
Adaptive WebView Materialization�

Alexandros Labrinidis Nick Roussopoulos
labrinid@cs.umd.edu nick@cs.umd.edu

Department of Computer Science and Institute for Systems Research
University of Maryland, College Park

In the Proceedings of the Fourth International Workshop on the Web and Databases (WebDB’2001),
Santa Barbara, California, USA - May 24-25, 2001, held in conjunction with ACM SIGMOD’2001

Abstract

Dynamic content generation poses huge resource demands on web servers, creating a scalability problem. Web-
View Materialization, where web pages are cached and constantly refreshed in the background, has been shown to
ameliorate the scalability problem without sacrificing data freshness. In this work we present an adaptive online algo-
rithm to select which WebViews to materialize, that realizes the trade-off between Quality of Service and Quality of
Data. Our algorithm performs very close to the static, off-line optimal algorithm, and, under rapid workload changes,
it outperforms the optimal.

1 Introduction

Online services, frequently updated content and personalization make dynamic content ubiquitous on the Web today.
Unfortunately, the high resource demands of the dynamically generated web pages create a significant scalability prob-
lem. Although web caching was able to address the scalability problem for static web pages, it will not work for dy-
namic content, since caching cannot provide any guarantees for the freshness of the served data. Serving user requests
fast is of paramount importance only if the data is fresh. With many data-intensive web servers being used for critical
applications, serving stale data can have catastrophic consequences.

We have showed in [LR00] that web materialization, where web pages are cached and constantly refreshed in the
background, is a robust solution to the scalability problem. We use the term WebView to refer to the HTML fragments
that are the unit of materialization. We presented a detailed cost model that can be used in an off-line fashion to select
which WebViews to materialize. However, with the highly dynamic & unpredictable nature of web traffic, an adaptive
and online algorithm is needed to select which WebViews to materialize.

In this work, we present metrics for the Quality of Service (QoS) and the Quality of Data (QoD) at data-intensive
web servers. We focus on the constrained View Materialization problem: given a limit on the number of WebViews to
materialize, select which WebViews to materialize, so that the overall QoS and QoD are maximized. We describe an
adaptive online view materialization algorithm that does not rely on a cost model and briefly present the results of our
preliminary experiments.

2 Measuring Quality of Service and Quality of Data

We assume a web server architecture similar to that of Figure 1. The web server is the front-end for serving user
requests. All requests that require dynamically generated data from the DBMS are intercepted by the asynchronous
cache and are only forwarded to the DBMS if the data is not cached. Unlike traditional caches in which cached data
is invalidated on updates, in the asynchronous cache data elements are materialized [LR00] and constantly being re-
freshed in the background. The view selection module collects statistics and determines which WebViews should be
kept materialized. All updates in our system must be performed online. A separate module, the update scheduler is
responsible for scheduling the DBMS updates and the refresh of the WebViews in the asynchronous cache.

�Prepared through collaborative participation in the Advanced Telecommunications/Information Distribution Research Program (ATIRP) Con-
sortium sponsored by the U.S. Army Research Laboratory under the Federated Laboratory Program, Cooperative Agreement DAAL01-96-2-0002.

1



Although our work is motivated by database-backed web servers and materialized WebViews, it applies to any system
that supports online updates. For the rest of the paper, we will use the more general term views instead of WebViews.

We assume a database schema with N relations, r1, r2, : : :, rN

relation
updates

DBMS

accesses

cache
async

web 
server

update
scheduler

selection
view

Figure 1: System Architecture

and M views, v1, v2, : : :, vM . Views are derived from relations
or from other, previouslyderived views. We distinguishtwo types
of views: virtual, which are generated on demand, and material-
ized, which are precomputed, stored in the asynchronous cache
and refreshed asynchronously. All user requests are expressed as
view accesses, whereas all incoming updates are applied to rela-
tions only and may trigger view refreshes. Finally, we assume
that incoming access requests are served in FIFO order, incom-
ing relation updates are also performed in FIFO order, whereas
materialized view refreshes can be performed in any order.

2.1 Quality of Service

Typically, Quality of Service (QoS) is measured through the average query response time, which corresponds to the
time required to service an access request at the web server. Although, the average query response time is an accurate
measure for the performance of a system, it lacks portability, since we cannot compare average query response times
on different systems or with different workloads. Furthermore, since we want to be able to consider both Quality of
Service and Quality of Data, we need to use intuitive [0,1] metrics, with 0 corresponding to the worst and 1 to the best
possible performance/data quality for our system.

Performance improves when more views are kept materialized. In fact, the higher the number of requests that can
be served by the asynchronous cache, the higher the overall performance. Under this premise, we define Quality of
Service as the percentage of accesses that are served by materialized views:

QoS =
number of accesses to materialized views

total number of accesses
(1)

This QoS definition is similar to the hit rate definition for traditional caches. However, unlike traditional caches, the
asynchronous cache refreshes all its stored objects on updates and does not change its list of objects on cache misses
(materialization decisions are made in the background). Finally, it should be noted that our QoS definition is not equiv-
alent to the percentage of views that are materialized, as views are not accessed with the same probability.

2.2 Quality of Data

When an update to a relation is received, the relation and all views that are derived from it become stale. Database
objects remain stale until an updated version of them is ready to be served to the user. We illustrate this definition with
the following example.

Assume a database with one relation r and two views:

t 1 t 2 t 3 4t t 5

time

r

r
INCOMING UPDATE STREAM

SCHEDULE
UPDATE

&r
are stale

is stale

vm

vv

mv

Figure 2: Staleness Example

vv which is virtual and vm which is materialized. Also
assume that at time t1 an update for relation r arrives
(Figure 2). Relation rwill become up to date after it is
updated. If the update on r starts at time t2 and is com-
pleted at time t3, then relation r will have been stale
from time t1 until t3. On the other hand, virtual view
vv will become up to date after all of its parent rela-
tions/views are updated. Since relation r was updated
at time t3, view vv will have been stale from time t1
until t3. Finally, materialized view vm willbecome up
to date after it is refreshed. If the refresh of vm starts
at time t4 and is completed at time t5, then view vm

will have been stale from time t1 until t5.
To measure the Quality of Data (QoD) for the data served to the user, we calculate the percentage of accesses that

are performed on fresh views, i.e. views that are not stale. Specifically, we consider the freshness status of a view at

2



the start of processing an access request. For the example in Figure 2, an access request for view vv will be considered
fresh if the processing of the request starts before t1 or after t3. Overall, we define:

QoD =
number of fresh accesses
total number of accesses

(2)

3 Adaptive View Selection Algorithm

Clearly, the choice of views to materialize will have a big impact on QoS and QoD. On the one extreme, materializing
all views will give perfect QoS, but very low QoD (i.e. views will be served very fast, but will be very stale). On the
other hand, keeping all views virtual will give high QoD, but zero QoS (i.e. views will be as fresh as possible, but the
query response time will be high). We refer to the problem of selecting which views to materialize, so that both QoS
and QoD are maximized, as the View Materialization problem. We will use the term materialization plan to denote
which views are materialized and which are virtual. In this work, we focus on the constrained version of the View
Materializationproblem : select the materialization plan that maximizes both QoS and QoD, when there is a constraint
on the number of views that can be materialized. The constraint can be because of the size of the asynchronous cache
(which can fit kmaterialized views) or because of the update processing speed of the system which can limit the number
of materialized views that can be refreshed in the background.

Monitoring Materialization Health The objective of the View Materialization Problem is to find views that are
accessed a lot and have relatively few updates. Since we have limited resources (storage space in the asynchronous
cache and processing capacity for performing updates), we want to keep materialized those views that are being “used”
a lot after each refresh. The amount of view “usage” is simply the number of accesses to that view, since it was last
refreshed. In other words, we want to select for materialization views that have high refresh utilization.

A simple way to measure refresh utilization is to instrument each view with a private counter. The refresh utilization
counter is incremented every time the view is accessed and is set to zero every time the view is refreshed. If a view is
virtual, we reset the counter whenever the virtual view would have been refreshed, if it were materialized. The higher
the value of the refresh utilizationcounter, the more “used” the materialized version of the view is/willbe, and therefore
the bigger the gains if we keep the view materialized.

The only drawback of the refresh utilization counter is that it does not consider time. For example, we can have
two views, v1 and v2 with equal refresh utilization counters (assume 5), but v1 receives 100 accesses per second (and
therefore roughly 20 refreshes per second), whereas v2 might only get 5 accesses per second and only 1 refresh per
second on average. Obviously, we should be able to distinguish between the two, and select v1 for materialization,
since it improves QoS, while occupying the same space as v2. For that reason, instead of the refresh utilization counter,
we use the ratio of accesses to refreshes over a period of time, which we refer to as the materialization health of view
vi, or mh(vi). We have that:

mh(vi) =
num accesses

1 + num refreshes
(3)

In Eq. 3, num accesses is the number of accesses to view vi during the observation period. If view vi is materialized,
then num refreshes is the number of refreshes that vi had during the observation period. If view vi is virtual, then
num refreshes is the number of refreshes that vi would have had, if it were materialized.

The reason for the +1 in the denominator of Eq. 3 is two-fold. First of all, it guarantees a valid mh() value, even
when there are no refresh operations during a certain observation interval. This prevents getting a lot of views with
mh() = 1 (which would not allow us to compare these views with the rest), even if we have a lot of static views.
Secondly, the +1 corresponds to the initial generation query of view vi, since it is already loaded in the asynchronous
cache at the beginning of the observation period.

Algorithm Based on the concept of materialization “health”, we present the details of our ADaptive View Material-
ization Algorithm (ADVMA). At pre-specified intervals, the current access and refresh counters are consolidated into
mh() values for each view (Figure 3). In order to derive the materialization plan with the highest QoS+QoD, under a
materialization constraint (assume k), ADVMA selects to materialize the k views with the highest mh() values and
make the remaining views virtual. After the decision is made, the system concurrently serves access requests (while
maintaining access counters) and updates relations or refreshes materialized views in the background (while maintain-

3



ing refresh counters). At pre-specified intervals, the current access and refresh counters are consolidated again into
mh() values and the decision process is repeated.

1. compute mh() for all views
2. materialize k views with highest mh() values

make remaining views virtual
3. initialize counters

4. serve access requests update relations
maintain num accesses refresh materialized views

maintain num refreshes

5. synchronize at pre-specified time intervals
6. goto step 1

Figure 3: Pseudo-code for the Adaptive View Materialization Algorithm

ADVMA has many advantages. First of all it is inherently adaptive. It will “pick up” changes in the access &
update workloads and react accordingly. Secondly, it does not rely on cost estimates, which makes the algorithm ideal
for rapidly changing environments. Thirdly, the algorithm is online: it does not require the entire access and update
stream to decide which views to materialize. Fourthly, it operates in the background, at fixed intervals. This means that
a) the selection decision is not on the critical path of serving access requests (which is the case with traditional cache
admission and replacement algorithms), b) ADVMA imposes little overhead on the system (runs periodically and not
all the time), and, c) ADVMA has the ability to consolidate statistics and therefore be tolerant to minor fluctuations.
Finally, we can tune how adaptive ADVMA will be by modifying the interval at which ADVMA will re-evaluate the
current materialization plan periodically.

4 Experiments

In this section we present results from our experiments using a high-level simulator. The database schema, the update
costs for relations, the access and refresh costs for views, the incoming access request stream, the speed in which ac-
cesses can be processed, the incoming update stream and the speed in which updates can be performed are inputs to the
simulator. The simulator runs in two modes: a) using a specified materialization plan, it can calculate the overall QoS
and QoD for the given parameters, and b) it can use ADVMA to adapt the materialization plan at specified intervals and
calculate the overall QoS and QoD. Access requests and relation updates are scheduled in FIFO order, whereas view
refreshes are scheduled so that QoD is maximized, by scheduling popular or “inexpensive” refreshes first [LR01].

ADVMA vs optimal for static workloads In the first experiment, we used a database of 16 views and four relations.
We created a synthetic access request stream where the view popularity followed the Zipf distribution [BCF+99] and
also a synthetic update stream with uniform distribution of updates over the views. The duration of the streams was 60
seconds or 60,000 milliseconds (our simulator’s internal clock run at milliseconds). The reason we used such a small
database was that we wanted to enumerate all possible materialization plans and identify the selection of materialized
views with the highest QoS+QoD value. Assuming a materialization constraint of four views (=25%) the possible
materialization plans are 1820.

Figure 4 presents the QoS, QoD values for all materialization plans that have four materialized views. The bottom
curve is the QoS, the middle curve is the QoD and the top curve is the sum of QoS and QoD. The plans on the x-axis
are listed in “lexicographical” order (first one is 0000 0000 0000 1111, second one is 0000 0000 0001 0111, etc, and the
last one is 1111 0000 0000 0000, where the ith bit is 1 if vi is materialized). Views were named in order of frequency
of access (i.e. v1 is the most popular view and, in general, first bits correspond to most popular views). Although at
all times we have only four materialized views, they clearly correspond to different access request volumes (increasing
from left to right) and thus the QoS is improving. On the other hand, more accesses to materialized views means that
there is a greater chance for an access to read stale data, and therefore QoD decreases.

Table 1 compares ADVMA with the static algorithms. For all static algorithms we assume that we know the en-
tire access & update stream in advance and we have one materialization plan for the duration of the experiment. On
the other hand, our adaptive algorithm, ADVMA, periodically re-evaluates the materialization plan and can modify it

4



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Materialization Plan

QoS+QoD
QoD
QoS

algorithm QoS + QoD QoS QoD

static-optimal 1.425 0.605 0.820
worst-static 0.998 0.081 0.917

ADVMA-static 1.423 0.624 0.799

ADVMA (10 sec) 1.423 0.624 0.799
ADVMA (5 sec) 1.423 0.624 0.799
ADVMA (3 sec) 1.424 0.623 0.801
ADVMA (2 sec) 1.422 0.619 0.803
ADVMA (1 sec) 1.412 0.603 0.809

Figure 4: All possible materialization plans Table 1: Optimal vs ADVMA

in order to improve the overall QoS and QoD. We have enumerated all possible materialization plans for this experi-
ment’s workload and ran the simulator for every plan. The plan which gives the highest QoS+QoD corresponds to the
static-optimal algorithm (Table 1, first row), whereas the plan with the lowest QoS+QoD is the worst-static plan (Ta-
ble 1, second row). ADVMA-static is the static version of the ADVMA algorithm, where we decide the materialization
plan once, based on the access/update statistics of the entire workload, using the mh() function (Table 1, third row).
Finally, the remaining rows, correspond to the fully dynamic version of ADVMA (where knowledge of the future is
not required), with varying intervals1. We can see that ADVMA-static is very close to the optimal static case (equal to
99.86% of the optimal) and therefore could be used for approximating static-optimal. Furthermore, all dynamic AD-
VMA cases have given QoS+QoD values that are very close to the static optimal, despite the fact that they do not have
knowledge of the future like the static algorithms.

ADVMA vs optimal for semi-static workloads In the second experiment, we kept the same setup as the first exper-
iment with one variation: we split the access request stream into two segments (of 30 seconds each). The two segments
had identical properties, except for the popularities of two frequently requested views from the first segment which were
decreased in the second segment, to simulate a shift of interest. Using this “semi-static” workload we aim to expose
the inadequacies of static materialization plans under changing conditions.

algorithm QoS + QoD QoS QoD

static-optimal 1.317 0.523 0.794
worst-static 0.985 0.081 0.904

ADVMA-static 1.314 0.519 0.795

ADVMA (6 sec) 1.325 0.542 0.783
ADVMA (4 sec) 1.332 0.545 0.787
ADVMA (2 sec) 1.322 0.528 0.794

Table 2: Semi-static experiment results

algorithm QoS + QoD QoS QoD

ADVMA-static 1.465 0.470 0.995

ADVMA (30 sec) 1.482 0.487 0.995
ADVMA (20 sec) 1.518 0.524 0.994
ADVMA (10 sec) 1.534 0.540 0.994
ADVMA (5 sec) 1.523 0.528 0.995
ADVMA (2 sec) 1.496 0.502 0.994

Table 3: Results for the dynamic experiment

In Table 2 we compare the static-optimal case with the materialization plans generated by ADVMA. As was the
case with the previous experiment, ADVMA-static is a good approximation of the optimal, since it has QoS+QoD that
is 99.77% of the static-optimal case (which was generated by enumerating all possible materialization plans). On the
other hand, ADVMA (with 6, 4 and 2-second intervals) outperforms the static algorithms, including the optimal.

ADVMA with dynamic workloads In the last experiment we increased the size of the database and generated a
highly dynamic workload in order to see how well ADVMA can adapt to changing conditions. Using a database of
2000 views and 100 relations, we created a 5-minute access stream, where the popularities of the views changed ev-
ery minute, to simulate a rapidly changing workload. We report the QoS and QoD for ADVMA-static and ADVMA

1A 5-second interval means that ADVMA will re-evaluate the materialization plan every five seconds

5



with multiple re-evaluation intervals in Table 3. Although ADVMA-static had knowledge of the future (and in previ-
ous experiments was very close to the static-optimal plan), the highly dynamic nature of this workload dictates using
an adaptive algorithm like ADVMA. ADVMA consistently outperformed the static algorithm for all re-evaluation in-
tervals. For example, ADVMA-10 (i.e. ADVMA which re-evaluates the materialization plan every 10 seconds) was
about 5% better than ADVMA-static, which approximated the optimal algorithm in previous experiments.

5 Related Work

Existing work on caching dynamic data has focused on providing an infrastructure to support caching of dynamically
generated web pages. The decision of which pages to cache, when to cache them and when to invalidate or refresh
them is left to the application program [CIW+00] or the web site designer [YFIV00]. In other words, none of the
aforementioned papers deals with the selection problem: identifying which dynamic data to cache and which not to
cache. In [LR00], we provided a detailed cost model to help with the view materialization problem, but did not provide
an online selection algorithm. Finally, the decision whether to materialize a WebView or not, is similar to the problem
of selecting which views to materialize in a data warehouse [KR99], known as the view selection problem. The most
important difference that distinguishes our work from existing view selection literature is that in the web server case,
updates are performed online, whereas data warehouses are updated in an off-line fashion.

6 Conclusions

We introduced intuitive, normalized Quality of Service (QoS) and Quality of Data (QoD) metrics for data-intensive
web servers. We presented ADVMA, an adaptive online algorithm for selecting which views to materialize in order to
maximize QoS and QoD. ADVMA poses little overhead to the web server, does not rely on a cost model and is highly
adaptive. Through experiments, we illustrated that ADVMA performs very close to the static-optimal case and even
outperforms static view selection (which is based on knowledge of the future) under rapidly changing workloads.

For our future work, we plan to build an industrial-strength prototype of a database-backed web server in order to
validate the results from our simulation experiments. We also plan to experiment with alternative measures of overall
QoS and QoD, and consider environments with user-triggered updates, like the one in TPC-W.

Acknowledgments We would like to thank the anonymous reviewers for their helpful comments.

Disclaimer The views and conclusions contained in this document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government.

References

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. “Web Caching and Zipf-like Distribu-
tions: Evidence and Implications”. In Proc. of IEEE INFOCOM’99, New York, USA, March 1999.

[CIW+00] Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed. “A Publishing System for
Efficiently Creating Dynamic Web Content”. In Proc. of IEEE INFOCOM’2000, Tel Aviv, Israel, March
2000.

[KR99] Yannis Kotidis and Nick Roussopoulos. “DynaMat: A Dynamic View Management System for Data Ware-
houses”. In Proc. of the ACM SIGMOD Conference, Philadelphia, USA, June 1999.

[LR00] Alexandros Labrinidisand Nick Roussopoulos. “WebView Materialization”. In Proc. of the ACM SIGMOD
Conference, Dallas, Texas, USA, May 2000.

[LR01] Alexandros Labrinidis and Nick Roussopoulos. “Update Propagation Strategies for Improving the Quality
of Data on the Web”. Submitted for publication, 2001.

[YFIV00] Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez. “Caching Strategies for Data-
Intensive Web Sites”. In Proc. of the 26th VLDB Conference, Cairo, Egypt, September 2000.

6


