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1 Purpose

This report proposes an architectural framework for the design and implementation of a
Distributed Database Management Systems which integrates Java and the Java Runtime
Environment with the static set of operations found in a traditional database execution
engine. With such system, we intend to study the bene�ts of mobility of DBMS code
(functionality shipping). This functionality shipping occurrs at several levels, namely: query
(i.e. predicates), executor (i.e. join operator) and access methods (i.e. index scan) levels.

2 Introduction

Traditionally, a DBMS has been implemented as a monolithic system giving users a predi�ned
set of operations and data types. The DBMS internals are closed to third parties, forcing
enterprises to wait for the DBMS vendor to release new versions of the code that include new
features and enhancements to the system. Often, developers at the enterprise cannot take
advantege of tools distributed by third-party vendors since these require some application
programming interface that many DBMSs do not include. This scheme makes software
development expensive since developers are tied to the policies and tools provided by the
vendor of the DBMS. There are some systems such as Postgres ([SK91]) and Informix
([Sto97]) which enable users to de�ne new datatypes and functions. However, much of the
DBMS internals are still closed and the new functionality if often restricted to be used in
limited areas of the system (i.e. de�ne new predicate functions for queries).

These problems just mentioned have also been faced by the developers of other types of
applications such as word processors, spreadsheets, distributed computing tools, etc. Many
of them are now focusing their attention on the use of the Java programming language
([GM95]) as a tool to somewhat alleviate some of these problems. Their interest comes from
the fact that Java provides an object-oriented and architecture independent programming
paradigm which allows developers to create modular applications that can be run in any
Java-enabled computer.

Using the object-oriented paradigm and software engineering techniques, developers are
exploring new ways to build applications which are not monolithic. As a result, many devel-
opers are now using a componet-based approach where an application is built by combining
several independent software components. The code in each component implements some
part of the functionality needed by the targeted application. Typically, a component is made
out of one or more classes, each one containing the datatypes and methods needed to carry
out a speci�c function. A well de�ned application programming interface for exporting and
importing functionality between components is de�ned and standardize. An advantage of
this approach is the modularity and reusability of the code been written, and the ability to
change parts of an application in a plug-and-play manner. It also enables the inclusion of
third party software components so as to use the most suitable tools available. Another
advantage is the ability to make applications interact with each other and with the host
operating system is a easy and e�cient manner by using the proper component interface.

With the full support of classes in Java, developers are exploiting all the features men-
tioned above and in addition, they are creating just one version of the software that can
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be tested at many di�erent machines. For example, a word processor can built, possibly
reusing some of the code from an existing spreadsheet application, and then run in several
platforms without the need for recompiling it as it would be the case if C or C++ where used
instead. Some developers, such as Corel, are even converting their applications into applets,
which are pieces of code that can be run in any Java-enabled Web browser (i.e. Netscape
Navigator). It can be argued that Java's popularity is most likely due to the fact that it
came at a moment when system administrators and developers where looking for ways to cut
down the cost and complexity of multi-platform application development and maintenance.

Given these facts , there are several questions that need to be raised in the context of
distributed database systems. Can we develop a DBMS where some of its internal modules
(i.e. optimizer, query execution engine, etc.) can be tailored by system programmers or third-
party developers, using say Java, to �t the changing needs of the enterprise by adding or
removing some components? Will it be possible to ship functionality (i.e. Java code) between
two DBMS in a Distributed Environment to compensate for the lack of some operations at
one or both sites? Can we perform this code shippment dynamically? What is the kind of
functionality that should be shipped? What is the cost model needed to determine when
such code shipping is to be perform? What kind of application programming interface is
needed to allow a component from one site to migrate to another and work properly? Which
assumptions can be made by the query optimizer about the system? To what extent does
this approach solves some of the problems present in heterogeneous database environments?

The architecture been proposed in this report attempts to provide some foundation over
which research can be carried out to try to answer some of the question mentioned above.
In this report, the phrases code mobility and functinality shipping are used interchangebly.
The organization of the remainder of the report is a follows. Section 3will give a brief
survey about some of the work done in centralized and distributed databases. Section
4 gives the formulation of the problem that is to be solved and a motivating example is
discussed. In section 5 our architecture is presented in detail with the features it provides
and its possible limitations. Finally, section 6 gives a summary and presents options for the
future work needed to implement and evaluate a prototype system based on the architecture
been proposed.

3 Related Work

Much of the work in centralized and distributed databases could be classi�ed upon the
assumptions made by each system in terms of the query processing capabilities , system
con�guration and extensibility of the DBMS used at each site. In the discussion that
follows we mainly use a relational and object-relational terminology.

In terms of query processing, most distributed systems have used either a query shipping
or data shipping approach ([SAD+94]). In query shipping, a query is sent to and processed by
the machines which maintain the tables that are referenced in the query. Once the operation
has been completed, the target machines return the results to the source which issued the
original request for the query. Query shipping puts most of the load on the database
server machines. Only requests and results (�nal or partial) are sent accross the network
connecting the machines in the system. The resources at the machine issuing the query
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are only used for data display and hence might be under utilized. Data shipping has been
mostly used by distributed relational or object-relational systems such as R* ([WDH+81]),
ADMS ([RCK+95]) and Mariposa ([SAP+96]).

Data shipping moves all the data referenced in a query from the data sources to the
machine from which the query was issued. In this approach, most of the load is put on
the client machine (where the query was issued) and the network connecting it to the other
members of the system. The data sources are only used for the purpose of retrieving the
data and therefore, their resources cannot be exploited for the bene�t of query process-
ing. Distributed Object-Oriented Databases typically employ the data shipping approach.
In [FJK96], a hybrid shipping approach is proposed which combines both data and query
shipping. With this approach, the machines in the system might perform either query or
data shipping depending upon the bene�ts that each approach might have for answering the
query at hand. The rationale behind hybrid shipping is the possible minimization of net-
work tra�c (as in query shipping ) combined with the ability to move the data (as in data
shipping) to machines with plenty of resources (i.e. CPU, memory, disk). The simulator
used in [FJK96] and the Tornadito DBMS prototype ([PP96]) are examples of systems using
the hybrid shipping approach.

Another way to classify distributed systems is based on the type of environment been
assumed to operate at each site. In an homogeneous environment every site that forms part
of the distributed system is assumed to run the same copy of the DBMS and have the same
hardware con�guration. This approach gives a framework for the desing of relatively easy
cost models for query processing and to carry out DBMS performance evaluation studies. It
also makes the interoperation between di�erent sites easy, since there is a well-known set of
operations and data types present everywhere. This type of environment is most likely to be
found within the con�nes of the Local-Area Network (LAN) of a particular enterprise. Some
systems assuming this type of environment are R* ([ML86]), ADMS ([RCK+95], [DR92])
and DIMSUM ([FJK96]). Although, Mariposa ([SAD+94], [SAP+96]) does not assumes
hardware homogeneity, it does assumes DBMS homogeneity since each site runs the same
copy of the Mariposa DBMS.

The heterogeneous environments are composed of sites running di�erent types of DBMSs.
There might be sites that do not have a DBMS at all, only exporting at �les to the rest of
the system. The hardware used at each site is di�erent too, possibly ranging from personal
computers to mainframes. Query processing is much more complex in this type of environ-
ment. Each site as a di�erent representation for the data, di�erent types of operations and
sometimes, the semantics of an operation at one site are di�erent from thatof the same oper-
ation at another site. This type of environment is more common than an homogenous one
and can be found in both Local-Area Networks (LANs) and Wide-Area Networks (WANs).
Typically, a middleware software layer is used to achieve interoperability among the data
sites. This middleware is mainly composed of wrappers and mediators as shown in �gure
1 on page 4. A wrapper translates the data stored at a given source to a global format
(schema) that can be understood by the mediators. These mediators are the entities that
perform distributed query processing in the system. Systems such as DISCO ([TRV96]),
Garlic([RS97]) and TSIMMIS([CGMH+94]) use this type of mediator-wrapper architecture
to handle data in heterogeneous environments.

Finally, we can classify a DBMS as been static or extensible. A static DBMS gives
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Figure 1: Wrapper-Mediator architecture.

the users a prede�ned set of operations and data types. The users need to map the data
types and the operations that naturally arise in their problem to the those of the DBMS.
Often, this mapping is not easy or impossible to do, thus making the implementation of an
application complex or not as powerful as needed. Examples of systems which are static in
nature are System R ([Ae76]), R*, ADMS and INGRES ([SWKH76]).

An extensible DBMS provides the user with the ability to add new functions and data
types to the system by writting them using a progamming language such as C or C++.
These new types and functions are then registered inside the DBMS and are used by it as
if they were built-in ones. With these new tools, an easier and cleaner application can
be developed. Also, the DBMS is enhanced with new features that were not present in
the original distribution copy. Furthermore, a rule system might also be included within the
DBMS, with which system behavior can be modi�ed by adding or removing the proper rules.
Postgres, Informix, PREDATOR ([SP97]), and most Object-Oriented DBMSs are cases of
extensible systems.

The architecture we propose envisions a system where parts of a DBMS can migrate to
another DBMS. This movement will make the receiving DBMS to be dynamically extended.
There will be no need for the users to manually move the code, since code mobility will
occur automatically. We this power, problems with a heterogenous source might be solved
by simply giving the operation that we whish to perform to the DBMS running at the
source. We can also avoid performing large data transfers to machines which are the only
ones known to carry out an speci�c function. By simply shipping the code for the operation
to the data source and execute the operation there, considerable network bandwith can be
saved. Of course, this will only be done if the size of the code is much smaller than the
size of the data. Ideas such dynamic load balancing, networks of PCs running parts of the
DBMS and dissemination of DBMS components to mobile computers can be explored using
the framework our architecture will provide. These are the some of the features that make
our approach di�erent from the ones taken by the systems mentioned in this section. A
more detailed formulation of the ideas that motivate our system follows.
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4 Problem Formulation

The problem to be solved is the design and evaluation of an architecture which includes
policies, algorithms, cost models, data types, utility libraries and application programming
interfaces that can be used to implement a distributed database system where hybrid ship-
ping, dynamic extensibility and dynamic code mobility (functionality shipping) between sites
is possible. This dynamic code mobility can occur at any of the following levels:

� Query Level - functions used as predicates in queries, aggregate operators, etc., should
be able to migrate to a remote site and execute properly. Similarly, the code used to
create, materialize and maintain views should be able to migrate too.

� Executor Level - the code used to execute relational operators such as selection,
projection and join might move to a site where one or more of these operators do not
exist or do not implements the variant that is needed (i.e. ship code for hash join).

� Access Methods Level - it is possible to migrate code which creates and maintains
indices such B-trees, R-trees and Grid-�les.

� Query Optimizer Level - the code needed to compute the cost of the functions,
operators and access methods should move as well.

Notice that dynamic extensibility is achieved whenmobile code arrives from other DBMS.
A programming language such as Java can be used to implement all this mobile code. The-
fore, the architecture should include a mechanism to integrate Java with the rest of the
DBMS which might have been written in some other programming language, most likely C.
This the approach that our architecture will follow.

We illustrate the power of a system with the characteristics just mentioned above with an
example of the possible ways in which a selection operation can be performed. Suppose that
there is a table storing information about car parts at a warehouse located in San Francisco.
The parts table has the following schema: sf parts(number, name, quantity, price). Fields
number and name are srtings giving the part's identi�cation number and name, respectively.
Field quantity, an integer, gives the number of parts currently in stock. The last �eld, price,
is a real number representing the price of the part in dollars. The table as 30,000 entries,
each having a size of 100 bytes. The user of a DBMS running at the headquarters of parts
manufacturer Y issues the following query to her local DBMS:

SELECT *

FROM sf_parts

WHERE we_make_it(name)

The headquarters of manufactures Y are located in New York. Function we make it takes
the part's name and tries to match it to one of the names of parts known to be made by
manufacturer Y. It returns true if a match is found or false otherwise, and it is a user-
de�ned function written by a system programmer working for Y. Around 15% of the parts
stored in sf parts are made by Y. The bandwidth of the network connecting both sites is
1.5 Mbits/sec (a T1 link).

There are two choices to evaluates this query:
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� Ship all the tuples from San Francisco to New York, then run the we make it predicate
at New York. This requires moving 3 MB worth of data across a Wide-Area Network.

� Use we make it as a �lter by running it at San Francisco and then sending only those
tuples which satisfy the predicate. This will reduce the amount of data sent accross
the network.

For the �rst stategy, moving all 3 MB of data to New York will take 16 seconds. The second
strategy only moves 450 KB of data to New York, taking just 2.4 seconds. Assuming the
network bandwidth is the critical factor, the second strategy should be the preferred one.
Unfortunately, to achieve this strategy in current systems, the user will have to access the
DBMS at San Francisco, determine if it is possible to add new functions to the it, copy
and compile we make it there, before even running the query. This process will have to
be repeated for each place at which the predicate needs to be run. However, a distributed
system that can ship code from one site to another, might simply have the DBMS at New
York send the code that implements function we make it over to the DBMS at San Francisco
automatically.

In addition to moving predicates, we could move code that implements relational opera-
tors, maintains indices or performs any other DBMS operation. For example, one can have
ship the code for a hash join and use it, instead of nested loops join. These are the kind of
problems that the architecture proposed in this report attempts to solve. The next section
describes the main components of our architecture.

5 Mobile and Dynamically Extensible DBMS Archi-

tecture

The main new feature of the system that we propose is the ability to dynamically move
components from one DBMS to another. This ability will be used to help compensate for
the lack of functionality at the DBMS where the code is been shipped. As mentioned in
section 3, query shipping moves the query to the data source, while data shipping moves the
data to the query. Our architecture introduces a new feature: the DBMS goes to the data
source.

Figure 2 on page 7 presents the general architecture of the system we envision. Each site
that is part of the distributed database has at least one the following processes:

� C: Client Application - submits queries from the user into the system and displays
the results obtained from these back to the user.

� MW: Middleware Process - processes the queries issued by the clients and contacts
the necessary data sources to coordinate the processing of the query. Operations such
as query parsing, optimization and parallelization occur at this process.

� B: Backend Process - executes the operations that the middleware sends in order
to evalute the query. Operations such as relation scans, joins, projections and pred-
icate evaluation occur at this process. The results of such operations might be send
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to a middleware process or to another backend process to continue further with the
execution of the query.

B C
MW

C

MW

B

Network

Figure 2: General System Archicture.

The con�guration of our system is very similar to that used by the Mariposa DBMS.
However, Mariposa does not supports code mibility as ours does. At the Middleware and
Backend processes, there exists a Java Runtime Execution Environment which is used
to execute the mobile DBMS code. This mobile code is received as part of the query
evaluation and execution plan. Alternatively, the plan might include directons as to where
does the code can be found.

Our desing does not assumes that the same hardware and/or DBMS is used at every
site. We expect to be able to handle di�erent types of machines such as workstations,
network computers, multiprocessor systems and mainframes. Data sources might be running
entirely di�erent DBMS (DB2 and Informix) or di�erent releases of the same system (i.e.
Oracle 7 and Oracle 8). However, we assume that the DBMS at each site conforms to the
architecture used by the Middleware and the Backend components that we propose. Notice
that this assumption is very is similar to the one made by developers of Web pages which
contains applets. There is no assumption about which speci�c Web browser will be used to
download and read the Web page. All that is assumed is that the Web browser conforms to
an architecture where there is a Java Runtime System1inside the browser that will handle
the applet's code. In our case, we assume that there will be a Java Runtime Execution
Environment that will take care of handling the mobile code. The interface necessary to
support this behavior is described in section 5.

To integrate legacy data sources2 into the distributed system, we propose the use of a
modi�ed version of the Backend process that works as a wrapper but , unlike most wrappers,
it also has query execution capabilities. This is a departure from the traditional wrapper-
mediator architecture presented in section 3. The Backend is able to translate data from

1This also known as the Java Virtual Machine.
2These are sources running a DBMS which does not conforms with our architecture or ones where there

is no DBMS at all (i.e. a Web server). For this type of systems the integration of a Java Runtime Execution
Environment could be di�cult or impossible to achieve.
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the legacy system to the schema used in the distributed system, much like a wrapper does.
But in addition, it can execute many of the operations (i.e. select, project and join) that
a traditional DBMS or a mediator does. In this scheme, the role of the wrapper is com-
pletely assumed by the Backend, while the functionality of the mediator in split between the
Middleware process and the Backend process. A more detailed description of this scheme
is presented in section 5.4.

We now present a general description of the structure and functionality that can be
found in the Middleware Process, the Backend Process and the Java Runtime Execution
Environment. The main goal of this description is to show how a Java Runtime System (Java
Virtual Machine) can be integrated into an existing DBMS system. When such integration
is not possible, the functionality can be added as a component outside the DBMS. Section
5.4 shows how this external component can be structured to interact with the DBMS.

5.1 Middleware Level

Client Application

SQL
Query
Parser

Extensible
Optimizer

Plan
Decomposer

Plan
Startup
Engine

Operation
Coordinator

Network
Manager

Middleware Process

Java Runtime
Execution

Environment

Figure 3: Middleware component.

The Middleware component provides client applications with a point of access to the dis-
tributed system. Queries submitted by client applications are analized and prepared for
execution by this component. Once a query is ready for execution, the Middleware contacts
the necessary data sources and coordinates their e�orts to make the process as e�cient as
possible. Once all the results (or error indications) are received at the Middleware, they are
forwarded to the client and the Middleware prepares for the next query to be executed.
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Figure 3 describes the components found at the Middleware. There is a SQL Parser
which takes care of performing a syntactic and semantic check on the query been processed.
We assume that SQL is the language used to express all quieres in the system. The SQL
Parser generates an internal representation of the query that can be understood and used by
the Query Optimizer. The optimizer generates an e�cient (but not necessarly optimal) plan
to execute the query at hand. The criteria used to determine e�ciency will be either total
time of resource usage, as in [ML86], or response time as proposed in ([GHK92]). The query
execution plan is represented as an operator tree, where the leaves represent base relations
and the internal nodes represent relational operators such as selection and joins. Bushy plans
are known to be more e�cient than left-deep plans for parallel and distributed environments
([IK91], [LVZ93]). Therefore, the optimizer can use either dynamic progamming techniques
([SAC+79]) or randomized algorithms ([IK90]) to generate bushy plans.

The plan produced by the optimizer only contains the join ordering and the placement of
selections relative to joins. The sites at which each operation is to be executed are selected
at run time. The idea is to wait until knowledge about parameters such as machine load,
network bandwith and selectivities become available to help the Middleware in �nding the
best location the execute each operator.

The Java Runtime Execution Environment provides the optimizer with classes that rep-
resent the costs of built-in and user-de�ned operations written in Java. Thus, the optimizer
is extensible since we can add new cost functions as needed to compute the costs of the new
operations introduced into the system. Sections 5.3 and 5.3.4 give a more detailed descrip-
tion about the use and structure of these Java classes. The job of the Plan Decomposer is
to �nd the sources of parallelism in the plan. These sources of parallelism might come from
sorting operations, aggregates or the execution of two independent or pipelined operators in
the plan. The main goal is to produce enough information to generate a schedule for the
parallel execution of the tasks needed to complete the evaluation of the query.

Once the initial plan has been parallelized, it is either stored on disk for future use
or given to the Startup Engine. At the startup engine, the preparation of the execution
plan is �nished. Using information obtained from catalogs, past query executions and by
contacting some data sources, a picture about current system performance and data location
is obtained. This information includes factors such machine load, parameters bound to
predicates, available network bandwidth and relation sizes. Based on all these parameters,
the location at which each operator in the plan is to be executed is �nally determined. The
Operation Coordinator takes this completed plan and distributes all tasks to the Backend
processes running at the proper data sources. The coordinator exchanges control information
and results with the backends and the client for the duration of the plan execution.

The �nal component in the Middleware is the Network Manager. This component keeps
track of all the network connections used while evaluating a query. It also provides bu�ers
to hold messages and results until the coordinator is ready to process them. The network
manager gathers statistics about observed network bandwidth to and from the data sources,
which can be used by the optimizer or plan startup engine.
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5.2 Backend Level

The Backend is the work horse of the system. It contains the necessary machinery to execute
the queries users formulate to the Middleware. This machinery includes code to perform
selections, joins, compute aggregates and evalute predicates used in the query. Figure 4
shows the basic structure of the Backend.

Network
Manager Operation

Coordinator

Standard
Execution

Engine

Java Runtime
Execution

Environment

Storage Manager

Back-End Server

Figure 4: Backend component.

The Network Manager has the same functions as in the middleware (see previous section).
The Operation Coordinator takes care of prossesing control information recieved from the
Middleware and/or Backends. It also handles the transfer of all results obtained from
operations performed locally.

The Standard Execution Engine contains the code the execute the basic operations of the
DBMS. This is the typical execution engine found in most DBMS. Here is where relational
operators, aggrates, etc., get executed. The functionality in this module is �xed and the user
cannot add or remove any part of it. The execution engine has access to the Storage Manager
and to the Java Runtime System. The Java Runtime Execution Environment provides the
functionality of mobile code for relational operators, predicates, etc. Its services can be
called from either the Coordinator or the Execution Engine. The Java Runtime Execution
Environment contains the necessary class libraries which allow users to write and run their
own versions of the operations that the system needs to perform. Section 5.3 gives a more
detailed description of the characteristic of this component. Finally, the Storage Manager
provides services such as bu�er management, �le scans, index scans, concurrency control and
transaction semantics.
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We propose that query execution be carried out using an interface similar to that of
the iterator model as described in [Gra93]. Under this interface, the classes that are used
to implement the iterators for each of the relational operators and index scans contain at
least four methods, namely open, produce next, get next and close. A call to open

initializes the iterator by allocating memory, opening the necessary �les and performing any
other operation needed before data can be obtained. In order to generate tuples at the
iterator, the produce next method is called repeatedely. To fetch data from an iterator,
the get next method is called. Each call to this method will return a block worth of tuples
from the iterator.

Notice that we do not associate tuple generation with the get next method as done in
[Gra93]. Our main goal with this is to avoid the serialization that such scheme introduces.
The local execution engine (the producer) will call the produce next method to generate
new tuples. These tuples will then be bu�ered until another iterator (the consumer) running
at a remote execution engine or the middleware invokes the get next method of the local
iterator to transfer these tuples in blocks. Obviously, the local site can produce only as
many tuples in advance as it can �t in the bu�ers. Finally, the close method is called
to deallocate the resources held by the iterator. Some other methods might be needed for
housekeeping purposes. For example, there might be a method that indicates the size of
the data blocks been returned by the iterator.

5.3 Java Runtime Execution Environment

The Java Runtime Execution Environment (JREE) is the piece of the architecture that
enables code mobility between sites. The JREE is shown in �gure 5 on page 12. It is an
enhanced but compatible version of the Java Runtime System ([LY97]), [MD97]). Java code
shipped in from other places or written by local users is loaded into this module for execution.
The code is loaded, veri�ed and either interpreted or translated into the native code of the
underlying machine for execution. This code is simply a binary representation of a Java
class, which was compiled by the user into Java bytecode with a compiler.

The JREE contains an Application Programming Interface through which the external
Java classes (in bytecode form) implementing the DBMS operations to be performed are
introduced into the system. A set of Base Class Libraries are used to de�ne the basic
functionality of the code that can be run by the JREE. The variables and methods contained
in these classes de�ne what the semantics of operations such as joins, index scans and
predicate evaluation mean. They serve as a mold, a framework upon which users can de�ne
their own operations by simply deriving new classes from these. This is very similar to the
approach taken by a Web browser to handle applets. The Web browser contains an applet
base class that de�nes the basic behavior of an applet. Users de�ne new applets by creating
new classes which are derived from the applet base class. Then, the basic methods de�ned
by the base class are specialized to behave according to the user needs. When a Web browser
downloads and runs applets, it simply calls the well-known set of methods speci�ed by the
base class and executes them in the way that the user indicated in her implementation of
the derived class.

Clearly, we need to have base classes that indicate what the basic bahavior of relational
operators, access methods and predicates is. Users of the DBMS will then use these base
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Figure 5: Java Runtime Execution Environment.
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classes to implement their own versions of the DBMS operations. These derived classes
can then be shipped to a remote DBMS where they are needed because either they are not
supported by the system there or their semantics there is di�erent from that at the local
DBMS. Figure 6 gives a schematic representation of this idea. In a sense the process of
code shipping is analog to the process of downloading and running an applet from a Web
server into a Web browser. The DBMS receives or downloads code from another DBMS
that can be used to perform a given operation. Thus, we have DBMS functionality moving
around the network, helping sites to help themselves.

JREE

New Java
Classes

Middleware or 
Backend Process

Arrive
from the
network

Java
Base

Classes

Executes Mobile Code

Load
from disk

Figure 6: User-de�ned Java classes been imported into the JREE.

In addition to the base classes that de�ne the behavior of the functions that can be
shipped among DBMSs, some other general purpose classes are needed by the JREE. These
include classes for I/O, threads, data structures, memory management, etc., which will
enable the JREE to complete the tasks at hand. These classes can be written in Java or,
in some cases, in some other language such as C or C++. The latter case produces what is
known as native code. An interface is needed to translate the data types between Java and
the language used to create the native code. Sun's Java Native Methods Interface provides
the fuctionality to perform this translation. The native code is stored in a library that can
be linked to the JREE, much like the way shared libraries can be dynamically linked to a
UNIX process. The Dynamic Class Loader takes care of loading, verifying and storing the
bytecode of the Java classes (both base and derived) needed at runtime. The Native Method
Linker does the job of loading and linking the native code libraries. All loaded classes and
their methods are stored in the Method Area, from which they can be retrieved and used by
the Java Execution Engine.

The Java Execution Engine contains either a Java bytecode interpreter or a Just-In-

13



Compiler or both. The bytecode interpreter takes the bytecode from a class and emulates
all the operations in software. The Just-In-Time compiler, on the other hand, �rst converts
the bytecode into native machine code and then executes this code. Clearly, the Just-In-
Time compiler provides better support, since native machine code will run faster. Although
not considered here, there are some hardware implementations of the Java Virtual Machine
which could be used to run the bytecode (i.e. Sun's JavaStations). The engine is able to
access the underlying operating system and database storage manager by using the support
class libraries metioned before.

There is also aMemory Manager which manipulates the memory used by the components
of the JREE. This includes the memory used by the instances of the classes been executed
inside the execution engine. The Error Manager handles the exceptions and errors found by
the execution engine while executing the code in any class. Exceptions are used to signal the
ocurrence of some event that might cause problems. Lost network connections, reading past
the end of a �le and memory allocation problems are the type of events that will cause an
exeception to be raised. The �nal piece of the JREE is a Security Manager which takes care
of enforcing proper class behavior. Any type of restriction put into a class is implemented at
this module. For example, the Security Manager could enforce the restriction that a �le or
network connection cannot be opened from within a predicate.

The next four subsections will give details about how the base classes used to de�ne the
behavior of mobile code could be structured. The description uses Java-like pseudocode to
give speci�c examples of the possible implementation of these classes.

5.3.1 Predicates

In order to support mobile predicates we ought to have a base class that de�nes what a
predicate does. For example we could have the following:

class SQL_Predicate {

boolean execute(void){

// execute the predicate code

}

}

Base on this an user can de�ne its own Equal predicate for integers by inherinting from the
SQL Predicate class:

class Equal extends SQL_Predicate {

boolean execute(int n1, int n2){

if (n1 == n2)

return (true)

else

return (false)

}

}

In addition to exporting the basic operations that a predicate should perform, the base
class might include some type of speci�cation for the kinds of the operations that cannot be
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executed inside the predicate. For example, it might specify that no �les can be opened at
the local �le system. This serves for the purpose of enforcing security policies to keep the
code from performing unauthorized operations. The speci�cation has to be implemented
by the JREE's Security Manager.

5.3.2 Relational Operators

Asumming an interface similar to that of the iterator model ([Gra93]) for the relational
operators, we need to have a Java base class interface that indicates the basic three methods
in an iterator:

interface Iterator {

int open(void);

tuple produce_next(void);

tuple_block get_next(void);

int close(void);

}

From this, the base classes for the relational operator can be implemented. Each operator
implements the basic three methods indicated by the Iterator interface. For example, a
join could be de�ned as follows:

class Join_Iterator implements Iterator{

final int open(void){

left_child.open();

right_child.open();

. . .

}

tuple produce_next(void){

// put your favorite join code here

}

tuple_block get_next(void){

// put code the ship data in blocks

}

final int close(void){

left_child.close();

right_child.close();

. . .

}

Iterator left_child, right_child;

}

Notice that we have de�ned the class to have two variables, left child and right child.
These two variables simply represent the two sources from which the tuples to be joined
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are received. They are de�ned as iterators, since data comes from some other iterators
such as joins or selections. Clearly, this information about that sources must be included in
the query execution plan and sent to each execution site. To implement a hash join one
simply writes a class for it that inherits from the Join Iterator class and specializes the
produce next method by adding the necessary code for the hash join. The final keyword
is used to specify that a method cannot be modi�ed by the users. Again, a more detailed
security speci�cation needs to be included to guarantee proper behavior.

5.3.3 Access Methods

The base class for access methods provides basic functionality such as opening and closing
of index �les. The users can then de�ne the way in which entries are inserted, accessed
and deleted from the index �les. Indices also follow the iterator interface. A base class for
access methods could be written as follows:

class Access_Method implements Iterator{

final int open(String name){

// use OS interface to open the file

}

int insert(key new_key){

// put insert code here

}

tuple produce_next(key search_key){

// put lookup code here

}

tuple_block get_next(void){

// put code to ship data blocks

}

int delete(key search_key) {

// put delete code here

}

final int close(filedescriptor fd){

// code to close a file

}

final int drop_file(String name){

// code for removing a file from the system

}

}

With this functionality, adding a R-tree index requires the user to write a class derived
from Access Method and write the insert, produce next and delete methods. As indi-
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cated before, security must be enforced for the Access Method class by including the proper
restriction mechanisms at the Security Manager.

5.3.4 Cost Model Functions

The base class libraries de�ned before are most likely to be found at the Backend process
since they are related to query execution. But since the user is allowed to extend the
functionality of the DBMS, it is necessary to inform the query optimizer about the costs
of these new functions. Therefore, classes that specify the cost of predicates, relational
operators and access methods are needed at the Middleware. One possible implementaion
of a base class for cost could be :

class Cost_Model {

int CPU_Cost(void){

}

int IO_Cost(void){

}

int Network_Cost(void){

}

}

The class Cost Model gives the methods needed to determine the CPU, I/O and Network
cost of a particular function. It is necesarry to generate a derived class from Cost Model

to tell the optimizer what cost does a user-de�ned predicate, access method or relational
operator has. This process can be done by hand or can be automated by creating the
appropriate tools.

5.4 Legacy Data Sources

We now turn to the problem of supporting code mobility at sources where we cannot add a
JREE to the existing DBMS or data server. The solution we propose is the use of a modi�ed
Backend process that works on top of the existing system running at the data source. This
Backend will be an external process, as shown in �gure 7, having translation and query
execution capabilites. As we mentioned before, it is smarter than a wrapper since it can
execute mobile DBMS code.

Since the main goal of the external Backend is to support DBMS mobility, it should be
written entirely in Java to make its implementation easier. Figure 8 shows the modi�cations
needed to make the Backend an external process. The Network Manager and Operation
Coordinator have the same tasks as before. The Execution Engine executes all operations re-
lated to answering a query and has the base classes that support DBMS mobility. Compared
with the original Backend (see �g. 4), the duties of the JREE and the Standard Execution
Engine have been merged into the Execution Engine of the modi�ed Backend. Notice that
before we needed the JREE to make the DBMS understand Java and thus support mobility.
Since the external backend is written in Java, the JREE is not needed. All the support base

17



Oracle
DBMS

Backend Backend

Backend Middleware

Informix
DBMS

Backend

Client

Web
Server

Network

Figure 7: Use of a Backend as an enhanced wrapper.

Network
Manager Operation

Coordinator

Java-based
Execution

Engine

JDBC-ODBC Interface

Back-End Server

Figure 8: Changes to the Backend to work as an enhanced wrapper.

18



classes will be provided by the Java Runtime System (i.e. Sun's Java Developers Kit) used
to run the external Backend. The JDBC-ODBC interface is used by the Backend to access
data at the DBMS or server.

Probably, implementing an external Backend will be easier than integrating a JREE into
an existing DBMS as discussed in sections 5.1, 5.2 and 5.3. The main drawback of using an
external Backend is that we are limited to the operations that can be exported using JDBC
or ODBC. With an integrated system, the DBMS internals are accessible and we can have
a more e�cient (but complex) implementation.

6 Summary

In this report we have proposed a new architecture that supports DBMS mobility. The
main idea behind DBMS mobility is the ability to allow parts of a DBMS to migrate to
other DBMSs to provide new features at the receiving sites. These parts are simply the
code of user-de�ned predicates, relational operators and indices. By means of this process,
the DBMS that gets the new code is dynamically extended. We have presented the basic
structure of a Distributed DBMS based on our architecture. The DBMS's functionality
is divided into a Middleware process and a Back-End process. Client applications issue
queries to and get results from the Middleware. The Middleware performs query processing
operations such as parsing and optimization. The Back-End process executes the queries
issued by the Middleware on behalf of the clients. Operations such as selections, joins and
predicate evaluation occur at the Back-End. Code mobility is realized by writting the code
in Java and integrating a Java Runtime Execution Environment at both the Middleware and
the Back-End. The Java Runtime Execution Environment executes all the mobile DBMS
code. To handle legacy data sources, we have proposed the use of a modi�ed external Back-
End as an enhanced wrapper. This modi�ed Back-End, which is to be written in Java, has
translation and query execution capabilities. It also supports DBMS mobility.

In order to implement the ideas presented in this report, we could the follow these steps:

� Step 1 - External Back-End: This will allow us to create a simple prototype where we
can develop the cost models, library classes and algorithms to support code mobility.
We can start with predicate mobility, selections and projections. Then joins and index
mobility can be added. A �x set of hardwired queries can be used for performance
measurements.

� Step 2 -Middleware: Once we have the external back-end, we can create a Middleware
written in Java and obtain an initial complete system. The cost models developed in
step 1 are then integrated into the Middleware, together with algorithms to parallelize
the plan. Finally, a more rigorous performance study is conducted.

� Step 3 - JREE Integration: The DBMS code of a system such as Postgres or PREDA-
TOR can be used as the base to create a Middleware and a Back-End with an inte-
grated Java Runtime Execution Environment. This can then be used as a reference
implementation of our architecture. More performance studies can be conducted here.
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