execution and/or obtained results. For example, the cost of an execution plan

generated by the optimizer is not compared to the actual cost incurred during the execution in order

to adapt strategies during follow-up plans. Similarly, data retrieved during query execution has a very

short life span in the bu�er area of the database systems and is not retained on disk for future use.

ADMS's goals include capturing knowledge that a�ects query optimization, such as attribute value

distributions, selectivities, and page faults, and creating a framework for caching materialized views,

access paths, and amortizing their maintenance cost.

�This research was partially sponsored by the National Science Foundation under grants IRI-9057573 and GDR-85-

00108, by NASA/USRA under contracts 5555-09 and NAG 5-2926, by ARPA under contract 003195, by the Institute of

Systems Research, and by the University of Maryland Institute for Advanced Computer Studies (UMIACS).

1

Query execution cost can be reduced by reusing intermediate and/or �nal query results cached in

Materialized View Fragments (MVFs). These MVFs can then be accessed e�ciently at only a fraction

of the cost of their initial generation. Access paths can also be cached in the form of ViewCache

pointers [Rou91] which are trail markers captured during the execution of queries. They point to base

relation tuples and/or to lower level ViewCache entries satisfying a query and may be used by the

system during subsequent queries to walk through the same data paths without search.

Subsumption is a common technique for discovering useful MVFs and ViewCaches which contain

(subsume) the results of a given query. Such a facility is necessary in any large data warehouse in which

the catalog cannot be manually browsed. Subsumption goes hand-in-hand with validation techniques

such as cache coherence [FCL92] and relevant update [BLT86]. These are techniques for deciding

whether or not cached data is a�ected by updates. However, since these techniques were developed for

short-lived caches, they are of rather limited value for the long term disk caching of a warehouse. To

remedy this, ADMS uses incremental access methods [RES93] for propagating updates to the MVFs

and ViewCaches and, thus, prolongs their useful life span. The ADMS optimizer [CR94b] uses a

subsumption algorithm for discovering applicable MVFs and ViewCaches, incremental access methods

for updating MVFs and ViewCaches [Rou91], and an amortized cost model in evaluating alternative

execution plans.

The adaptive functionality of ADMS captures not only access paths, intermediate and �nal results,

but also the experience obtained during their use in query execution. The ADMS bu�er manager

observes page faults during execution of queries and builds a \page fault characteristic curve" which

predicts page faults under di�erent bu�er availability situations [CR93]. These predictions are then

used by the system for selecting global bu�er allocation strategies. Similarly, ADMS exploits knowledge

captured inside MVFs and ViewCaches. The selectivity of operators and cardinality of predicates are

harvested during the creation, use, and update of ViewCaches and MVFs, and are fed back to an

\adaptive curve-�tting" module which obtains accurate attribute value distributions with minimal

overhead [CR94a].

This philosophy of caching query results has been extended in the ADMS� Enhanced Client-

Server database architecture [RK86b, RK86a, RD91, RES93, DR92, DR93]. MVFs are dynamically

downloaded from multiple heterogeneous (commercial) server DBMSs to clients running ADMS{, a

single user client version of ADMS. ADMS{ creates its own data warehouse by caching downloaded

results in replicas, incorporating them in locally processed queries, and making incremental update

requests from the servers holding their primary copies. ADMS{ allows the user to create composite

views frommultiple heterogeneous DBMSs and enables him to integrate them with local and proprietary

data. An extension of the ADMS subsumption algorithm is to �nd a \best �t" set of MVFs residing

on multiple clients for answering a given query. In this technique, the cost is a�ected by the number

of fragments used and the negation predicates which preclude duplicates from the �nal result [Pap94].

In this paper, we outline the motivation, rationale, concepts, techniques, and the implementation

of the University of Maryland ADMS prototype. Section 2 of this paper describes the view engine of

ADMS. Section 3 outlines the ADMS optimizer. Section 4 describes the distributed ADMS� Client-

Server architecture and the management of replicas. Section 5 contains concluding remarks, a brief

historical account of ADMS, and current developments.

2 The ADMS View Engine

ADMS uses traditional relational storage organization and standard access methods including sequen-

tial scan, B-trees, R-trees and hashing. The ADMS catalogs store names, locations, cardinalities,

selectivities, etc. for all databases connected to the warehouse, relations in them, attributes, and in-

2

dexes. They are the core resource for ADMS query validation and optimization, and are maintained

in base relations so they can be queried through ADMS's standard SQL interface. The two novel

extensions of the core ADMS system are its ViewCache storage organization and its adaptive bu�er

manager.

2.1 The ViewCache Storage and the Incremental Access Method

The ViewCache [Rou91] is the most innovative feature and has the most far reaching consequences

of any caching technique in ADMS. It is a persistent storage structure consisting of pointers to data

objects which are either base relation tuples or pointers in lower level ViewCaches.

The ViewCache storage structure and its incremental access methods are built around a single

relational operator we call SelJoin. SelJoin corresponds to a join with concurrent selections on its ar-

guments. The outer relation can be empty in which case a SelJoin reduces to a simple selection. Three

join methods have been implemented for SelJoin, nested loop, index, and hash join. Each ViewCache

corresponds directly to a single application of SelJoin and is, therefore, a 1- or 2-dimensional array of

pointers (TIDs) depending on the number of arguments of SelJoin. The TIDs point to records of the

underlying relations or other views necessary to make up the result of the SelJoin. A multiway join

view is then expressed as a tree of SelJoin ViewCaches with the base relations at the leaves. Every

ViewCache in the hierarchy is maintained for the life of the view and the expression which de�nes

each subtree is inserted into the catalogs so that ViewCache fragments can be reused, possibly in other

views. Since ViewCaches contain only TIDs, they are relatively small in size and can be constructed,

quickly materialized (dereferenced), and actively maintained with little system overhead.

All other relational operators such as projection, duplicate elimination, aggregate, ordering, and

set theoretic operators are performed on the
y during output, using masking, hashing, and main

memory pointer manipulation routines. The advantages of having a single underlying operator are

manyfold: Firstly, the optimizer does not have to consider pushing selections or projections ahead of

joins or vice versa. Secondly, subsumption on SelJoin ViewCaches is more general when no attributes

have been projected out. Lastly, the incremental algorithms for SelJoin ViewCaches are simple and

require no heavy bookkeeping as opposed to incremental update algorithms for projection views or

views containing other aggregate operators which have signi�cant complexity and require sophisticated

bookkeeping and expensive logging.

ViewCaches are maintained in ADMS by its Incremental Access Method (IAM) which amortizes

their creation and update costs over a long period of time (inde�nitely). IAM maintains update logs

which permit either eager or deferred (periodic, on-demand, event-driven) update strategies. The

on-demand strategy allows a ViewCache to remain outdated until a query needs to selectively or

exhaustively materialize the underlying view. The IAM is designed to take advantage of the ViewCache

storage organization, a variation of packed R-trees [RL85]. This organization attempts to reduce the

number of intermediate node groupings in the R-tree. This number is the most signi�cant parameter

in determining the cost of materializing the ViewCaches. Both ViewCache incremental update and

tuple materialization (dereferencing) from it (ViewCache) are interleaved using one{pass algorithms.

The interleaved mode avoids the duplication of retrieving the modi�ed records to be updated and then

materialized again for the remaining of the query processing.

Compared to the query modi�cation technique for supporting views that requires re-execution of

the de�nition of the view, and to the incremental algorithms for MVFs [TB88], IAM on ViewCaches of-

fers signi�cant performance advantages, in some cases up to an order of magnitude. The decision about

whether or not an IAM on a ViewCache is cost-e�ective, i.e. less expensive than re-execution, depends

on the size of the di�erentials of the update logs between consecutive accesses of the ViewCaches. For

frequently accessed views and for base relations which are not intensively updated, IAM by far outper-

3

forms query modi�cation [RES93]. Performance gains are higher for multilevel ViewCaches because all

the I/O and CPU for handling intermediate results is replaced with e�cient pointer manipulation.

2.2 The ADMS Adaptive Bu�er Manager

ADMS uses an adaptive allocation scheme to allocate bu�ers from the global bu�er pool to concurrent

queries. Page reference behavior of ViewCache materialization and recurring queries involving MVFs

are quanti�ed using page fault statistics obtained during executions [CR93]. This page fault information

is fed back to the bu�er manager and gets associated with each MVF and/or ViewCache. An \adaptive

curve-�tting" module is used to capture the Marginal Gain Ratio (MGR) on page faults, i.e. the faults

reduction per additional bu�er allocated to a query using a ViewCache. ADMS's bu�er manager

basically identi�es two important characteristics, the \critical size", that is the number of bu�ers

beyond which the reduction of faults starts diminishing, and the \saturation size", the number of

bu�ers beyond which no reduction is attained. As queries utilizing MVFs and ViewCaches recur, the

bu�er manager observes, adapts, and saves their characteristics to continuously capture the e�ects on

page faulting as the database changes in time.

ADMS allocates bu�ers to these queries according to their page fault characteristics and the global

bu�er availability. Bu�ers are allocated to individual queries/relations in proportion to their average

Marginal Gain Ratios (MGR) subject to the following constraints: (a) never allocate more than the

saturated size (avoid waste), and (b) when the demand for bu�ers is high, never exceed the critical size

of each reference string.

Experimental results in ADMS validated the advantage of MGR over traditional methods such

as global LRU and DBMIN [CD85]. Through a comprehensive set of ADMS experiments, we demon-

strated thatMGR o�ers signi�cant performance improvement over a pattern prediction-based algorithm

[NFS91] and a load control-based algorithm [FNS91]. In all cases of query mixing and under various

degree of data sharing, on the average, MGR outperforms the second best strategy by 15%� 30% in

query throughput.

The merit of the MGR allocation scheme can be attributed to the feedback of faulting characteris-

tics, which provides more insightful bu�er utilization information than the probabilistic analysis-based

methods which rely on the infamous crude assumption of uniformity.

3 The ADMS Query Optimizer

The ADMS query optimizer invokes a subsumption matching algorithm to identify relevant ViewCaches

and generates alternative query plans utilizing those matched ViewCaches. It then selects between in-

cremental or re-execution update strategies depending on their corresponding projected costs. Another

key feature of the ADMS query optimizer is its adaptive selectivity estimation mechanism. This mech-

anism provides cost-e�ective and accurate selectivity estimation using query feedback. In essence, this

feedback is information contained in the MVFs and ViewCaches constructed or updated during prior

query processing. Minimal (CPU only) overhead is incurred to compute and adaptively maintain selec-

tivity statistics. With this approach, ADMS completely avoids the overhead of the traditional o�-line

access of the database for gathering value distribution statistics. The �rst subsection describes the

ADMS query optimizer; the second subsection describes the technique of adaptive selectivity estima-

tion.

4

v1 v2

R1 R2 R3 R4

v3

q0

R1 R3 R4R2
q1

q2

R3 R4i1

v1 R3 R4

match−reduction

SelJoin −reduction

New ViewCach

Pre−existing ViewCache
Base table

(a) Reductions

(b) LAPS
q3

q2

q5

q7

v1 v2
q8

v1
q9

v2
q10

q11

q12

q13

q1
v1 R3 R4

v3
q6

R4

q4

v2R1 R2

q0 R1 R3 R4R2

(c) Search Space

Figure 1: LAPS, Query Graph Reductions, Subsumption Reductions Rules and Search Space

3.1 Subsumption Driven Optimization

The query optimizer uses a dynamic programming graph search algorithm for obtaining an e�cient

query execution plan. A query graph can be reduced to another one generating the same �nal result

either by a SelJoin-reduction or by amatch-reduction. A SelJoin-reduction corresponds to the execution

of a SelJoin for evaluating a fragment of the query graph; a match-reduction corresponds to answering

the query graph via a matched, pre-existing ViewCache that subsumes the reduced fragment. Figure 1.a

illustrates the two di�erent kinds of reductions that can be applied to a query graph. The Logical

Access Path Schema (LAPS) [Rou82] is used to organize the ViewCaches in a directed acyclic graph

data structure. This is built from the database catalogs containing the de�nition of ViewCaches along

with their derivation paths. Figure 1.b shows a LAPS with four base relations and three ViewCaches.

The search of the query optimizer traverses top-down the LAPS structure and applies match-reductions

in a breadth-�rst manner.

Subsumption is used during the match-reduction for deciding whether or not a more general View-

Cache V \logically implies" a query fragment q. This is in general an undecidable problem, but in the

context of database queries it is an NP-hard problem [RH80]. Although several sophisticated algorithms

have been proposed [LY85, S+89], we adopted a rather simple subsumption algorithm which extends

the \direct elimination" technique proposed in [Fin82] and has worst case complexity of O(mn), where

m and n are the number of predicates in V and q respectively. The subsumption algorithm is sound,

in the sense that it answers positively only when the implication statement is valid, but not complete,

in the sense that it may not discover all possible subsumable clauses.

For each reduction, the cost of performing the SelJoin from scratch or accessing the matched

ViewCache is estimated and accumulated in the reduced query graph. If the ViewCache is outdated,

the cost includes both alternatives, the projected cost of an incremental update and the projected cost

of a re-execution of the ViewCache. Thus, starting from the initial query graph, the search algorithm

generates successive query graphs until a single node graph is obtained which represents the query's

5

result. The path with the lowest cost is then selected for execution. Figure 1.c shows the search space

for the query and LAPS given in �gure 1.a and b.

The performance of the ADMS query optimizer was evaluated by running a comprehensive set

of experiments using a benchmark database and synthetic queries. By turning o� the subsumption

algorithm and the incremental access methods, the ADMS optimizer reduces to the System R [SAC+79],

thus allowing us to make comparisons. The experiments showed that ViewCaches with subsumption

and dynamic selection between incremental update and re-execution of MVFs and ViewCaches save

substantial query execution time, and thus, increase the overall query throughput under a variety of

query and update loads [CR94b]. The improvement ranged between 30% - 60% in query throughput

under moderate update loads while it su�ered no loss under heavy update loads. Although query

optimization cost is increased by up to one tenth of a second per query, this overhead is insigni�cant

when compared to query execution reduction of seconds or tens of seconds.

3.2 Adaptive Selectivity Estimation

The most signi�cant factor in evaluating the cost of each query execution plan is selectivity { the

number of tuples in the result of a relational selection or join operator. Various methods based on

maintaining attribute value distributions [Chr83, PSC84, MD88, SLRD93, Ioa93] and query sampling

[HOT88, LN90, HS92] have been proposed to facilitate selectivity estimation.

ADMS uses and adaptively maintains approximating functions for value distributions of attributes

used in query predicates. We implemented both polynomials and splines1 and an \adaptive curve-

�tting" module which feeds back accurate selectivity information after queries and updates [CR94a].

The CPU overhead of adapting the coe�cients of the approximating functions is hardly noticeable

but the estimation accuracy of this approach is comparable to traditional methods based on periodic

o�-line statistics gathering or sampling. However, unlike these methods, the query feedback of ADMS

incurs no I/O overhead and, since it continuously adapts, it accurately re
ects changes of the value

distributions caused by updates in the database.

In all our experiments, the adaptive selectivity estimating functions converge very closely to the

actual distribution after 5 to 10 query feedbacks of random selection ranges on the attribute. For a

rather staggered actual distribution, it takes almost the same time to converge to a stable curve. In

such a case, the resultant curve may not �t seamlessly to the actual distribution due to the smoothness

nature of the polynomials, but it represents the optimal approximation to the actual distribution in

the sense of least square errors.

4 ADMS�: An Enhanced Client-Server Database Architecture

Commercial Client-Server DBMS architectures, which exemplify primary copy distributed database

management, have signi�cant performance and scalability limitations. Firstly, record-at-a-time navi-

gation through their interfaces is way too slow to be functional. Secondly, a dynamic SQL interface

is rather restrictive, simply because no optimized plans can be submitted; the user is forced to use

the server's optimization services as they are. Finally, these architectures do not scale up because all

database accesses (I/O) and processing are done on the server.

The ADMS� architecture, [RK86b, RK86a], preceded all known database client-server architec-

tures and introduced the concept of a client DBMS that cooperates with the servers not only for query

processing, but also for data accessing from replicated MVFs dynamically downloaded onto their disks.

1Splines are piecewise polynomials and give the database administrator the
exibility of choosing parameters which

best �t the application, such as the degree and the number of polynomial pieces.

6

Figure 2 shows the ADMS� architecture with two commercial database servers and three clients. The

ADMS{ client has all the capabilities of ADMS, but is usually run in single user mode (indicated by

the { sign). The ADMS+ component on the �gure is the gateway layer that runs as an application on

top of the underlying DBMS.

Application
Software

Client

Comm. Soft.

ADMS− Buffers

...

ORACLE INGRES

ADMS+ ADMS+

Application
Software

Client

Comm. Soft.

ADMS− Buffers

Application
Software

Client

Comm. Soft.

ADMS− Buffers

Net WAN/LAN

Figure 2: The ADMS� Client-Server Architecture

A user on an ADMS{ client can connect to a number of commercial DBMS servers and make queries

against their databases. Query results are downloaded and incrementally maintained as MVFs on the

client ADMS{. Again subsumption of views and incremental access methods provide the foundations

for e�cient and controlled management of the data replication. Since ADMS{ views can be glued

from multiple global heterogeneous sources, i.e. server-server joins, combined with possibly proprietary

data on the client, i.e. server-client joins, ADMS� became the �rst conceived Data Warehousing

Architecture and is operational since 1989 [Eco89, RES93].

Updates from a client are sent to the primary copy on the server(s) and �nd their way to the

downloaded MVFs through incremental update algorithms by transmitting the log di�erences [RES93].

ADMS� supports eager and a number of deferred update propagation strategies including on-demand,

periodic, and event driven. The deferred strategies allow ADMS� to operate under \weak connectiv-

ity" mode in which clients can be disconnected and reconnected at later time. Again, MVFs and their

incremental update algorithms provide the foundations of this architecture.

The value of the ADMS� architecture is three-fold. First, it distributes asynchronous and parallel

I/O to the clients, alleviating the I/O bottleneck on the servers [DR92]. This is a signi�cant perfor-

mance booster because of the exhibited scalability of the architecture. Second, it provides a controlled

mechanism for managing replication and update propagation [DR94]. Third, by caching MVFs on the

clients it permits client mobility and database access in disconnected mode, whereby a client uses its

7

local disk when some of the database server(s) are unaccessible.

4.1 Performance of ADMS�

We extensively studied the ADMS� Enhanced Client{Server architecture, [RD91, DR92, DR93] and

showed that it (a) outperforms all other client-server architectures including those with equal number

of disks replicating their data, (b) scales up very nicely and reaches linear scalability on read- and

append-mostly databases. The studies showed that the distribution of the I/O to the client disks and

the parallelism obtained this way are the main contributors to the performance and scalability.

In [DR94], we proposed a number of update propagation techniques for the ADMS� architecture.

We then studied performance under various workloads and scalability as the number of participating

clients increases. We showed that, under high server resource utilization, a simple broadcasting strategy

for server updates gives better performance than any other update propagation policy. However, when

none of the server resources reach full utilization, on-demand update propagation strategy furnishes

better results.

4.2 Utilization of MVF's on the Clients

In the distributed environment of ADMS�, query requests from a client may be answered by MVFs

that reside on other clients instead of retrieving from the server(s). This is very important for perfor-

mance reasons but even more so for fault tolerance when the connections between some clients and the

servers are unavailable.

We have extended the ADMS subsumption algorithm to discover unions of MVFs that subsume a

client's query posed on the network as a range query [Pap94]. A query may be subsumed by the union

of a number of MVFs residing on di�erent clients even when none of the fragments does. Duplicates

resulting from the union are �ltered out by constructing additional range predicates.

Union subsumption can be used in several ways. First, we can improve performance of a query

by replacing expensive join operators with simpler selections. Second, given that the MVFs may be

located at client workstations we can reduce the contention for the server resources. Third, we can use

union subsumption to parallelize query processing with fragments residing on di�erent workstations.

Note, even if we are not able to subsume the client query, we may be able to subsume some part of the

data that are necessary for the computation of the client query; i.e., we may be able to subsume some

nodes of the query graph by unions of MVFs.

Assuming that the MVFs are not indexed, the optimizer attempts to minimize the total size of the

MVFs { equivalently, the total retrieval time { and also attempts to distribute the work evenly to all

clients. However, the decision of an optimal set that subsumes Q is an NP-hard problem. Thus, we use

a greedy polynomial best-�t optimization algorithm that selects at every step the \most promising"

MVF. In addition, the selected set must not have more than a few hundred MVFs, because otherwise,

the cost of applying the �lters becomes greater than the cost of retrieving the MVF from the disk.

5 Conclusions

This article presented the motivation, concepts, ideas, and techniques of the ADMS Project. Many

of the ideas pioneered in this project are �nding their way into the commercial world. For example,

Oracle is now o�ering limited incremental refresh of select only MVFs. Also, both Sybase and Ingres

use incremental techniques for maintaining replicated data. Similarly, the recent
urry of research

activity on views and their management is gratifying. We are content that our long-term conviction

8

and persistence on view maintenance and replication have paid o�, and that our ideas are �nally

receiving appropriate attention.

The ADMS design document was written in 1984, and implementation began on a SUN 3 work-

station at that time. It has gone though several major revisions, such as when the ViewCache storage

organization was evolving 1985, 1986, 1987, and when the SQL parser and cost-based optimizer were

added in 1991. It has now migrated and been ported to SUN SPARC, DEC MIPS, HP SNAKE, and

IBM POWER architectures running their various
avors of UNIX. The uni�ed source tree consists of

approximately 120,000 lines of \C" code.

The ADMS� client-server architecture was designed during the fall of 1985 but the �rst implemen-

tation of the prototype began only in late 1987. ADMS� is now in its third incarnation which includes

new client-server and server-server join strategies, enhanced server catalogs (for selectivity estimation),

and a robust TCP/IP based communication layer. Last year, we ran our �rst trans-antlantic joins

between an Oracle database at the University of Maryland and an Ingres database at the National

Technical University in Athens, Greece.

And the ADMS saga goes on. We are targeting our energy towards adaptive and intelligent tech-

niques capable of learning from running queries against the database and �ne tune their processing. We

have developed a query optimizer for the ADMS{ client. It has an adaptive cost estimator which ex-

hibits excellent learning capability over foreign commercial DBMSs. An experiment is being conducted

as of this writing and we will report the results in the near future.

References

[BLT86] J.A. Blakeley, P.A. Larson, and F.W. Tompa. E�ciently Updating Materialized Views. In
Proc. of the 1986 ACM SIGMOD Intern. Conference, pages 61{71, August 1986.

[CD85] H. Chou and D. DeWitt. An Evaluation of Bu�er Management Strategies for Relational
Database Systems. In Procs. of the 11th Intl. Conf. on VLDB, pages 127{141, 1985.

[Chr83] S. Christodoulakis. Estimating Record Selectivities. Inf. Syst., 8(2):105{115, 1983.

[CR93] C.M. Chen and N. Roussopoulos. Adaptive Database Bu�er Allocation Using Query Feed-
back. In Procs. of the 19th Intl. Conf. on Very Large Data Bases, 1993.

[CR94a] C.M. Chen and N. Roussopoulos. Adaptive Selectivity Estimation Using Query Feedback.
In Procs. of the ACM SIGMOD Intl. Conf. on Management of Data, 1994.

[CR94b] C.M. Chen and N. Roussopoulos. The implementation and Performance Evaluation of the
ADMS Query Optimizer: Integrating Query Result Caching and Matching. In Procs. of the
4th Intl. Conf. on Extending Database Technology, 1994.

[DR92] A. Delis and N. Roussopoulos. Performance and Scalability of Client{Server Database Ar-
chitectures. In Proc. of the 19th Int. Conference on Very Large Databases, Vancouver, BC,
Canada, August 1992.

[DR93] A. Delis and N. Roussopoulos. Performance Comparison of Three Modern DBMS Architec-
tures. IEEE{Transactions on Software Engineering, 19(2):120{138, February 1993.

[DR94] A. Delis and N. Roussopoulos. Management of Updates in the Enhanced Client{Server
DBMS. In Proccedings of the 14th IEEE Int. Conference on Distributed Computing Systems,
Poznan, Poland, June 1994.

[Eco89] N. Economou. Multisite Database Access in ADMS�. Master's thesis, University of Mary-
land, College Park, MD, 1989. Department of Computer Science.

9

[FCL92] M. Franklin, M. Carey, and M. Livny. Local Global Memory Management in Client{Server
DBMS Architectures. In Proc. of the 18th Int. Conference on Very Large Data Bases,
Vancouver, Canada, August 1992.

[Fin82] S. Finkelstein. Common Expression Analysis in Database Applications. In Procs. of the
ACM SIGMOD Intl. Conf. on Management of Data, pages 235{245, 1982.

[FNS91] C. Faloutsos, R. T. Ng, and T. Sellis. Predictive Load Control for Flexible Bu�er Allocation.
In Procs. of the 17th Intl. Conf. on VLDB, pages 265{274, 1991.

[HOT88] W. Hou, G. Ozsoyoglu, and B. K. Taneja. Statistical Estimators for Relational Algebra
Expressions. In Procs. of the ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, pages 276{287, 1988.

[HS92] P. Haas and A. Swami. Sequential Sampling Procedures for Query Size Estimation. In Procs.
of the ACM SIGMOD Intl. Conf. on Management of Data, pages 341{350, San Diego, CA,
1992.

[Ioa93] Y.E. Ioannidis. Universality of Serial Histograms. In Procs. of the 19th Intl. Conf. on VLDB,
Dublin, Ireland, 1993.

[LN90] R. J. Lipton and J. F. Naughton. Practical Selectivity Estimation through Adaptive Sam-
pling. In Procs. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 1{11,
Atlantic City, NJ, 1990.

[LY85] P.-�A. Larson and H. Z. Yang. Computing Queries from Derived Relations. In Procs. of the
11th Intl. Conf. on VLDB, pages 259{269, 1985.

[MD88] M. Muralikrishma and D. DeWitt. Equi-depth Histograms for Estimating Selectivity Factors
for Multi-dimensional Queries. In Procs. of the ACM SIGMOD Intl. Conf. on Management
of Data, pages 28{36, Chicago, Illinois, 1988.

[NFS91] R. T. Ng, C. Faloutsos, and T. Sellis. Flexible Bu�er Allocation Based on Marginal Gains.
In Procs. of 1991 ACM SIGMOD Intl. Conf. on Management of Data, pages 387{396, 1991.

[Pap94] Y. Papakonstantinou. Computing a Query as a Union of Disjoint Horizontal Fragments.
Technical report, Department of Computer Science, University of Maryland, College Park,
MD, 1994. Working Paper.

[PSC84] G. Piatetsky-Shapiro and C. Connell. Accurate Estimation of the Number of Tuples Sat-
isfying a Condition. In Procs. of the ACM SIGMOD Intl. Conf. on Management of Data,
pages 256{275, Boston, MA, 1984.

[RD91] N. Roussopoulos and A. Delis. Modern Client{Server DBMS Architectures. ACM{SIGMOD
Record, 20(3):52{61, September 1991.

[RES93] N. Roussopoulos, N. Economou, and A. Stamenas. ADMS: A Testbed for Incremental
Access Methods. IEEE Trans. on Knowledge and Data Engineering, 5(5):762{774, 1993.

[RH80] D.J. Rosenkrantz and H.B. Hunt. Processing Conjunctive Predicates and Queries. In Procs.
of the 6th Intl Conf. on VLDB, 1980.

[RK86a] N. Roussopoulos and H. Kang. Principles and Techniques in the Design of ADMS�. Com-
puter, December 1986.

[RK86b] N. Roussopoulos and Y. Kang. Preliminary Design of ADMS�: A Workstation{Mainf rame
Integrated Architecture. In Proc. of the 12th Int. Conference on Very Large Databases,
August 1986.

[RL85] N. Roussopoulos and D. Leifker. Direct Spatial Search on Pictorial Databases Using Packed
R-trees. In Procs. of 1985 ACM SIGMOD Intl. Conf. on Management of Data, Austin,
1985.

10

[Rou82] N. Roussopoulos. The Logical Access Path Schema of a Database. IEEE Trans. on Software
Engineering, SE-8(6):563{573, 1982.

[Rou91] N. Roussopoulos. The Incremental Access Method of View Cache: Concept, Algorithms,
and Cost Analysis. ACM{Transactions on Database Systems, 16(3):535{563, September
1991.

[S+89] X. Sun et al. Solving Implication Problems in Database Applications. In Procs. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 185{192, 1989.

[SAC+79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a
Relational Data Base System. In SIGMOD{Conference on the Management of Data, pages
22{34. ACM, June 1979.

[SLRD93] W. Sun, Y. Ling, N. Rishe, and Y. Deng. An Instant and Accurate Size Estimation Method
for Joins and Selection in a Retrieval-Intensive Environment. In Procs. of the ACM SIGMOD
Intl. Conf. on Management of Data, pages 79{88, Washington, DC, 1993.

[TB88] F. Tompa and J. Blakeley. Maintaining Materialized Views Without Accessing Base Data.
Information Systems, 13(4):393{406, 1988.

11

