
Coping with Changing Ontologies in a Distributed Environment

Jeff Heflin, James Hendler, and Sean Luke

Department of Computer Science
University of Maryland

College Park, MD 20742
{heflin, hendler, seanl}@cs.umd.edu

Abstract
We discuss the problems associated with versioning
ontologies in distributed environments. This is an important
issue because ontologies can be of great use in structuring
and querying internet information, but many of the
Internet’s characteristics, such as distributed ownership,
rapid evolution, and heterogeneity, make ontology
management difficult. We present SHOE, a web-based
knowledge representation language, that supports multiple
versions of ontologies. We then discuss the features of
SHOE that address ontology versioning, the affects of
ontology revision on SHOE web pages, and methods for
implementing ontology integration using SHOE’s extension
and version mechanisms.

1. Introduction

As the use of ontologies becomes more prevalent, there is a
more pressing need for good ontology management
schemes. This is especially true once an ontology has been
used to structure data, since changing it can be very
expensive. Often the solution is to “get it right the first
time”, however, in long term applications, there is always
the chance that new information will be discovered or that
different features of the domain will become important.
Therefore, we must think of ontology development as an
ongoing process. In a centralized environment, it may be
possible to coordinate ontology revisions with
corresponding revisions to the data that was structured
using the ontology. However, as the volume of data
increases this become more difficult. In distributed
environments where ontologies are used for interoperation,
this problem is compounded by the fact that the data is
likely to be owned by various parties and spread across
servers. As such, some parties may not be prepared for a
revision and other may be opposed to it.

Ontologies can be of great use in structuring and
querying internet information, but because the Internet is
so dynamic and distributed, managing the inevitable
changes in ontologies will be extremely difficult. We have
considered these problems in our work on Simple HTML
Ontology Extensions (SHOE), a language that is embedded
in web pages. In this paper, we describe the features of
SHOE that address the problem of evolving ontologies,
describe how ontology revision affects SHOE web pages,
and discuss how ontology integration can be accomplished
using SHOE’s extension and version mechanisms.

2. SHOE

The underlying philosophy of SHOE is that intelligent
internet agents will be able to better perform their tasks if
the most useful information is provided in a structured
manner. To this end, SHOE extends HTML with a set of
knowledge oriented tags that, unlike HTML tags, provide
structure for knowledge acquisition as opposed to
information presentation. In addition to providing explicit
knowledge, SHOE sanctions the discovery of implicit
knowledge through the use of taxonomies and inference
rules available in reusable ontologies that are referenced by
SHOE web pages. This allows information providers to
encode only the necessary information on their web pages,
and to use the level of detail that is appropriate to the
context. SHOE-enabled web tools can then process this
information in novel ways to provide more intelligent
access to the information.

To achieve compatibility with existing web standards,
SHOE’s syntax is defined as an application of SGML, a
language that defines tag-based languages and was the
influence for HTML’s syntax. SHOE is also compatible
with XML1, an emerging standard for the Internet that is a
restricted form of SGML.

2.1 Language Features
In this section we describe the features of SHOE that are
necessary for an understanding of this paper. A complete
description can be found in (Luke and Heflin 1997).

SHOE ontologies are made publicly available by
locating them on web pages. An <ONTOLOGY> tag
delimits the machine-readable portion of the ontology and
specifies a unique identifier and a version number for the
ontology. SHOE ontologies build on or extend other
ontologies, forming a lattice with the most general
ontologies at the top and the more specific ones at the
bottom. Ontologies inherit all of the components present in
their ancestors. An example ontology is shown in Figure 1.

Ontology reuse in SHOE is accomplished by extending
general ontologies to create more specific ontologies.
Specifically, the <USE-ONTOLOGY> tag indicates the id
and version number of an ontology that is extended. A

1 A minor variation of the syntax must be used for a SHOE
document to be a well-formed XML document.

URL field allows systems to locate the ontology if needed
and a PREFIX field is used to establish a short local
identifier for the ontology. When an ontology refers to an
element from an extended ontology, this prefix and a
period is appended before the element’s name. In this way,
references are guaranteed to be unambiguous, even when
two ontologies use the same term to mean different things.
By chaining the prefixes, one can specify a path through
the extended ontologies to an element in a general
ontology.

An ontology can define categories, relations, and other
components. Categories are defined with a <DEF-
CATEGORY> tag and may specify one or more
subsuming categories. Relations, which are essentially n-
ary predicates, are defined with a <DEF-RELATION> tag
and must specify types for each argument.

 Sometimes an ontology may wish to use a term from
another ontology, but a different label may be more
specific within its context. The <DEF-RENAME> tag
allows the ontology to specify a local name for a concept
from any extended ontology. This local name must be
unique within the scope of the ontology in which the
rename appears. Renaming allows domain specific
ontologies to use the vocabulary that is appropriate for the
domain, even though the concept has been standardized
across domains.

SHOE uses inference rules, indicated by the <DEF-
INFERENCE> tag, to supply additional axioms. These
rules are similar to Horn clauses in that negations are not
allowed in implications2, thus computational complexity is
reduced. A SHOE inference rule consists of a body of one

2 In conjunctive normal form a Horn clause can have no more
than one positive literal.

or more subclauses describing claims that entities might
make, and a head consisting of one or more subclauses
describing a claim that may be inferred if all claims in the
body are made. The <INF-IF> and <INF-THEN> tags
indicate the head and body of the inference, respectively.

There are three types of inference subclauses: category,
relation and comparison. The arguments of any subclause
may be a constant or a variable, where variables are
indicated by the keyword VAR. Constants must be
matched exactly and variables of the same name must bind
to the same value. The following example illustrates the
construction of an inference that uses all three types of
subclauses.

<DEF-INFERENCE>
<INF-IF>
 <CATEGORY NAME=”Car” VAR FOR=”X”>
 <RELATION NAME=”age”>
 <ARG POS=1 VAR VALUE=”X”>
 <ARG POS=2 VAR VALUE=”A”>
 </RELATION>
 <COMPARISON OP=”greaterThan”>
 <ARG POS=1 VAR VALUE=”A”>
 <ARG POS=2 VALUE=”25”>
 </COMPARISON>
</INF-IF>
<INF-THEN>
 <CATEGORY NAME=”Antique” VAR FOR=”X”>
</INF-THEN>
</DEF-INFERENCE>

The data sources for SHOE are web pages, where each
can be thought of as a miniature knowledge base. These
web pages declare one or more instances that represent
SHOE entities, and each instance describes itself using
categories and relations. The syntax for instances includes
an <INSTANCE> tag that has a field for a KEY that
uniquely identifies the instance. We recommend that the
URL of the web page be used as this key, since it is

<HTML>
...
<BODY>
<ONTOLOGY ID="cs-dept-ontology" VERSION="1.1"
 BACKWARD-COMPATIBLE-WITH=”1.0”>
<USE-ONTOLOGY ID="univ-ontology" VERSION="1.0" PREFIX="u"
 URL=”http://ontlib.org/univ_v1.0.html”>
...
<DEF-RENAME FROM=”u.Department” TO=”Department”>
<DEF-RENAME FROM=”u.org.WorksFor” TO=”facultyOf”>
...
<DEF-CATEGORY NAME="Artificial_Intelligence" ISA="u.Research_Area">
...
<DEF-RELATION NAME="softwareLangauge">
 <DEF-ARG POS=1 TYPE="u.Research_Project">
 <DEF-ARG POS=2 TYPE="Computer_Language">
</DEF-RELATION>
...
</ONTOLOGY>
</BODY>
</HTML>

Figure 1. An Example Ontology

guaranteed to identify only a single resource. An instance
states that it is based on an ontology with the <USE-
ONTOLOGY> tag, which has the same function as the
identically named tag used within ontologies. The use of
common ontologies makes it possible to issue a single
logical query to a set of data source and enables the
integration of related domains. To prevent ambiguity in the
declarations, ontology elements are referred to using the
prefixing mechanism described earlier.

2.2 Mapping SHOE to First Order Logic
In order to analyze certain aspects of SHOE, we will map it
into a first order logical theory. This mapping will
intentionally omit some features of the language so that we
may focus on the problem of ontology revision.

Essentially an ontology can be thought of as a tuple
<V,A> where V is the vocabulary and A is the set of
axioms3 that govern the theory. In first-order logic terms,
V is the set of non-logical symbols and A is a set of
definite program clauses.For convenience, we will
assume that the symbols in the vocabulary of each
ontology are distinct. In actuality, SHOE has a separate
namespace for each ontology, but we can make our
assumption without loss of generality since it is possible to
apply a renaming that appends a unique ontology identifier
to each symbol. We now discuss how to build V and A,
based upon the components that are defined in the
ontology:

A <USE-ONTOLOGY> statement adds the vocabulary
and axioms of the specified ontology to the current
ontology. Since we have assumed that names must be
unique, we do not have to concern ourselves with name
conflicts.

A <DEF-RELATION> adds a symbol to the vocabulary
and for each argument type that is a category, adds an
axiom that states that an instance in that argument must be
a member of the category. If the tag specifies a name R and
has n arguments then there is an n-ary predicate symbol R
in V. If the type of the it h argument is C, then
[R(x1,...,xi,...xn)àC(xi)] ∈ A

A <DEF-CATEGORY> adds a unary predicate symbol
to the vocabulary and possibly a set of rules indicating
membership. If the name is C, then C∈ V. For each super-
category Pi specified, [C(x)àPi(x)] ∈ A.

A <DEF-INFERENCE> adds one or more axioms to the
theory. If there is a single clause in the <INF-THEN>, then
there is one axiom with a conjunction of the <INF-IF>
clauses as the antecedent and the <INF-THEN> clause as
the consequent. If there are n clauses in the <INF-THEN>
then there are n axioms, each of which has one of the
clauses as the consequent and has the same antecedent as
above.

A <DEF-RENAME> provides an alias for a non-logical
symbol. It is meant as a convenience for users and can be
implemented using a simple pre-processing step that

3 We distinguish axioms from rules by using the former term in
the general sense and the later term to refer specifically to SHOE
inference rules.

translates the alias to the original, unique non-logical
symbol. Therefore, it can be ignored for the logical theory.

A data source, such as a knowledge base or intelligent
agent, uses one or more ontologies to make relation and
category claims. If we have a data source S, let VS be the
union of the vocabulary of these ontologies and let AS be
the union of the axioms. We say S is well-formed if each
category and relation claim is a ground atom of the form
p(t1,...,tn) where p is a predicate symbol such that p∈ VS. If
D S is the set of ground atoms, then we can define
interpretations and models of S using their usual definitions
when applied to DS∪ AS.

A SHOE query Q=<G,O,S> consists of a goal G, an
ontology O, and a data source S. Here, S does not have to
be a single web page, it could be a collection of web pages,
possibly even the entire web. G is well-formed with respect
to O=<V,A> if it is well-formed under the standard logical
definition given V provides the non-logical symbols. Q is
well formed if both S is well-formed and G is well-formed
with respect to O. Note that by changing the ontology O
and leaving G and S constant, it is possible to achieve
different answers to the same question, since different
ontologies could result in a different set of inferences (via
category membership or other axioms). In this case, we say
that each ontology provides a different query perspective
for the data source; it changes the possible outcome of
queries issued against the source.

We construct a first order logic program P from the
union of axioms of O and the ground atoms in S that are
well-formed with respect to O. Note that unless V⊇ VS, it is
possible that there are some atoms that will not be formed;
therefore we discard them as being irrelevant to the query.
We can now define an answer in the usual logic
programming way: an answer for P∪ {G} is a substitution
for variables of G. We then say θ is a correct answer for
P∪ {G} if G θ is ground and is a logical consequence of P.
If Q is not well-formed then there are no answers to the
query.

3. Revisioning

An ontology revision is a change in the components of an
ontology. Thus, it can involve the addition or removal of
categories, relations, and/or axioms. A revision may also
extend a new ontology or stop extending one.

3.1 Effects of Revisions
We describe revisions by how they change an ontology.
For each type of revision, we discuss its relevance to data
sources and queries. This discussion only describes
revisions that add or remove components; the modification
of a component can be thought of as a removal followed by
an addition.

If a revision O′ consists of the removal of categories or
relations from O, then there exists a query Q=<G,O,S>
such that Q′=<G,O′ ,S> cannot be asked or will return
fewer answers than Q. This is because G or some atoms in
S that were well-formed w.r.t. O will not be well-formed
w.r.t. O′. Informally, if categories or relations are removed,

predicate symbols are removed from the vocabulary. There
exist sentences that depend on these symbols for well-
formedness; when the symbols are removed the sentences
are no longer well-formed. If these sentences are the goal
G then Q′ is not well-formed, if they are ground atoms of
the data source S, then the new program P′⊆ P. Revisions of
this type may mean that some legacy data sources cannot
be queried with the new ontology and others may not be
queried in their entirety.

If a revision O′ adds an arbitrary rule, then the new
query will still be well-formed since the vocabulary is
identical to that of the original ontology. Additionally, if θ
is a correct answer for Q=<G,O,S> then θ is a correct
answer for Q′=<G,O′,S>. Essentially this is because the
revision only adds clauses to the logic program and first-
order logic is monotonic. Thus, a revision which adds rules
can always be used to query legacy data sources, but there
may be additional answers that were not originally
intended by the author of the data. Similar reasoning is
used to ascertain that if the revision removes rules, then
fewer query answers may be retrieved.

Finally, if the revision adds categories or relations, then
new queries are still well-formed since the new vocabulary
includes all of the predicate symbols that were in the old
vocabulary. Additionally, θ is a correct answer for query
Q=<G,O,S> iff θ is a correct answer for Q′=<G,O′,S>. The
forward direction is trivial due to the monotonicity of first
order logic. The reverse direction depends on the nature of
the axioms added: R(x1,...,xi,...xn)àC(xi) for relations and
C(x)àPi(x) for categories. Due to the definitions of
categories and relations, the predicate of the antecedents is
a symbol added by the new ontology and must be distinct
from symbols in any other ontology. Therefore any atoms
formed from these predicates are not well-formed with
respect to any other ontology. Therefore, there can be no
such atoms in S, since S must be well-formed with respect
to some ontology ≠ O′. Since the antecedents cannot be
fulfilled, the rules will have no new logical consequences
that are ground atoms. Therefore, any answer that is correct
for Q=<G,O,S> must also be correct for Q=<G,O′,S>. This
result indicates that we can safely add relations or
categories to the revision, and expect legacy data sources to
be unaffected by the change. In other words, any queries
against a data source that uses the revised ontology as a
basis will have exactly the same results as queries that use
the original as a basis.

3.2 Versioning
As described in the previous section, there are some
revisions that cause data sources to be ill-formed and there
are others which cause queries issued against them to have
different results. The first case results in the loss of access
to useful data, the later in potentially unexpected behavior.
It is these situations that makes SHOE’s versioning scheme
important. SHOE maintains each version of the ontology
and an instance must state which version it is referencing.
Thus, data sources can upgrade to the new ontology at their
own pace and some may never upgrade.

To accomplish a revision in SHOE, the ontology
designer copies the original ontology file, assigns it a new

version number, and adds or removes elements as needed.
If the revision merely adds ontology elements, then it does
not require any changes in existing web pages to be used in
interpreting them. Therefore, it can specify that it is
compatible with previous versions using the optional
BACKWARD-COMPATIBLE-WITH field in the
<ONTOLOGY> tag. Agents and query systems that
discover this ontology can also use it in place of any of the
ontologies that it is backward-compatible with. However,
there is a danger in this as we describe below.

Consider the following scenario: an individual for
whatever reasons, malicious or otherwise, decides that they
want to create a revision to a popular ontology that is
owned by somebody else. This revision only adds
components, and thus is compatible with all existing web
pages that reference the original ontology. The individual
then indicates that this ontology is backward-compatible
with the original. Unless there is a mechanism to determine
if a revision is official, any agents or query systems that
come across the revision will assume that they can use it in
place of the old one, and unintended inferences may result.
We suggest three methods to prevent this:
• agents will only use the revision as a substitute if it

only adds categories or relations. Since such revisions
do not change the results of queries issued against
existing data sources, it does not matter if it is an
official revision.

• a revision must be located on the same server and in
the same path as the ontology it revises. This
guarantees that the owner has made the revision, but
makes it difficult to move the location of an ontology
once it has been used.

• the original ontology must authorize the revision. This
could be accomplished by a <REVISED-BY> tag that
points to the location of the revision. To use this
method, upon discovering a purported revision, a
system should reload the original ontology and see if it
authorizes the revision.

 Currently, we recommend that SHOE systems use the
second approach, although we are considering the inclusion
of a revised-by tag in a future version of the language.

 4. Implementing Ontology Integration

 The preferred method of ontology development in SHOE is
to extend existing ontologies and create new definitions
only when existing definitions are unsuitable. In this way,
all concepts are automatically integrated. However, when
there is concurrent development of ontologies in a large,
distributed environment such as the Web, it is inevitable
that new concepts will be defined when existing ones could
be used. In these situations, manual integration of
ontologies may eventually be needed.
 Ontology integration (Jannink et al. 1998; Grüninger
1996) typically involves identifying the correspondences
between two ontologies, determining the differences in
definitions, and creating a new ontology that resolves these
differences. Wiederhold (1994) describes four types of
domain differences, which we paraphrase here:

• terminology: different names are used for the same
concepts

• scope: similar categories may not match exactly; their
extensions intersect, but each may have instances that
cannot be classified under the other

• encoding: the valid values for a property can be
different, even different scales could be used

• context: a term in one domain has a completely
different meaning in another

When ontologies have been implemented, then simply
creating a new integrated ontology does not solve the
problem of integrating information, since all of the data
sources would have to be revised to reflect the new
ontology. We suggest three ways to implement ontology
integration.

In the first approach, we create a mapping ontology that
extends both ontologies and assign it a unique id that
distinguishes it from all other ontologies. We then add a
<USE-ONTOLOGY> tag for each ontology to be
integrated. Since this ontology has access to objects from
both domains, it can create inference rules using the <DEF-
INFERENCE> tag to map the common items between
them. Terminological differences can be mapped using
simple if-and-only-if rules. For example:

BusOnt1.Employee(x) ⇔ BusOnt2.StaffMember(x)

Note that since SHOE’s rules only allow inference in one
direction, if-and-only-if rules like this one are actually
implemented as two rules, one for each direction. Scope
differences require mapping a category to the most specific
category in the other domain that subsumes it. For
example:

AF_Ont.FighterPilot(x) ⇒ FAA_Ont.JetPilot(x)

Encoding differences require rules that map individual
values as in:

CriticOnt1.Rating(x,“Good”) ⇔ CriticOnt2.Rating(x,“3”)

Finally, context differences can be handled by
automatically assuming that terms never match unless
explicitly instructed as suggested by (Wiederhold 1994).
The advantage of a mapping ontology is that the domain
ontologies are unchanged, thus it can be created by anyone
as needed. The disadvantage is that the mapping of many
domains could result in a complex mess of mapping
ontologies.

Another approach to implementing integration is to
revise each ontology to include mappings to the other.
First, we create a new version of each ontology, called a
mapping revision, and assign it an appropriate version
number. To each revision, we add mapping rules similar to
the ones described in the mapping ontology approach.
Since we are only adding inference rules, we can use the
BACKWARD-COMPATIBLE-WITH field to specify that
the revisions can be used in place of the original
ontologies. If these revisions are then used as the query
perspectives for data sources based on the domain

ontologies, then data integration occurs without modifying
the data sources.

The disadvantage of the two mapping approaches is that
they ignore a fundamental problem: the overlapping
concepts do not belong in either domain, they are more
general. The fact that two domains share the concept may
mean that other domains will use it as well. If this is so,
then each new domain would need a set of rules to map it
to the others. Obviously this can become unwieldy very
quickly. A more natural approach is to merge the common
items into a more general ontology, called an intersection
ontology, which is then extended by revisions to the
domain ontologies. We create a new ontology to serve as
the intersection ontology and give it a unique identifier.
Then we standardize the common elements from the source
ontologies and add them to the intersection ontology. To
create the revisions for each source ontology, we create
new versions with appropriate version numbers and add the
<USE-ONTOLOGY> tag to each revision to specify that it
uses the intersection ontology. Since the intersection
ontology must use a standard terminology, existing data
sources will only be well-formed with respect to the new
ontologies if we translate the standard terminology to the
domain terminology. This is done by replacing the domain
definitions of the common elements with <DEF-
RENAME> tags that rename the intersection ontology’s
standardized names to the names originally used by the
source ontology. This has the advantage that equivalence
of terms can be determined in the preprocessing phase
rather than at query execution time. Finally, we use the
BACKWARD-COMPATIBLE-WITH field to indicate that
these revisions are compatible with the original ontologies.

5. Related Work

In the last decade, there has been much active research in
the area of ontology. For an overview and comparison of
ontology design projects, see (Noy and Hafner 1997). The
theme of ontology reuse has been accepted as an important
one, and many approaches have been suggested. One of the
most widely used notions is, as we have done with SHOE,
to use general ontologies as the foundation for building
more specific ontologies. Ontolingua (Farquhar et al. 1997)
allows ontologies to include other ontologies and even
allows cyclic inclusion. In (Borst et al. 1996), Ontolingua
is used to perform step by step addition of new ontological
distinctions. Instead of importing ontologies, (Grüninger
1996) describes the construction of ontologies from
building blocks that are classes of sentences in some
foundational theory. In contrast to the top-down approach
of building ontologies from general components, Jannink et
al. (1998) suggest that an ontology should be built for each
data source, and generalization is accomplished by
integrating these data sources. In this way, the data dictates
the structure of the ontology rather than the other way
around.

Most ontology work does not consider ontology
development in a distributed environment. One exception
is the Ontolingua Server (Farquhar et al. 1997) which can
be used by many to collaborate on ontology development.

However, the key difference between the Ontolingua
Server and the work discussed in this paper is that the
former only deals with managing the development of
ontologies, while the later discusses features needed for
distributed ontology implementation.

Other projects are using ontologies to provide some
structure to Web, but none of these have focused on the
problem of maintaining consistency as the ontologies
evolve. The Ontobroker (Fensel et al. 1998) project uses a
language that, like SHOE, is embedded in HTML.
Although the syntax of this language is more compact, it is
not as easy to understand as SHOE. Also, Ontobroker does
not have a mechanism for pages to use multiple ontologies
and those who are not members of the community have no
way of discovering the ontology information. The Web
Analysis and Visualization Environment (WAVE) project
(Kent and Neuss 1995) has designed the Ontology Markup
Language (OML) and Conceptual Knowledge Markup
Language (CKML), both of which are based on early
versions of SHOE. The W3C is developing the Resource
Description Framework (RDF) (Lassila and Swick 1998).
RDF uses XML to specify semantic networks of
information on web pages, but has only a weak notion of
ontologies. Since there is no controlled vocabulary,
integration must be performed pair-wise on data sources.
This is complicated by the fact that there is no way to
specify reusable mapping rules.

6. Conclusions

We have discussed the problems associated with managing
ontologies in a dynamic, distributed, and heterogeneous
environment such as the Web. We have described the
components of a SHOE ontology and focused on those that
allow revisioning. We have mapped SHOE into a first
order logic definite program and used this to discuss how
different types of revisions to an ontology affect existing
data sources. We have shown that revisions that add
categories or relations will have no effect, revisions that
modify rules may change the answers to queries against the
data sources, and revisions that remove categories or
relations may make the ontology incompatible with the
data sources. This knowledge should be used in weighing
the benefits and costs of any revision. Although ideally
integration is a byproduct of ontology extension, in a large,
distributed environment manual ontology integration will
need to be performed periodically. We described three
methods of implementing integration, showed how they
could be applied in SHOE, and discussed the tradeoffs of
each.

The Web is currently an untamed wilderness, but
ontologies can be used to give it a sense of order. However,
we cannot expect the Web to stop growing and changing
simply because we have fit it into the framework of an
ontology. Instead, the ontologies must evolve with the
Web, and must allow for different growth rates in different
areas. We believe that SHOE accomplishes these
objectives and makes internet interoperability possible.

Acknowledgments

This work was supported by the Army Research
Laboratory under contract number DAAL01-97-K0135.

References

Borst, P.; Benjaminm, J.; Wielinga, B.; and Akkermans, H. 1996.
An Application of Ontology Construction. In Proc. of ECAI’96
Workshop on Ontological Engineering.

Farquhar, A., R. Fikes, and J. Rice. 1997. Tools for Assembling
Modular Ontologies in Ontolingua. In Proc. of AAAI-97, 436-441.
Menlo Park, CA: AAAI Press.

Fensel, D., S. Decker, M. Erdmann, and R. Studer. 1998.
Ontobroker: How to enable intelligent access to the WWW. In AI
and Information Integration, Technical Report WS-98-14, 36-42.
Menlo Park, CA: AAAI Press.

Gruber, T. 1993. A Translation Approach to Portable Ontology
Specifications, Technical Report, KSL 92-71, Dept. of Computer
Science, Stanford University.

Grüninger, M. 1996. Designing and Evaluating Generic
Ontologies. In Proc. of ECAI’96 Workshop on Ontological
Engineering.

Jannink, J.; Pichai, S.; Verheijen, D.; and Wiederhold, G. 1998.
Encapsulation and Composition of Ontologies. In AI and
Information Integration, Technical Report WS-98-14, 43-50.
Menlo Park, CA: AAAI Press.

Kent, R.E. and C. Neuss. 1995. Creating a Web Analysis and
Visualization Environment. Computer Networks and ISDN
Systems, 28.

Lassila, O. and R.R. Swick. 1998. Resource Description
Framework (RDF) Model and Syntax. W3C (World-Wide Web
Consortium). At http://www.w3.org/TR/WD-rdf-syntax-
19980216.html.

Luke, S. and J. Heflin. 1997. SHOE 1.0, Proposed Specification.
At http://www.cs.umd.edu/projects/plus/SHOE/spec.html

Noy, N.; and Hafner, C. 1997. The State of the Art in Ontology
Design. AI Magazine 18(3):53-74.

Wiederhold, G. 1994. An Algebra for Ontology Composition. In
Proc. of 1994 Monterey Workshop on Formal Methods, 56-62.
U.S. Naval Postgraduate School.

