
Approximation Algorithms for Stochastic Boolean Function

Evaluation and Stochastic Submodular Set Cover

Amol Deshpande
University of Maryland

amol@cs.umd.edu

Lisa Hellerstein
Polytechnic Institute of NYU

hstein@poly.edu

Devorah Kletenik
Polytechnic Institute of NYU

dkletenik@cs.poly.edu

Abstract
We present approximation algorithms for two problems:
Stochastic Boolean Function Evaluation (SBFE) and
Stochastic Submodular Set Cover (SSSC). Our results for
SBFE problems are obtained by reducing them to SSSC
problems through the construction of appropriate utility
functions.

We give a new algorithm for the SSSC problem that
we call Adaptive Dual Greedy. We use this algorithm
to obtain a 3-approximation algorithm solving the SBFE
problem for linear threshold formulas. We also get a 3-
approximation algorithm for the closely related Stochastic
Min-Knapsack problem, and a 2-approximation for a
natural special case of that problem. In addition, we prove
a new approximation bound for a previous algorithm for
the SSSC problem, Adaptive Greedy.

We consider an approach to approximating SBFE
problems using existing techniques, which we call the
Q-value approach. This approach easily yields a new
result for evaluation of CDNF formulas, and we apply
variants of it to simultaneous evaluation problems and a
ranking problem. However, we show that the Q-value
approach provably cannot be used to obtain a sublinear
approximation factor for the SBFE problem for linear
threshold formulas or read-once DNF.

1 Introduction
Stochastic Boolean Function Evaluation (SBFE) is the
problem of determining the value of a given Boolean func-
tion f on an unknown input x, when each bit xi of x
can only be determined by paying a cost ci. The assump-
tion is that x is drawn from a given product distribution,
and the goal is to minimize expected cost. SBFE prob-
lems arise in diverse application areas. For example, in
medical diagnosis, the xi might correspond to medical
tests, and f(x) = 1 if the patient has a particular disease.
In database query optimization, f could correspond to a
Boolean query on predicates corresponding to x1, . . . , xn,
that has to be evaluated for every tuple in the database
to find tuples that satisfy the query [30, 34, 16, 42]. In
Operations Research, the SBFE problem is known as “se-
quential testing” of Boolean functions [43]. In learning

theory, the SBFE problem has been studied in the context
of learning with attribute costs [33].

We focus on developing approximation algorithms
for SBFE problems. There have been previous papers on
exact algorithms for these problems, but there is very little
work on approximation algorithms [43, 33]. Our approach
is to reduce the SBFE problems to Stochastic Submodular
Set Cover (SSSC). The SSSC problem was introduced
by Golovin and Krause, who gave an approximation
algorithm for it called Adaptive Greedy [22]. 1

Adaptive Greedy is a generalization of the greedy al-
gorithm for the classical Set Cover problem. We present
a new algorithm for the SSSC problem, which we call
Adaptive Dual Greedy. We prove that it achieves an ap-
proximation factor of of α, where α is a ratio that depends
on the cover constructed by the algorithm. Adaptive Dual
Greedy is an extension of the Dual Greedy algorithm for
Submodular Set Cover due to Fujito, which is a general-
ization of Hochbaum’s primal-dual algorithm for the clas-
sical Set Cover Problem [19, 20].

We use our new Adaptive Dual Greedy algorithm
to obtain a 3-approximation algorithm solving the SBFE
problem for linear threshold formulas.

The SBFE problem for evaluating linear threshold
formulas is closely related to a stochastic version of
the Min-Knapsack problem. There are a number of
results on the Stochastic (Max) Knapsack problem and
on (deterministic) Min-Knapsack, but there has been very
little work on stochastic versions of Min-Knapsack.

We define the Stochastic Min-Knapsack problem to
be the problem of adaptively filling an initially empty
knapsack with items from a given set of n items, until
the total size of the items in the knapsack is at least a
fixed threshold θ, or all items have been used. The size
of each item is a random variable and the size of an item
is not revealed until it is placed in the knapsack. Each item
has a non-negative cost. The goal is to minimize the total
cost of the items in the knapsack. We give more details in

1Golovin and Krause called the problem Stochastic Submodular

Coverage, not Stochastic Submdodular Set Cover, because the cover

is not formed using sets. Our choice of name is for consistency with

terminology of Fujito [20].

1453 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

Section 2.
A minor modification of our algorithm for lin-

ear threshold evaluation yields a 3-approximation algo-
rithm for Stochastic Min-Knapsack. We also get a 2-
approximation algorithm for the special case in which the
distributions on the sizes are such that the threshold θ can
always be reached or exceeded. To our knowledge, these
are the first constant-factor approximations for Stochastic
Min-Knapsack. An O(log θ)-approximation algorithm,
for the general case, follows from work of Im et al. on
the Stochastic Submodular Ranking Problem [31], when
the item sizes and threshold θ are non-negative integers.

We give a new bound on the approximation factor
achieved by the Adaptive Greedy algorithm of Golovin
and Krause. We prove that Adaptive Greedy achieves
an 2(lnP + 1)-approximation in the binary case (and
k(lnP + 1) in the k-ary case) where P is the maximum
utility that can be contributed by a single item. Our bound
generalizes Wolsey’s bound for (non-adaptive) submod-
ular set cover [44], except for an additional factor of 2.
Wolsey’s bound generalized the (ln s+1) bound for stan-
dard set cover, where s is the maximum size of one of the
input subsets (cf. [20]).

We note that our work on SBFE problems sug-
gests many open questions, including approximation al-
gorithms for other classes of Boolean functions, proving
hardness results, and determining adaptivity gaps.

Before presenting our results on evaluating linear
threshold formulas using our new Adaptive Dual Greedy,
we consider solving SBFE problems using an approach
exploiting existing techniques. In this approach, we
reduce the SBFE problem to an SSSC problem, solve
the SSSC problem using the existing Adaptive Greedy
algorithm, and apply the bound of Golovin and Krause
for that algorithm [22]. We formalize this approach
and call it the Q-value approach. We show that the Q-
value approach easily yields an O(log kd)-approximation
algorithm for CDNF formulas (or decision trees), where k
is the number of clauses in the CNF and d is the number
of terms in the DNF. Previously, Kaplan et al. gave an
algorithm also achieving an O(log kd) approximation, but
only for monotone CDNF formulas, unit costs, and the
uniform distribution [33]. 2

We then show that although the Q-value approach
yields a good approximation result for CDNF formula
evaluation, it provably cannot yield a sublinear approx-
imation result for evaluating linear threshold formulas.
Thus it cannot be used to obtain the 3-approximation al-
gorithm obtained in this paper by using Adaptive Dual
Greedy algorithm. We also prove that the Q-value ap-
proach cannot yield a sublinear approximation result for

2Although our result solves a more general problem than Kaplan et

al., they give their O(log kd) approximation factor in terms of expected

certificate cost, which lower bounds the expected cost of the optimal

strategy. See Section 2.

evaluating read-once DNF, even though there is an exact
algorithm for that problem [33, 25].

At the end of this paper, we include some additional
applications of variants of the Q-value approach, using
bounds on Adaptive Greedy and Adaptive Dual Greedy.
We give two algorithms with approximation factors of
O(logmDavg) and Dmax, respectively, solving the prob-
lem of simultaneous evaluation of m linear threshold for-
mulas. Here Davg and Dmax are the average and maxi-
mum, over the m formulas, of the sum of the magnitude
of the coefficients. These results generalize results of Liu
et al. for shared filter ordering [35]. We also improve one
of Liu’s results for that problem.

We also give an O(log(mDmax))-approximation al-
gorithm for ranking a set of m linear functions a1x1 +
. . . + anxn (not linear threshold functions), defined over
{0, 1}n, by their output values, in our stochastic setting.
This problem arises in Web search and database query
processing. For example, we might need to rank a set
of documents or tuples by their “scores”, where the linear
functions compute the scores over a set of unknown prop-
erties such as user preferences or data source reputations.

2 Problem Definitions and Related Work
Formally, the input to the SBFE problem is a represen-
tation of a Boolean function f(x1, . . . , xn) from a fixed
class of representations C, a probability vector p =
(p1, . . . , pn), where 0 < pi < 1, and a real-valued cost
vector (c1, . . . , cn), where ci ≥ 0. An algorithm for this
problem must compute and output the value of f on an
x ∈ {0, 1}n, drawn randomly from product distribution
Dp, such that pi = Prob[xi = 1]. However, it is not given
access to x. Instead, it can discover the value of any xi by
“testing” it, at a cost of ci. The algorithm must perform
the tests sequentially, each time choosing the next test to
perform. The algorithm can be adaptive, so the choice of
the next test can depend on the outcomes of the previous
tests. The expected cost of the algorithm is the cost it in-
curs on a random x from Dp. (Since each pi is strictly
between 0 and 1, the algorithm must continue doing tests
until it has obtained a 0-certificate or 1-certificate for the
function.) The algorithm is optimal if it has minimum ex-
pected cost with respect to Dp. The running time of the
algorithm is the (worst-case) time it takes to determine the
next variable to be tested, or to compute the value of f(x)
after the last test. The algorithm corresponds to a Boolean
decision tree (strategy) computing f .

If f is given by its truth table, the SBFE Problem can
be exactly solved in time polynomial in the size of the
truth table, using dynamic programming, as in [26, 39].
The following algorithm solves the SBFE problem with an
approximation factor of n for any function f , even under
arbitrary distributions: Test the variables in increasing
cost order (cf. [33]). We thus consider a factor of n
approximation to be trivial.

1454 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

We define the Stochastic Min-Knapsack problem for-
mally as follows. The input is a set of n items with associ-
ated non-negative costs c1, . . . , cn. For each item i, we are
also given a probability distribution on the size si of the
item. We assume in this paper that each si has only a finite
number of possible values. We expect that our results will
also apply to a wide-range of continuous distributions for
si, but defer that to future work.

We assume that the sizes of the items are indepen-
dent. The problem is to incrementally choose items to
place in a subset S, starting from S = ∅, until either∑

j∈S si ≥ θ or S contains all n items. The choice of the
next item can depend on the sizes of the previous items
chosen. The size si of the ith item is not revealed until
the item is chosen for inclusion in S, and once an item is
added to S, it cannot be removed. The goal is to minimize
the expected value of

∑
j∈S ci.

We now review related work on the SBFE problem.
There is a well-known algorithm that exactly solves the
SBFE problem for disjunctions: test the xi in increasing
order of ratio ci/pi (see, e.g., [21]). A symmetric algo-
rithm works for conjunctions. There is also a poly-time
exact algorithm for evaluating a k-of-n function (i.e., a
function that evaluates to 1 iff at least k of the xi are
equal to 1) [40, 4, 41, 11]. There is a poly-time exact
algorithm for evaluating a read-once DNF formula f , but
the complexity of the problem is open when f is a gen-
eral read-once formula [9, 25, 24]. The SBFE problem
is NP-hard for linear threshold formulas [13], but for the
special case of unit costs and uniform distribution, testing
the variables in decreasing order of the magnitude of their
coefficients is optimal [8, 18]. A survey by Ünlüyurt [43]
covers other results on exactly solving the SBFE problem.

There is a sample version of the evaluation problem,
where the input is a sample of size m of f (i.e, a set
of m pairs (x, f(x))), and the problem is to build a
decision tree that computes f correctly on the x in the
sample that minimizes the average cost of evaluation over
the sample. Golovin et al. and Bellala et al. developed
O(logm) approximation algorithms for arbitrary f [23,
3], and there is a 4-approximation algorithm when f is a
conjunction [2, 17, 38]. Moshkov and Chikalov proved a
related bound in terms of a combinatorial measure of the
sample [37]. Moshkov gave an O(logm)-algorithm for a
worst-case cost variant of this problem [36].

A number of non-adaptive versions of standard and
submodular set cover have been studied. For example,
Iwata and Nagano [32] studied the “submodular cost
set cover” problem, where the cost of the cover is a
submodular function that depends on which subsets are in
the cover. Beraldi and Ruszczynski addressed a set cover
problem where the set of elements covered by each input
subset is a random variable, and full coverage must be
achieved with a certain probability [5].

The O(log kd) approximation factor proved by Ka-

plan et al. for the problem of evaluating monotone CDNF
(with unit costs, uniform distribution) was given in terms
of the expected certificate cost, rather than in terms of the
expected cost of the optimal strategy. The gap between
expected certificate cost and expected cost of the optimal
strategy can be large: e.g., for disjunction evaluation, with
unit costs, where Prob[xi = 1] is 1/(i+ 1), the first mea-
sure is constant, while the second is Ω(logn).

Kaplan et al. also considered the problem of minimiz-
ing the expected cost of evaluating a Boolean function f
with respect to a given arbitrary probability distribution,
where the distribution is given by a conditional probabil-
ity oracle [33]. In the work of Kaplan et al., the goal of
evaluation differs slightly from ours in that they require
the evaluation strategy to output an “explanation” of the
function value upon termination. They give as an example
the case of evaluating a DNF that is identically true; they
require testing of the variables in one term of the DNF in
order to output that term as a certificate. In contrast, un-
der our definitions, the optimal strategy for evaluating an
identically true DNF formula is a zero-cost one that sim-
ply outputs “true” and performs no tests.

Charikar et al. [12] considered the problem of mini-
mizing the worst-case ratio between the cost of evaluating
f on an input x, and the minimum cost of a certificate
contained in x. There are also papers on building identifi-
cation trees of minimum average cost, given S ⊆ {0, 1}n,
but that problem is fundamentally different than function
evaluation because each x ∈ S must have its own leaf (cf.
[1]).

There are several previous combinatorial and non-
combintorial 2-approximation algorithms for (determin-
istic) Min-Knapsack (cf. [28]), and this problem also has
a PTAS [10]. Han and Makino considered an on-line ver-
sion of Min-Knapsack where the items are given one-by-
one over time [28]. There are a number of constant-factor
approximation algorithms for Stochastic (Max) Knapsack
problems, including a (2 + ε)-approximation in a recent
paper of Bhalgat [14, 7, 6]. Derman et al. consider a ver-
sion of stochastic Min-Knapsack where multiple copies of
each item can be added to the cover [15].

3 Preliminaries
Basic notation and definitions. A table with the main
notation used in this paper is provided in Appendix A.

A partial assignment is a vector b ∈ {0, 1, ∗}n. We
view b as an assignment to variables x1, . . . , xn. We will
use b ∈ {0, 1}n to represent the outcomes of binary tests,
where for l ∈ {0, 1}, bi = l indicates that test i was
performed and had outcome l, and bi = ∗ indicates that
test i was not performed.

For partial assignments a, b ∈ {0, 1, ∗}n, a is an
extension of b, written a ∼ b, if ai = bi for all bi �= ∗.
We also say that b is contained in a. Given Boolean
function f : {0, 1}n → {0, 1}, a partial assignment

1455 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

b ∈ {0, 1, ∗}n is a 0-certificate (1-certificate) of f if
f(a) = 0 (f(a) = 1) for all a such that a ∼ b. Given
a cost vector c = (c1, . . . , cn), the cost of a certificate b is∑

j:bj �=∗ cj .

Let N = {1, . . . , n}. In what follows, we assume
that utility functions are integer-valued. In the context
of standard work on submodularity, a utility function is
a function g : 2N → Z≥0. Given S ⊆ N and j ∈ N ,
gS(j) denotes the quantity g(S

⋃{j})− g(S).
We will also use the term utility function to refer

to a function g : {0, 1, ∗}n → Z≥0 defined on partial
assignments. Let g : {0, 1, ∗}n → Z≥0, be such a utility
function, and let b ∈ {0, 1, ∗}n. We define g(S, b) = g(b′)
where b′ is the partial assignment such that b′i = bi for
i ∈ S, and b′i = ∗ otherwise. For j ∈ N , we define
gS,b(j) = g(S

⋃{j}, b)− g(S, b).
For l ∈ {0, 1, ∗}. the quantity bxi←l denotes the

partial assignment that is identical to b except that bi = l.
We define gb(i, l) = g(bxi←l) − g(b) if bi = ∗, and
gb(i, l) = 0 otherwise. When b represents test outcomes,
and test i has not been performed yet, gb(i, l) is the change
in utility that would result from adding test i with outcome
l.

Given probability vector p = (p1, . . . , pn), we use
x ∼ Dp to denote a random x drawn from product
distribution Dp. For fixed Dp, b ∈ {0, 1, ∗}n, and
i ∈ N , we use E[gb(i)] to denote the expected increase
in utility that would be obtained by testing i. In the binary
case, E[gb(i)] = pigb(i, 1) + (1 − pi)gb(i, 0). Note that
E[gb(i)] = 0 if bi �= ∗. For b ∈ {0, 1, ∗}n, let p(b) be
the probability that a random x drawn from Dp will have
the same values as b for all j such that bj �= ∗. That is,
p(b) = (

∏
j:bj=1 pj)(

∏
j:bj=0(1− pj)).

Utility function g : {0, 1}n → Z≥0 is monotone
if for b ∈ {0, 1, ∗}n, i ∈ N such that bi = ∗, and
l ∈ {0, 1}, g(bxi←l)−g(b) ≥ 0; in other words, additional
information can only increase utility. Utility function g is
submodular if for all b, b′ ∈ {0, 1, ∗}n and l ∈ {0, 1},
g(bxi←l)− g(b) ≥ g(b′xi←l)− g(b′) whenever b′ ∼ b and
bi = b′i = ∗. In the testing context, if the n test outcomes
are predetermined, submodularity means that the value of
a given test (measured by the increase in utility) will not
increase if we delay that test until later.

The Stochastic Submodular Set Cover (SSSC) prob-
lem. The SSSC problem is similar to the SBFE prob-
lem, except that the goal is to achieve a cover. Let
O = {0, 1, . . . , k − 1} be a finite set of k states, where
k ≥ 2 and ∗ �∈ O. In what follows, we will assume k = 2
unless otherwise noted. However, we will briefly mention
extensions to the k-ary case where k > 2, and to arbitrary
sets O. To simplify the exposition, we define the SSSC
problem in terms of integer valued utility functions.

In the (binary) SSSC problem, the input consists of
the set N , a cost vector (c1, . . . , cn), where each cj ≥ 0,

a probability vector p = (p1, . . . , pn) where p ∈ [0, 1]n,
an integer Q ≥ 0, and a utility function g : (O⋃{∗})n →
Z≥0. Further, g(x) = 0 if x is the vector that is all ∗’s,
and g(x) = Q if x ∈ On. We call Q the goal utility. We
say that b ∈ (O⋃{∗})n is a cover if g(b) = Q. The cost
of cover b is

∑
j:bj �=∗ cj .

Each item j ∈ N has a state xj ∈ O. We sequentially
choose items from N . When we choose item j, we
observe its state xj (we “test” j). The states of items
chosen so far are represented by a partial assignment
b ∈ (O⋃ ∗)n. When g(b) = Q, we have a cover, and
we can output it. The goal is to determine the order in
which to choose the items, while minimizing the expected
testing cost with respect to distribution Dp. We assume
that an algorithm for this problem will be executed in an
on-line setting, and that it can be adaptive.

SSSC is a generalization of Submodular Set Cover
(SSC), which is a generalization of the standard
(weighted) Set Cover problem, which we call Classical
Set Cover. In Classical Set Cover, the input is a finite
ground set X , a set F = {S1, . . . , Sm} where each Sj ⊆
X , and a cost vector c = (c1, . . . , cm) where each cj ≥ 0.
The problem is to find a min-cost “cover” F ′ ⊆ F such
that

⋃
Sj∈F ′ Sj = X , and the cost of F ′ is

∑
Sj∈F ′ cj . In

SSC, the input is a cost vector c = (c1, . . . , cn), where
each cj ≥ 0, and a utility function g : 2N → Z≥0

such that g is monotone and submodular, g(∅) = 0, and
g(N) = Q. The goal is to find a subset S ⊆ N such that
g(S) = Q and

∑
j∈S cj is minimized. SSC can be viewed

as a special case of SSSC in which each pj is equal to 1.

The Adaptive Greedy algorithm for Stochastic Sub-
modular Set Cover. The Classical Set Cover problem has
a simple greedy approximation algorithm that chooses the
subset with the “best bang for the buck” – i.e., the subset
covering the most new elements per unit cost. The gener-
alization of this algorithm to SSC, due to Wolsey, chooses
the element that adds the maximum additional utility per
unit cost [44]. The Adaptive Greedy algorithm of Golovin
and Krause, for the SSSC problem, is a further generaliza-
tion. It chooses the element with the maximum expected
increase in utility per unit cost. (Golovin and Krause ac-
tually formulated Adaptive Greedy for use in solving a
somewhat more general problem than SSSC, but here we
describe it only as it applies to SSSC.)

Golovin and Krause proved that Adaptive Greedy is a
(lnQ+ 1)-approximation algorithm, where Q is the goal
utility. We will make repeated use of this bound.

4 Function Evaluation and the SSSC Prob-
lem

4.1 The Q-value approach and CDNF Evaluation.
Definition: Let f(x1, . . . , xn) be a Boolean function. Let
g : {0, 1, ∗}n → Z≥0 be a utility function. We say that
g is assignment feasible for f , with goal value Q, if (1) g

1456 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

is monotone and submodular, (2) g(∗, ∗, . . . , ∗) = 0, and
(3) for b ∈ {0, 1, ∗}n, g(b) = Q iff b is a 0-certificate or a
1-certificate of f .

We will use the following approach to solving SBFE
problems, which we call the Q-value approach. To
evaluate f , we construct an assignment feasible utility
function g for f with goal value Q. We then run Adaptive
Greedy on the resulting SSSC problem. Because g(b) =
Q iff b is either a 0-certificate or a 1-certificate of f ,
the decision tree that is (implicitly) output by Adaptive
Greedy is a solution to the SBFE problem for f . By the
bound on Adaptive Greedy, this solution is within a factor
of (lnQ+ 1) of optimal.

The challenge in using the above approach is in con-
structing g. Not only must g be assignment feasible, but Q
should be subexponential, to obtain a good approximation
bound. We will use the following lemma, from Guillory
and Bilmes, in our construction of g.

Lemma 4.1 [27] Let g0 : {0, 1, ∗}n → Z≥0, g1 :
{0, 1, ∗}n → Z≥0, and Q0, Q1 ∈ Z≥0 be such that
g0 and g1 are monotone, submodular utility functions,
g0(∗, ∗, . . . , ∗) = g1(∗, ∗, . . . , ∗) = 0, and g0(a) ≤ Q0

and g1(a) ≤ Q1 for all a ∈ {0, 1}n.
Let Q∨ = Q0Q1 and let g∨ : {0, 1, ∗}n → Z≥0 be

such that g∨(b) = Q∨ − (Q0 − g0(b))(Q1 − g1(b)).
Let Q∧ = Q0 + Q1 and let g∧ : {0, 1, ∗}n → Z≥0

be such that g∧(b) = g0(b) + g1(b).
Then g∨ and g∧ are monotone and submodular, and

g∨(∗, . . . , ∗) = g∧(∗, . . . , ∗) = 0. For b ∈ {0, 1, ∗}n,
g∨(b) = Q∨ iff g0(b) = Q0 or g1(b) = Q1, or both.
Further, g∧(b) = Q∧ iff g0(b) = Q0 and g1(b) = Q1.

Using the Q-value approach, it is easy to obtain
an algorithm for evaluating CDNF formulas. A CDNF
formula for Boolean function f is a pair (φ0, φ1) where
φ0 and φ1 are CNF and DNF formulas for f , respectively.

Theorem 4.1 There is a polynomial-time O(log kd)-
approximation algorithm solving the SBFE problem for
CDNF formulas, where k is the number of clauses in the
CNF, and d is the number of terms in the DNF.
Proof Let φ0 be the CNF and φ1 be the DNF. Let f
be the Boolean function defined by these formulas. Let k
and d be, respectively, the number of clauses and terms of
φ0 and φ1. Let g0 : {0, 1, ∗}n → Z≥0 be such that for
a ∈ {0, 1, ∗}n, g0(a) is the number of terms of φ1 set to
0 by a (i.e. terms with a literal xi such that ai = 0, or a
literal ¬xi such that ai = 1). Similarly, let g1(a) be the
number of clauses of φ0 set to 1 by a. Clearly, g0 and
g1 are monotone and submodular. Partial assignment b is
a 0-certificate of f iff g0(b) = d and a 1-certificate of f
iff g1(b) = k. Applying the disjunctive construction of
Lemma 4.1 to g1 and g0, yields a utility function g that
is assignment feasible for f with goal value Q = kd.
Applying Adaptive Greedy and its (lnQ+1) bound yields
the theorem. �

Given a decision tree for a Boolean function f , a CNF
(DNF) for f can be easily computed using the paths to the
0-leaves (1-leaves) of the tree. Thus the above theorem
gives an O(ln t) approximation algorithm for evaluating
decision trees, where t is the number of leaves.

4.2 Limitations of the Q-value approach The Q-
value approach depends on finding an assignment feasi-
ble utility function g for f . We first demonstrate that
such a generic g exists for all Boolean functions f . For
i ∈ {0, 1}, let Qi = |{a ∈ {0, 1}n|f(a) = i}|. For par-
tial assignment b, let gi(b) = Qi − |{a ∈ {0, 1}n|a ∼
b, f(a) = i}| with goal value Qi. Then g0, Q0, g1 and
Q1 obey the properties of Lemma 4.1. Apply the disjunc-
tive construction in that lemma, and let g be the resulting
utility function. Then g is assignment feasible for f with
goal value Q = Q1Q0. In fact, this g is precisely the
utility function that would be constructed by the approxi-
mation algorithm of Golovin et al. [23], for computing a
consistent decision tree of min-expected cost with respect
to a sample, if we take the sample to be the set of all 2n

entries (x, f(x)) in the truth table of f . The goal value Q
of this g is 2θ(n), so in this case the bound for Adaptive
Greedy, (lnQ+ 1), is linear in n.

Since we want a sublinear approximation factor, we
would instead like to construct an assignment-feasible
utility function for f whose Q is sub-exponential in n.
However, we now show this is impossible even for some
simple Boolean functions f . We begin by introducing the
following combinatorial measure of a Boolean function,
which we call its Q-value.

Definition: The Q-value of a Boolean function f :
{0, 1}n → {0, 1} is the minimum integer Q such that
there exists an assignment feasible utility function g for f
with goal value Q.

The generic g above shows that the Q-value of every
n-variable Boolean function is at most 2O(n).

We now prove lower bounds on Q for some particular
functions. First, consider the Boolean function f :
{0, 1}n → {0, 1}, where n is even, represented by the
read-once DNF formula φ = t1∨t2∨. . .∨tn/2 where each
ti = xixn/2+i. This function has the following simple
property: if you set one variable in each of the first m
terms of φ to be 1, where 1 ≤ m ≤ n, this is not sufficient
to force the value of the function to be 0. However, if
you then set the remaining variable in the mth term to 1,
this does force the function value to 1. We can use this
property to prove a lower bound of 2n/2 on the Q-value
of f . Rather than showing this directly, however, we prove
a slightly more general lemma.

Lemma 4.2 Let f(x1, . . . , xn) be a Boolean function,
where n is even. Further, let f be such that for all
n′ ≤ n/2, and for all b ∈ {0, 1, ∗}n, if bi = bn/2+i = ∗
for all i ∈ {n′ + 1, . . . , n/2}, the following properties
hold: (1) if for all i ∈ {1, . . . , n′}, exactly one of bi and

1457 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

bn/2+i is equal to * and the other is equal to 1, then b is
not a 0-certificate or a 1-certificate of f and (2) if for all
i ∈ {1, . . . , n′ − 1}, exactly one of bi and bn/2+i is equal
to * and the other is equal to 1, and bn′ = bn/2+n′ = 1,
then b contains a 1-certificate of f . Then the Q-value of f
is at least 2n/2.
Proof Let f have the properties specified in the lemma.
For bitstrings r, s ∈ {0, 1}l, where 0 ≤ l ≤ n/2, let
dr,s ∈ {0, 1, ∗}n be such that di = ri and dn/2+i = si for
i ∈ {1, . . . , l}, and di = ∗ for all other i. Suppose g is an
assignment feasible utility function for f with goal value
Q. We prove the following claim. Let 0 ≤ l ≤ n/2. Then
there exists r, s ∈ {0, 1, ∗}l such that 0 ≤ Q− g(dr,s) ≤
Q/2l, and for all i ∈ {1, . . . , l}, either ri = 1 and si = ∗,
or ri = ∗ and si = 1.

We prove the claim by induction on l. It clearly holds
for l = 0. For the inductive step, assume it holds for l.
We show it holds for l + 1. Let r, s ∈ {0, 1, ∗}l be as
guaranteed by the assumption, so Q− g(dr,s) ≤ n/2l.

For σ ∈ {0, 1, ∗}, rσ denotes the concatenation of
bitstring r with σ, and similarly for sσ. By the conditions
on f given in the lemma, dr,s is not a 0 or 1-certificate
of f . However, dr1,s1 is a 1-certificate of f and so
g(dr1,s1) = Q. If Q − g(dr1,s∗) ≤ Q/2l+1, then the
claim holds for l + 1, because r1, s∗ have the necessary
properties. Suppose Q − g(dr1,s∗) > Q/2l+1. Then,
because g(dr1,s1) = Q, g(dr1,s1)− g(dr1,s∗) > Q/2l+1.
Note that dr1,s1 is the extension of dr1,s∗ produced by
setting dn/2+l+1 to 1. Similarly, dr∗,s1 is the extension
of dr∗,s∗ produced by setting dn/2+l+1 to 1. Therefore,
by the submodularity of g, g(dr∗,s1) − g(dr∗,s∗) ≥
g(dr1,s1) − g(dr1,s∗), and thus g(dr∗,s1) − g(dr∗,s∗) ≥
Q/2l+1.

Let A = g(dr∗,s1) − g(dr∗,s∗) and B = Q −
g(dr∗,s1). Thus A ≥ Q/2l+1, and A + B = Q −
g(dr∗,s∗) = Q−g(dr,s) ≤ Q/2l where the last inequality
is from the original assumptions on r and s. It follows that
B = Q − g(dr∗,s1) ≤ Q/2l+1, and the claim holds for
l + 1, because r∗, s1 have the necessary properties.

Taking l = n/2, the claim says there exists dr,s such
that Q − g(dr,s) ≤ Q/2n/2. Since g is integer-valued,
Q ≥ 2n/2. �

The above lemma immediately implies the following
theorem.

Theorem 4.2 Let n be even. Let f : {0, 1}n → {0, 1} be
the Boolean function represented by the read-once DNF
formula φ = t1∨t2∨. . .∨tn/2 where each ti = xixn/2+i.
The Q-value of f is at least 2n/2.

The above theorem shows that the Q-value approach
will not yield a good approximation bound for either read-
once DNF formulas or for DNF formulas with terms of
length 2.

In the next theorem, we show that there is a particular
linear threshold function whose Q-value is at least 2n/2.

It follows that the Q-value approach will not yield a good
approximation bound for linear-threshold formulas either.

We note that the function described in the next theo-
rem has been sudied before. As mentioned in [29], there is
a lower bound of essentially 2n/2 on the size of the largest
integer coefficients in any representation of the function as
a linear threshold formula with integer coefficients.

Theorem 4.3 Let f(x1, . . . , xn) be the function defined
for even n, whose value is 1 iff the number represented
in binary by bits x1 . . . xn/2 is strictly less than the
number represented in binary by bits xn/2+1, . . . , xn, and
0 otherwise. The Q-value of f is at least 2n/2.
Proof We define a new function: f ′(x1, . . . , xn) =
f(¬x1, . . . ,¬xn/2, xn/2+1, . . . , xn). That is,
f ′(x1, . . . , xn) is computed by negating the assign-
ments to the first n/2 variables, and then computing the
value of f on the resulting assignment. Function f ′ obeys
the conditions of Lemma 4.2, and so has Q-value at least
2n/2. Then f also has Q-value at least 2n/2, because
the Q-value is not changed by the negation of input
variables. �

Given the limitations of the Q-value approach we
can ask whether there are good alternatives. Our new
bound on Adaptive Greedy is O(logP), where P is the
maximum amount of utility gained by testing a single
variable xi, so we might hope to use P -value in place
of Q-value. However, this does not help much: testing
all n variables yields utility Q, so testing one of them
alone must yield utility at least Q/n, implying that P ≥
Q/n. Another possibility might be to exploit the fact
that Golovin and Krause’s bounds on Adaptive Greedy
apply to a more general class of utility functions than the
assignment feasible utility functions, but we do not pursue
that possibility. Instead, we give a new algorithm for the
SSSC problem.

5 Adaptive Dual Greedy
We now present ADG, our new algorithm for the binary
version of the SSSC problem. It easily extends to the k-
ary version, where k > 2, with no change in the approx-
imation bound. Like Fujito’s Dual Greedy algorithm for
the (non-adaptive) SSC problem, it is based on Wolsey’s
IP for the (deterministic) Submodular Set Cover Problem.
We present Wolsey’s IP in Figure 1.

min
∑

j∈N cjxj

s.t.∑
j∈N (g(S

⋃{j})− g(S))xj ≥ Q− g(S) ∀S ⊆ N

xj ∈ {0, 1} ∀j ∈ N

Figure 1: Wolsey’s IP for submodular set cover

Wolsey proved that an assignment x ∈ {0, 1}n to the
variables in this IP is feasible iff {j|xj = 1} is a cover

1458 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

for the associated Submodular Set Cover instance, i.e., iff
g({j|xj = 1}) = Q. We call this Wolsey’s property.

In Figure 2, we present a new LP, based on Wolsey’s
IP, which we call LP1. There are n2n−1 variables xw

in this LP, one for each partial assignment w such that
wj = ∗ for exactly one value of j. Let W be the set of
such assignments, so W = {w ∈ {0, 1, ∗}n | wj = ∗ for
exactly one value of j}. For w ∈ W , let j(w) denote the
j ∈ N where wj = ∗. Further, let w(0) and w(1) denote
the extensions of w obtained from w by setting wj(w) to
0 and 1, respectively. Finally, for a ∈ {0, 1}n, j ∈ N , let
aj denote the the partial assignment obtained from a by
setting aj to ∗. Note that, for any fixed a ∈ {0, 1}n, the
subset of constraints involving a, one for each S ⊆ N , is
precisely the set of constraints of Wolsey’s IP, if we take
the utility function to be ga such that ga(S) = g(S, a).

We will rely on the following observation, which
we call the Neighbor Property: Let T be a decision
tree solving the SSSC problem. Given two assignments
a, a′ ∈ {0, 1}n differing only in bit j, either T tests j on
both input a and input a′, or on neither.

min
∑

w∈W cj(w)p(w)xw

s.t. ∑
j∈N gS,a(j)xaj ≥ Q− g(S, a)

∀a ∈ {0, 1}n, S ⊆ N
xw ≥ 0 ∀w ∈ W

Figure 2: LP1: the Linear Program for Lower Bounding Adap-

tive Dual Greedy

Lemma 5.1 The optimal value of LP1 lower bounds the
expected cost of an optimal decision tree T for the SSSC
instance on g, p, and c.
Proof Let X be the assignment to the variables xw in
the LP such that xw = 1 if T tests j on both assignments
extending w, and xw = 0 otherwise. With respect to X ,
the expected cost of T equals

∑
a∈{0,1}n

∑
j cjxajp(a).

This equals the value of the objective function, because
for a, a′ ∈ {0, 1}n differing only in bit j, p(a) + p(a′) =
p(aj). Finally, as noted earlier, for any fixed a ∈ {0, 1}n,
the subset of constraints involving a is precisely the set of
constraints of Wolsey’s IP, if we take the utility function
to be ga such that ga(S) = g(S, a). Since T produces
a cover for every a, by Wolsey’s property, the constraints
of LP1 involving a are satisfied. Thus X is a feasible
solution to LP1, and the optimal value of the LP is at most
the expected cost of the optimal tree. �
We present the pseudocode for ADG in Algorithm 1. (In
the line assigning a value to jl, assume that if E[gb(x)] =
0, the expression evaluates to ∞.) Its main loop is analo-
gous to the main loop in Fujito’s Dual Greedy algorithm,
except that ADG uses expected increases in utility, instead
of known, deterministic increases in utility.

We now analyze Adaptive Dual Greedy. In the LP
in Figure 2, there is a constraint for each a, S pair.

max
∑

a∈{0,1}n

∑
S⊆N p(a) (Q− g(S, a)) yS,a

s.t. ∑
S⊆N

∑
i∈O Pr[wj = i] gS,w(i)(j) yS,w(i) ≤ cj

∀w, j s.t. w ∈ W , wj = ∗

yS,a ≥ 0 ∀S ⊆ N, a ∈ {0, 1}n
Figure 3: LP2: the Linear Program for Adaptive Dual Greedy

b ← (∗, ∗ . . . , ∗), yS ← 0 for all S ⊆ N

F 0 = ∅, l ← 0

while b is not a solution to SSSC (g(b) < Q) do

l ← l + 1

jl ← arg min
j �∈F l−1

cj−
∑

S:yS �=0(E[gS,b(j)])yS

E[gb(j)]

yF l−1 ← cjl−
∑

S:yS �=0(E[gS,b(jl)])yS

E[gb(jl)]

k ← the state of jl // “test” jl

F l ← F l−1
⋃{jl} // F l is set of j tested so far

bjl ← k

end while

return b

Algorithm 1: Adaptive Dual Greedy

Multiply both sides of such constraints by p(a), to form
an equivalent LP. Note that for all w ∈ W , variable
xw appears only in the constraints for pairs a, S where
a = w(0) or a = w(1). Since we assuming the binary
case where O = {0, 1}, P [wj = i] will equal either
pj or 1 − pj . Take the dual of the result, and divide
both sides of each constraint by p(w). Using the fact that
p(w(1))/p(w) = pj and p(w(0))/p(w) = 1 − pj , we get
the LP that we call LP2, shown in Figure 3. In LP2 there
is one constraint for each w, because wj = ∗ for exactly
one j. The variables in LP2 are yS,a, where S ⊆ N and
a ∈ {0, 1}n. Let P [wj = i] denote the probability that
the jth bit of w is in state i.

Consider running ADG on an input a ∈ {0, 1}n.
Because g(a) = Q, ADG is guaranteed to terminate
with an output b such that g(b) = Q. Let C(a) be the
set of items that ADG tests and inserts into the cover
it constructs for a. We will sometimes treat C(a) as a
sequence of items, ordered by their insertion order. ADG
constructs an assignment to the variables yS (one for each
S ⊆ N) when it is run on input a.

Consider the assignment Y to the variables yS,a of
LP2 such that each yS,a is given the value that ADG
assigns to variable yS when it is run on input a. Let YS,a

denote the assignment Y makes to variable yS,a.
We now show that Y is a feasible solution to LP2

and that for each a, and each j ∈ C(a), Y makes the

1459 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

constraint for w = aj tight. For w ∈ W , let h′
w(y)

denote the function of the variables yS,a computed in the
left hand side of the constraint for w in LP2.

Lemma 5.2 For every a ∈ {0, 1}n, j ∈ N ,
(1) h′

aj (Y) = cj if j ∈ C(a), and
(2) h′

aj (Y) ≤ cj if j �∈ C(a).

Proof Assignment Y assigns non-zero values only to
variables yS,a where S is a prefix of sequence C(a).

For t ∈ N , let Y t denote the assignment to the yS,a
variables such that yS,a equals the value of variable yS
at the end of iteration t of the loop in ADG, when ADG
is run on input a. (If ADG terminates before iteration t,
yS,a equals the final value of yS). Let Y 0 be the all 0’s
assignment.

We first prove the following claim: For all t ∈ N and
w ∈ W , h′

w(Y
t) =

∑
S⊆N E[gS,w(j)]Y

t
S,w(1) .

Let w ∈ W . Consider running ADG on w(0) and
w(1). Since ADG corresponds to a decision tree, the
Neighbor Property holds. We consider two cases. For
the first case, suppose j is never tested on w(0). Then
it is never tested on w(1). and Y t

S,w(0) = Y t
S,w(1) for

all S, t. Thus h′
w(Y

t) =
∑

S⊆N ((pjgS,w(1)(j)) + (1 −
pj)gS,w(0)(j))Y t

S,w(1) =
∑

S⊆N E[gS,w(j)]Y
t
S,w(1) for all

t.
For the second case, suppose that j is tested in

iteration t̂ on input w(1), and hence on input w(0). For
t ≤ t̂, Y t

S,w(1) = Y t
S,w(0) for all S. This is not true for

t > t̂. However, in iterations t > t̂, j is already part of the
cover, so ADG assigns values only to variables yS where
j ∈ S. For such S, gS,w(1)(j) = 0. Thus in this case
also, h′

w(Y
t) =

∑
S⊆N E[gS,w(j)]Y

t
S,w(1) for all t. This

completes the proof of the claim.
It is now easy to show by induction on t that the

the two properties of the lemma hold for every Y t, and
hence for Y . They hold for Y 0. Assume they hold for
Y t. Again consider assignments w(1) and w(0). If j was
tested on w(1) and w(0) in some iteration t̂ < t + 1, then
h′
aj (Y t) = h′

aj (Y t+1) by the arguments above. If j is
tested in iteration t + 1 on both inputs, then the value
assigned to yF l−1 by ADG on w(1) (and w(0)) equals
(cj − h′

w(Y
t))/E[gF l−1,w(j)], and thus h′

w(Y
t+1) = cj .

If j is not tested in iteration t + 1, and was not tested
earlier, the inductive assumption and the greedy choice
criterion ensure that h′

w(Y
t+1) ≤ cj . �

The expected cost of the cover produced by ADG on
a random input a is

∑
a∈{0,1}n

∑
j∈C(a) p(a)cj . The next

lemma relates this value to an expression involving the
YS,a.

Lemma 5.3
∑

a∈{0,1}n

∑
j∈C(a) p(a)cj =∑

a∈{0,1}n

∑
S⊆N

∑
j:j∈C(a) p(a)gS,a(j)YS,a

Proof For j ∈ N , let W j = {w ∈ W |wj = ∗}. Then

∑
a

∑
j:j∈C(a)

p(a)cj

=
∑

j

∑
a:j∈C(a)

p(a)cj

switching the order of summation

=
∑

j

∑
i∈O

∑
w∈Wj :j∈C(w(i))

p(w(i))cj

grouping assignments by the value of bit j

=
∑

j

∑
i∈O

∑
w∈Wj :j∈C(w(0))

(p(w(i))cj)

by the Neighbor Property, j ∈ C(w(1)) iff j ∈ C(w(0))

=
∑

j

∑
w∈Wj :j∈C(w(0))

p(w)cj

=
∑

j

∑
w∈Wj :j∈C(w(0))

p(w)h′
w(Y)

by Lemma 5.2

=
∑

j

∑
i∈O

∑
w∈Wj :j∈C(w(0))

∑
S
p(w(i)) gS,w(i)(j) YS,w(i)

by the definition of h′
w

=
∑

j

∑
i∈O

∑
w∈Wj :j∈C(w(i))

∑
S
p(w(i))gS,w(i)(j)YS,w(i)

because j ∈ C(w(1)) iff j ∈ C(w(0))

=
∑

j

∑
a:j∈C(a)

∑
S
p(a)gS,a(j)YS,a

=
∑

a

∑
S

∑
j:j∈C(a)

p(a)gS,a(j)YS,a

�

We now give our approximation bound for ADG.

Theorem 5.1 Given an instance of SSSC with utility
function g and goal value Q, ADG constructs a cover
whose expected cost is no more than a factor of α larger
than the expected cost of the cover produced by the
optimal strategy, where α = max

∑
j∈C(a) gS,a(j)

Q−g(S,a) , with
the max taken over all pairs S, a where a ∈ {0, 1}n, S is
a prefix of of the cover C(a) that ADG constructs on input
a, and Q− g(S, a) �= 0.

Proof By Lemma 5.3, the expected
cost of the cover constructed by ADG is∑

a

∑
S

∑
j:j∈C(a) p(a)gS,a(j)YS,a. The value

of the objective function of LP2 on Y is∑
a

∑
S p(a) (Q − g(S, a)) YS,a. For any a, YS,a

is non-zero if S is a prefix of the cover that ADG
constructs on input a. Comparing the coefficients of YS,a

in these two expressions implies that the expected cost of

the cover is at most max
∑

j∈C(a) gS,a(j)

Q−g(S,a) times the value

of the objective function on Y . The theorem follows by
Lemma 5.1 and weak duality. �

1460 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

6 Algorithms for linear threshold evalua-
tion and Stochastic Min-Knapsack

A linear threshold formula with integer coefficients has
the form

∑n
i=1 aixi ≥ θ where the ai and θ are integers.

It represents the function f : {0, 1}n → {0, 1} such that
f(x) = 1 if

∑n
i=1 aixi ≥ θ, and f(x) = 0 otherwise.

We show how to use the Q-value approach to obtain an
algorithm solving the SBFE problem for linear threshold
formulas with integer coefficients.

Our results on Adaptive Dual Greedy yield a 3-
approximation for linear threshold evaluation.

Theorem 6.1 There is a polynomial-time 3-
approximation algorithm solving the SBFE problem
for linear threshold formulas with integer coefficients.

Proof Let
∑n

i=1 aixi ≥ θ be the linear threshold
formula. Let h(x) = (

∑n
i=1 aixi) − θ. For b ∈

{0, 1, ∗}, let min(b) be the minimum value of h(b′)
for any extension b′ of b. Similarly, let max(b) be
the maximum value of h(b′) for any extension b′ of b.
Thus min(b) = (

∑
j:bj �=∗ ajbj) + (

∑
i:ai<0,bi=∗ ai)− θ,

max(b) = (
∑

j:bj �=∗ ajbj) + (
∑

i:ai>0,bi=∗ ai) − θ, and

each can be calculated in linear time. Let Rmin =
min(∗, . . . , ∗) and Rmax = max(∗, . . . , ∗). If Rmin ≥ 0
or Rmax < 0, f is constant and no testing is needed.
Suppose this is not the case.

Let Q1 = −Rmin and let submodular utility function
g1 be such that g1(b) = min{−Rmin,min(b) − Rmin},
Intuitively, Q1 − g1(b) is length of the interval containing
all values of h that can be induced by extensions b′

of b such that f(b′) = 0. Similarly, define g0(b) =
min{Rmax + 1, Rmax −max(b)} and Q0 = Rmax + 1.
Thus b is a 1-certificate of f iff g1(b) = Q1, and a 0-
certificate iff g0(b) = Q0.

We apply the disjunctive construction of Lemma 4.1
to construct g(b) = Q− (Q1−g1(b))(Q0−g0(b)), which
is an assignment feasible utility function for f with goal
value Q = Q1Q0. We then run ADG using the utility
functions and goal value defined above. By Theorem 5.1,
the resulting algorithm is within a factor of α of optimal.
We now show that α ≤ 3 in this case.

Fix x and consider the run of ADG on x. Let T be the
number of loop iterations. So C(x) = j1, . . . , jT is the
sequence of tested items, and F t = {j1, . . . , jt}. Assume
first that f(x) = 1. Let F = F 0 = ∅, and consider the

ratio

∑
j∈C(x) gF,x(j)

Q−g(F,x) .

Assume without loss of generality that neither g0 nor
g1 is identically 0.

Let A = −Rmin and let B = Rmax + 1. Thus
Q − g(∅, x) = AB. Let C1 be the set of items jl in
C(x) such that either xjl = 1 and ajl ≥ 0 or xjl = 0
and ajl < 0. Similarly, let C0 be the set of items jl in
C(x), such that either xjl = 0 and ajl ≥ 0 or xjl = 1 and
ajl < 0.

Testing stops as soon as the goal utility is reached.
Since f(x) = 1, this means testing on x stops when b
satisfies g1(b) = Q1, or equivalently, b is a 1-certificate
of f . Thus the last tested item, jT , is in C1. Further,
the sum of the ajlxjl over all jl ∈ C1(x), excluding
jT , is less than −Rmin, while the sum including jT is
greater than or equal to −Rmin. By the definition of
utility function g,

∑
jl∈C1:jl �=jT

g∅,x(jl) < AB. The

maximum possible value of g∅,x(jT) is AB. Therefore,∑
jl∈C1

g∅,x(jl) < 2AB.
Since x does not contain both a 0-certificate and a 1-

certificate of f , the sum of the ajlxjl over all jl ∈ C0(x)
is strictly less than Rmax. Thus by the definition of
g,

∑
jl∈C0

g∅,x(jl) < AB. Summing over all jl ∈
C(x), we get that

∑
jl∈C(x) g∅,x(jl) < 3AB. Therefore,

∑
j∈C(x) gF,x(j)

Q−g(F,x) < 3, because for F = ∅, Q = AB

and g(∅, x) = 0. A symmetric argument holds when
f(x) = 0.

It remains to show that the same bound holds when
F �= ∅. We reduce this to the case F = ∅. Once
we have tested the variables in F t, we have an induced
linear threshold evaluation problem on the remaining
variables (replacing the tested variables by their values).
Let g′ and Q′ be the utility function and goal value for

the induced problem. The ratio

∑
j∈C(x) gF,x(j)

Q−g(F,x) is equal

to

∑
j∈C(x)−F g′

∅,x′ (j)
Q′−g′(∅,x′) , where x′ is x restricted to the

elements not in F . By the argument above, this ratio is
bounded by 3. �

We can use essentially the same approach to obtain
results for Stochastic Min-Knapsack.

Theorem 6.2 There is a polynomial-time 3-
approximation algorithm solving the Stochastic Min-
Knapsack problem. For the special case of Stochastic
Min-Knapsack where threshold θ can always be reached
or exceeded, there is a polynomial-time 2-approximation.

Proof Given a Stochastic Min-Knapsack instance, we
can associate with it the linear threshold formula x1 +
x2 + . . . + xn ≥ θ, over items {1, . . . , n}, where each
item i has cost ci, and xi is si, the size of item i. Without
loss of generality, we can assume that the size si of every
item is at most θ.

Placing items in the knapsack until the sum of the
sizes of the chosen items is at least θ is like testing the
values of the variables in this linear threshold formula
until the formula evaluates to θ. We would therefore
like to apply the proof of the 3-approximation bound for
linear threshold formulas to Stochastic Min-Knapsack.
However, we need to modify the proof to account for
two main differences between the threshold evaluation
problem and Stochastic Min-Knapsack.

The first is how the two problems deal with the
situation where the threshold value cannot be attained. In

1461 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

linear threshold evaluation, we can stop testing as soon
as we have a 0-certificate, but in Min-Knapsack, we must
pay to put all the items in the knapsack if the threshold is
not reached. To account for this difference, we modify the
utility function. Let g1(b) = min(

∑
i:bi �=∗)bi,θ with goal

Q1 = θ, and g0(b) = |{i : bi �= ∗}| with goal Q0 = n.
Combining these with the disjunctive construction to get
utility function g with goal value Q = nθ. We can
solve the Stochastic Min-Knapsack problem by solving
the SSSC problem for g and Q.

The other main difference between the two problems
is that for linear threshold evaluation, we considered only
Bernoulli distributions on the variables xi (with integer
coefficients on the xi). In Stochastic Min-Knapsack, the
si may have arbitrary values in the interval [0, θ]. Since
we have assumed that each si has only a finite number
of possible values, we just have a k-ary SSSC problem
for some k, rather than a binary one, and the α bound on
ADG holds.

We show that α ≤ 3 when ADG is run on this g.
As in the proof for linear threshold, it suffices to show

that
∑k

j=1 g∅,s(j)/(Q− g(s, ∅)) ≤ 3 for all possible size
vectors s.

We first consider the case where the threshold is
achieved by s, that is,

∑n
j−1 sj ≥ θ. Suppose we

run ADG on s, and without loss of generality we test
items 1, . . . , k, in that order. For j ∈ {1, . . . , k}, the
contribution to g0 for the jth item (if j is added by itself
to ∅) is 1, and the contribution to g1 is si. Thus for
each j ∈ {1, . . . k}, g∅,s(j) = 1 + sj(n − 1). Further,∑k−1

j=1 sj < θ, and since each si ≤ θ by assumption,
∑k

j=1 g∅,s(j) ≤ θ(k + 2(n − 1)) < 3nθ, and therefore
∑k

j=1 g∅,s(j)/(Q− g(s, ∅)) ≤ 3.
We now consider the case where the threshold is

not achieved on s. In this case,
∑k

j=1 sj < θ, and
∑k

j=1 g∅,s(j) ≤ (k + (n − 1))θ < 2nθ. Therefore,
∑k

j=1 g∅,s(j)/(Q − g(s, ∅)) ≤ 2. This inequality also

holds if we replace ∅ by any prefix of {1, . . . , k}. Thus
α < 3, and we have a 3-approximation algorithm.

In the special case of the Stochastic Min-Knapsack
where the distributions on the sizes are such that we are
guaranteed to to reach the threshold of θ, we we can take
utility function g to be just the g1 defined above. It is
easy to show that α ≤ 2 for this g, and we have a 2-
approximation algorithm. �

7 A new bound for Adaptive Greedy
We give a new analysis of the Adaptive Greedy algorithm
of Golovin and Krause, whose pseudocode we present in
Algorithm 2.

Some of the variables used in the pseudocode are not
necessary for the running of the algorithm, but are useful
in its analysis. (In the line assigning a value to jl, assume

that if E[gb(j)] = 0, the expression evaluates to ∞.)

b ← (∗, ∗ . . . , ∗)
l ← 0, F 0 ← ∅
while b is not a solution to SSSC (f(b) < Q) do

l ← l + 1

jl ← arg min
j �∈F l−1

cj
E[gb(j)]

k ← the state of jl //“test” jl

F l ← F l−1
⋃{jl} //F l is set of j tested so far

bjl ← k

end while

return b

Algorithm 2: Adaptive Greedy

Throughout this section, we let g(j) =
maxl∈{0,1} gr(j, l) where r = (∗, . . . , ∗). Thus g(j) is
the maximum increase in utility that can be obtained as a
result of testing j (since g is submodular). We show that
the expected cost of the solution computed by Adaptive
Greedy is within a factor of 2(ln(maxi∈N g(i) + 1)) of
optimal in the binary case.

In the k-ary case, the 2 in the bound is replaced by k.
Note that maxj g(j) is clearly upper bounded by Q, and
in some instances may be much less than Q. However,
because of the factor of k at the front of our bound, we
cannot say that it is strictly better than the (lnQ+1) bound
of Golovin and Krause. (The bound that is analogous to
ours in the non-adaptive case, proved by Wolsey, does not
have a factor of 2.)

Adaptive Greedy is a natural extension of the Greedy
algorithm for (deterministic) submodular set cover of
Wolsey. We will extend Wolsey’s analysis [44], as it was
presented by Fujito [20]. In our analysis, we will refer
to LP2 defined in Section 5, along with the associated
notation for the constraints h′

aj (y) ≤ cj .
For x ∈ {0, 1}n, let T x be the number of iterations of

the Adaptive Greedy while loop on input x. Let btx denote
the value of b at the end of iteration t of the while loop on
input x, and let F t

x denote the value of F t, where F t is
the set of js tested by the end of the t+1st iteration. (The
x in the notation may be dropped when it is understood
implicitly.) Set θtx = minj /∈F t−1

cj
E[gbt−1 (j)]

.

For j ∈ N , let kj be the value of t that maximizes
(θtx)(gbtx(j, 1)). Similarly, let lj be the value of t that
maximizes (θtx′)(gbt−1

x′
(j, 0)), where x′ is the assignment

obtained from x by complementing xj . Again, let r de-
note the assignment {∗, . . . , ∗}, and let H1

j = H(gr(j, 1))

and H0
j = H(gr(j, 0)), where H(n) denotes the nth har-

monic number, which is at most (lnn + 1). Let qj =
1− pj .

1462 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

To analyze Adaptive Greedy, we define Y to be the
assignment to the LP2 variables yS,x setting yF 0,x = θ1x,
yF t,x = (θt+1

x − θtx) for t ∈ {1 . . . T x − 1} and yS,x = 0
for all other S. We define Y x to be the restriction of
that assignment to the variables yS,x for that x. Let
qx(y) =

∑
S⊂N (Q− g(S, x))yS,x.

Lemma 7.1 The expected cost of the cover constructed
by Adaptive Greedy is at most E[qx(Y x)], where the
expectation is with respect to x ∼ Dp.

Proof By the definition of Y x, the proof follows di-
rectly from the analysis of (non-adaptive) Greedy in The-
orem 1 of [20], by linearity of expectation. �

We need to bound the value of h′
w(Y) for each w ∈

W . We will use the following lemma from Wolsey’s
analysis.

Lemma 7.2 [44] Given two sequences (α(t))Tt=1 and
(β(t))T−1

t=0 , such that both are nonnegative, the former
is monotonically nondecreasing and the latter, monotoni-
cally non-increasing, and β(t) is a nonnegative integer for
any value of t, then

α(1)β(0)+(α(2)−α(1))β(1)+. . .+(α(T)−α(T−1))β(T−1)

≤ (max
1≤t≤T

α(t)β(t−1)H(β(0))).

Lemma 7.3 For every x ∈ {0, 1}n and j ∈ {1, . . . , N},
h′
xj (Y) ≤ cj2H(maxi∈N g(i)).

Proof By the submodularity of g, and the greedy choice
criterion used by Adaptive Greedy, θ1x ≤ θ2x . . . ≤ θT

x

x .
By the submodularity of g, gb0x(j, 0) ≥ gb1x(j, 0) . . . ≥
gbTx

x
(j, 0). Thus Lemma 7.2 applies to the non-decreasing

sequence θ1x, θ
2
x, . . . θ

Tx

x and the non-increasing sequence

g0bx(j, 0), . . . , g
1
bx
(j, 0), . . . , gT

x−1
bx

(j, 0). This also holds
if we substitute (j, 1) for (j, 0) in the second sequence.

Let x′ be the assignment differing from x only in bit
j. In the following displayed equations, we write k and l
in place of kj and lj to simplify the notation.

h′
xj (Y)

=
∑

S⊆N

(pjgS,x(j) + (1− pj)gS,x′(j))YS,x

by the Neighbor Property

= pj [θ
1
xgb0x(j, 1) + ΣTx

i=2(θ
i
x − θi−1

x)gbi−1
x

(j, 1)]+

qj [θ
1
x′gb0

x′ (j, 0) + ΣTx′

i=2(θ
i
x′ − θi−1

x′)gbi−1

x′
(j, 0)]

≤ pj [θ
k
xgbk−1

x
(j, 1)H1

j] + qj [θx′ lgbl−1

x′
(j, 0)H0

j]

by Lemma 7.2 as indicated above

≤ pj [θ
k
xgbk−1

x
(j, 1)H1

j] + qj [θ
k
xgbk−1

x
(j, 0)H0

j]

+ pj [θ
l
x′gbl−1

x′
(j, 1)H1

j] + qj [θ
l
x′gbl−1

x′
(j, 0)H0

j]

since this just adds extra non-negative terms

= θkxH
1
j [pjgbk−1

x
(j, 1) + qjgbk−1

x
(j, 0)]

+ θlx′H0
j [qjgbl−1

x′
(j, 0) + pjgbl−1

x′
(j, 1)]

≤ cjH
1
j + cjH

0
j due to the greedy choices of Algorithm 2

≤ cj2H(g(j)))

≤ cj2H(max
i

g(i)))

�

Theorem 7.1 Given an instance of SSSC with util-
ity function g, Adaptive Greedy constructs a decision
tree whose expected cost is no more than a factor of
2(maxi∈N (ln g(i)) + 1) larger than the expected cost of
the cover produced by the optimal strategy.
Proof Let OPT be the expected cost of the cover pro-
duced by the optimal strategy. let AGCOST be the ex-
pected cost of the cover produced by Adaptive Greedy,
and let q(y) denote the objective function of LP2. By
Lemma 5.1, the optimal value of LP1 is a lower bound
on OPT. By Lemma 7.3, Z = Y/(2H(maxi g(i)))
is a feasible solution to LP2. Thus by weak dual-
ity, q(Z) ≤ OPT . By Lemma 7.1, AGCOST ≤
E[qx(Y x)], and it is easy to see that E[qx(Y x)] = q(Y).
Since q(Y) = q(Z)(2H(maxi g(i))), AGCOST ≤
OPT (2H(maxi g(i))). �

8 Simultaneous Evaluation and Ranking
Let f1, . . . , fm be (representations of) Boolean functions
from a class C, such that each fi : {0, 1}n → {0, 1}. We
consider the generalization of the SBFE problem where
instead of determining the value of a single function f
on an input x, we need to determine the value of all m
functions fi on the same input x.

The Q-value approach can be easily extended to this
problem by constructing utility functions for each of the
fi, and combining them using the conjuctive construction
in Lemma 4.1. The algorithm of Golovin and Krause
for simultaneous evaluation of OR formulas follows this
approach [22] (Liu et al. presented a similar algorithm
earlier, using a different analysis [35].) We can also
modify the approach by calculating a bound based on P -
value, or using ADG instead of Adaptive Greedy. We thus
obtain the following theorem, where

∑n
i=1 aki

xi ≤ θk. is
the kth threshold formula.

Theorem 8.1 There is a polynomial-time algorithm for
solving the simultaneous evaluation of linear threshold

1463 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

formulas problem which produces a solution that is within
a factor of O(logmDavg) of optimal where Davg , is
the average, over k ∈ {1, . . . ,m}, of

∑n
i=1 |aki |. In

the special case of OR formulas, where each variable
appears in at most r of them, the algorithm achieves an
approximation factor of 2(ln(βmaxr) + 1), where βmax

is the maximum number of variables in any of the OR
formulas.

There is also a polynomial-time algorithm for
solving the simultaneous evaluation of threshold for-
mulas problem which produces a solution that is
within a factor of Dmax of optimal, where Dmax =
maxk∈{1,...,m}

∑n
i=1 |aki

|.

Proof We use the utility function construction for lin-
ear threshold functions from the beginning of the proof
of Lemma 6.1. Let g(1), . . . , g(m) be the m utility func-
tions that result from applying this construction to the m
linear threshold formulas that need to be evaluated. Let
Q(1), . . . , Q(m) be the associated goal values.

Using the conjunctive construction, we construct util-
ity function g such that g(b) =

∑m
k=1 g

(k)(b), and Q =∑m
k=1 Q

(k).
To obtain the first algorithm, we evaluate all the

threshold formulas by running Adaptive Greedy with g,
goal value Q, and the given p, and c, until it outputs a
cover b. Given cover b, it is easy to determine the value of
fk(x) for each fk.

For each fk, the associated Qk is O(Dk), where Dk

is the sum of the absolute values of the coefficients in fk.
Since Q =

∑
k Qk, the O(log(mDavg)) bound follows

from the (lnQ+ 1) bound for Adaptive Greedy.
Suppose each threshold formula is an OR formula.

For b ∈ {0, 1, ∗}n, maxl∈{0,1} g
(k)
b (i, l) = 0 if xj

does not appear in the kth OR formula, otherwise it is
equal to the number of variables in that formula. The
2(ln(βmaxr) + 1) approximation factor then follows by
our bound on Adaptive Greedy in Theorem 7.1.

For the second algorithm, we just use ADG instead
of Adaptive Greedy with the same utility function g. By
Theorem 5.1, the approximation factor achieved by ADG

is max
∑

j gS,x(j)

Q−g(S,x) .

We bound this ratio for g. Let Dj =
∑n

i=1 |aji |.
Let d ∈ {0, 1}n and S ∈ F (x). Without loss of
generality, assume S = {n′ + 1, . . . , n}. In the kth
threshold formula, for i ≥ n′, replace xi with di. This
induces a new threshold formula on n− n′ variables with
threshold θk,d = θk − Dk,d whose coefficients sum to
Dk,b = Dk −

∑n
i=n′ aidi. Let b be the partial assignment

such that bi = di for i ≥ n′, and bi = ∗ otherwise. If b
contains either a 0-certificate or a 1-certificate for fk, then
Qk − gk(S, d) = 0.

Otherwise, Qk − g(S, d) = (θk,b)(Dk,b − θk,b + 1),
and

∑
j g

k
S,d(j) ≤ Dk,b max{θ,Dk,b − θk,b + 1}. It

follows that
∑

j gk
S,d(j)

Qk−gk(S,d)
≤ Dk,b ≤ Dmax.

Since this holds for each k, max
∑

j gS,d(j)

Q−g(S,d) ≤ Dmax.

�
For the special case of simultaneous evaluation of OR

formulas, the theorem implies a β-approximation algo-
rithm, where β is the length of the largest OR formula.
This improves the 2β-approximation achieved by the ran-
domized algorithm of Liu et al. [35].

We use a similar approach to solve the Linear Func-
tion Ranking problem. In this problem, you are given
a system of linear functions f1, . . . , fm, where for j ∈
{1, . . . ,m}, fj is aj1x1 + aj2x2 + . . . ajnxn, and the co-
efficients aji are integers. You would like to determine
the sorted order of the values f1(x), . . . , fm(x), for an
initially unknown x ∈ {0, 1}n. (Note that the values of
the fj(x) are not Boolean.) We consider the problem of
finding an optimal testing strategy for this problem, where
as usual, x ∼ Dp, for some probability vector p, and there
is a cost vector c specifying the cost of testing each vari-
able xi.

Note that there may be more than one correct output
for this problem if there are ties. So, strictly speaking, this
is not a function evaluation problem. Nevertheless, we
can still exploit our previous techniques. For each system
of linear equations f1, . . . , fm over x1, . . . , xn, and each
x ∈ {0, 1}n, let f(x) denote the set of permutations
{fj1 , fj2 , . . . , fjm} of f1, . . . , fm such that fj1(x) ≤
fj2(x) ≤ . . . ≤ fjm(x). The goal of sorting the fj is
to output some permutation that we know definitively to
be in f(x). Note that in particular, if e.g., fi(x) < fj(x),
it may be enough for us to determine that fi(x) ≤ fj(x).

Theorem 8.2 There is an algorithm that solves the Lin-
ear Function Ranking problem that runs in time polyno-
mial in m, n, and Dmax, and achieves an approximation
factor that is within O(log(mDmax)) of optimal, where
Dmax is the maximum value of

∑n
i=1 |aji | over all the

functions fj .

Proof For each pair of linear equations fi and fj
in the system, where i < j, let fij denote the linear
function fi − fj . We construct a utility function g(ij)

with goal value Q(ij). Intuitively, the goal value of g(ij)

is reached when there is enough information to determine
that fij(x) ≥ 0, or when there is enough information to
determine that fij(x) ≤ 0.

For each i, j pair, let minij(b) be the minimum value
of fij(b

′) on any assignment b′ ∈ {0, 1}n such that b′ ∼ b,
and let maxij(b) be the maximum value. Let Rmax(ij) =
maxij(∗, . . . , ∗) and let Rmin(ij) = minij(∗, . . . , ∗).

Let g
(ij)
< : {0, 1, ∗}n → Z≥0, be defined as follows.

If Rmax(ij) ≤ 0, then g
(ij)
< (b) = 0 for all b ∈ {0, 1, ∗}n

and Q
(ij)
< = 0. Otherwise, for b ∈ {0, 1, ∗}n, let g

(ij)
< (b)

= min{Rmax(ij), Rmax(ij) − maxij(b)} and Q
(ij)
< =

1464 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

Rmax(ij). It follows that for b ∈ {0, 1, ∗}n, fi(b
′) ≤

fj(b
′) for all extensions b′ ∼ b iff g

(ij)
< (b) = Q

(ij)
< .

We define g
(ij)
> and Q

(ij)
< symmetrically, so that

fi(b
′) ≥ fj(b

′) for all extensions b′ ∼ b iff g
(ij)
> (b) =

Q
(ij)
> .

We apply the disjunctive construction of Lemma 4.1

to combine g
(ij)
> and g

(ij)
< and their associated goal values.

Let the resulting new utility function be g(ij) and let its
goal value be Q(ij). As in the analysis of the algorithm in
Section 6, we can show that Q(ij) is O(D2), where D is
the sum of the magnitudes of the coefficients in fij .

Using the AND construction of Lemma 4.1 to com-
bine the g(ij) we get our final utility function g =∑

i<j g
(ij) with goal value Q =

∑
i<j Q

(ij).
We now show that achieving the goal utility Q is

equivalent to having enough information to do the rank-
ing. Until the goal value is reached, there is still a pair i, j
such that it remains possible that fi(x) > fj(x) (under
one setting of the untested variables), and it remains pos-
sible that fj(x) < fi(x) (under another setting). In this
situation, we do not have enough information to output a
ranking we know to be valid.

Once g(b) = Q, the situation changes. For each i, j
such that fi(x) < fj(x), we know that fi(x) ≤ fj(x).
Similarly, if fi(x) > fj(x), then at goal utility Q, we
know that fi(x) ≥ fj(x). If fi(x) = fj(x) at goal utility
Q, we may only know that fi(x) ≥ fj(x) or that fi(x) ≤
fj(x). We build a valid ranking from this knowledge
as follows. If there exists an i such that we know that
fi(x) ≤ fj(x) for all j �= i, then we place fi(x) first
in our ranking, and recursively rank the other elements.
Otherwise, we can easily find a “directed cycle,” i.e. a
sequence i1, . . . , im, m ≥ 2, such that we know that
fi1(x) ≤ fi2(x) ≤ . . . ≤ fim(x) and fim(x) ≤ fi1(x).
It follows that fi1(x) = . . . = fim(x). In this case,
we can delete fi2 , . . . , fim , recursively rank fi1 and the
remaining fi, and then insert fi2 , . . . , fm into the ranking
next to fi1 .

Applying Adaptive Greedy to solve the SSSC prob-
lem for g, the theorem follows from the (lnQ + 1) ap-
proximation bound for Adaptive Greedy, and the fact that
Q = O(D2

maxm
2). �

9 Acknowledgments
Lisa Hellerstein was partially supported by NSF Grants
1217968 and 0917153. Devorah Kletenik was partially
supported by NSF Grant 0917153 and by US Department
of Education GAANN Grant P200A090157. Amol Desh-
pande was partially supported by NSF Grants 0916736
and 1218367. We thank Tonguç Ünlüyurt and Sarah
Allen for helpful feedback and Sarah Allen for a nota-
tion summary. We thank anonymous referees for helpful
suggestions, such as applying our techniques to Stochas-
tic Min-Knapsack, and suggesting a way to simplify our

original analysis of ADG. Alina Ene told us about the
work of Im et al. and its connection to Stochastic Min-
Knapsack. Lisa Hellerstein would like to thank Endre
Boros, Kazuhisa Makino, and Vladimir Gurvich for a
stimulating discussion at RUTCOR.

References

[1] M. Adler and B. Heeringa. Approximating optimal binary

decision trees. Algorithmica, 62(3-4):1112–1121, 2012.

[2] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai,

and T. Tamir. On chromatic sums and distributed resource

allocation. Inf. Comput., 140(2):183–202, February 1998.

[3] G. Bellala, S. Bhavnani, and C. Scott. Group-based

active query selection for rapid diagnosis in time-critical

situations. IEEE Trans. on Information Theory, 2012.

[4] Y. Ben-Dov. Optimal testing procedure for special struc-

tures of coherent systems. Management Science, 1981.

[5] P. Beraldi and A. Ruszczynski. The probabilistic set-

covering problem. Operations Research, 50(6):956–967,

2002.

[6] A. Bhalgat. A (2 + ε)-approximation algorithm for

the stochastic knapsack problem. 2011. Unpublised

Manuscript.

[7] A. Bhalgat, A. Goel, and S. Khanna. Improved ap-

proximation results for stochastic knapsack problems. In

SODA, 2011.

[8] E. Boros and T. Ünlüyurt. Diagnosing double regular sys-

tems. Annals of Mathematics and Artificial Intelligence,

26(1-4):171–191, September 1999.

[9] E. Boros and T. Ünlüyurt. Sequential testing of series-

parallel systems of small depth. Computing Tools for
Modeling, Optimization and Simulation, pages 39–74,

2000.

[10] R. Carr, L. Fleischer, V. Leung, and C. Phillips. Strength-

ening integrality gaps for capacitated network design and

covering problems. In SODA, 2000.

[11] M.-F. Chang, W. Shi, and W. K. Fuchs. Optimal diagnosis

procedures for k-out-of-n structures. IEEE Trans. Com-
put., 39(4), April 1990.

[12] M. Charikar, R. Fagin, V. Guruswami, J. M. Kleinberg,

P. Raghavan, and A. Sahai. Query strategies for priced

information. J. Comput. Syst. Sci., 64(4):785–819, 2002.

[13] L. Cox, Y. Qiu, and W. Kuehner. Heuristic least-cost com-

putation of discrete classification functions with uncertain

argument values. Annals of Operations Research, 21:1–

29, 1989.

[14] B. Dean, M. Goemans, and J. Vondrak. Approximating the

stochastic knapsack problem: The benefit of adaptivity. In

FOCS, 2004.

[15] C. Derman, C. Lieberman, and S. Ross. Stochastic opti-

mization is (almost) as easy as determinstic optimization.

Management Science, 24(5):554–561, 1978.

[16] A. Deshpande and L. Hellerstein. Flow algorithms for

parallel query optimization. In ICDE, 2008.

[17] U. Feige, L. Lovász, and P. Tetali. Approximating min-

sum set cover. In Proceedings of the 5th International
Workshop on Approximation Algorithms for Combinato-
rial Optimization, APPROX ’02, pages 94–107, London,

UK, 2002. Springer-Verlag.

1465 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

[18] A. Fiat and D. Pechyony. Decision trees: More theoretical

justification for practical algorithms. In ALT, 2004.

[19] T. Fujito. On approximation of the submodular set cover

problem. Operations Research Letters, 1999.

[20] T. Fujito. Approximation algorithms for submodular set

cover with applications. IEICE Trans. Inf. Syst, 83, 2000.

[21] M. Garey. Optimal task scheduling with precedence

constraints. Discrete Mathematics, 4:37–56, 1973.

[22] D. Golovin and A. Krause. Adaptive submodularity:

Theory and applications in active learning and stochastic

optimization. J. Artif. Intell. Res., 2011.

[23] D. Golovin, A. Krause, and D. Ray. Near-optimal

Bayesian active learning with noisy observations. In NIPS,

pages 766–774, 2010.

[24] R. Greiner, R. Hayward, M. Jankowska, and M. Molloy.

Finding optimal satisficing strategies for and-or trees. Ar-
tif. Intell., 170(1):19–58, 2006.

[25] R. Greiner, R. Hayward, and M. Molloy. Optimal depth-

first strategies for and-or trees. In AAAI/IAAI, pages 725–

730, 2002.

[26] D. Guijarro, V. Lavı́n, and V. Raghavan. Exact learning

when irrelevant variables abound. In EuroCOLT, 1999.

[27] A. Guillory and J. Bilmes. Simultaneous learning and

covering with adversarial noise. In ICML, 2011.

[28] X. Han and K. Makino. Online minimization knapsack

problem. In E. Bampis and K. Jansen, editors, Approx-
imation and Online Algorithms, 7th International Work-
shop, WAOA 2009, Copenhagen, Denmark, September 10-
11, 2009. Revised Papers, volume 5893 of Lecture Notes
in Computer Science, pages 182–193. Springer, 2010.

[29] J. Hastad. On the size of weights for threshold gates.

SIAM Journal on Discrete Mathematics, 1994.

[30] T. Ibaraki and T. Kameda. On the optimal nesting order

for computing n-relational joins. ACM Trans. Database
Syst., 9(3):482–502, 1984.

[31] S. Im, V. Nagarajan, and R. van der Zwaan. Minimum

latency submodular cover. In ICALP (1), pages 485–497,

2012.

[32] S. Iwata and K. Nagano. Submodular function minimiza-

tion under covering constraints. In FOCS, 2009.

[33] H. Kaplan, E. Kushilevitz, and Y. Mansour. Learning with

attribute costs. In STOC, pages 356–365, 2005.

[34] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization

of nonrecursive queries. In VLDB, 1986.

[35] Z. Liu, S. Parthasarathy, A. Ranganathan, and H. Yang.

Near-optimal algorithms for shared filter evaluation in data

stream systems. In SIGMOD, 2008.

[36] M. Moshkov. Approximate algorithm for minimization

of decision tree depth. In G. Wang, Q. Liu, Y. Yao, and

A. Skowron, editors, Rough Sets, Fuzzy Sets, Data Mining,
and Granular Computing, volume 2639 of Lecture Notes
in Computer Science, pages 579–579. Springer Berlin /

Heidelberg, 2003.

[37] M. Moshkov and I. Chikalov. Bounds on average weighted

depth of decision trees. Fundam. Inform., 31(2):145–156,

1997.

[38] K. Munagala, S. Babu, R. Motwani, and J. Widom. The

pipelined set cover problem. In ICDT, 2005.

[39] S. Nijssen and E. Fromont. Mining optimal decision trees

from itemset lattices. In KDD, 2007.

[40] S. Salloum. Optimal testing algorithms for symmetric
coherent systems. PhD thesis, University of Southern

California, 1979.

[41] S. Salloum and M. Breuer. An optimum testing algorithm

for some symmetric coherent systems. Journal of Math-
ematical Analysis and Applications, 101(1):170 – 194,

1984.

[42] U. Srivastava, K. Munagala, J. Widom, and R. Motwani.

Query optimization over web services. In VLDB, 2006.

[43] T. Ünlüyurt. Sequential testing of complex systems: a

review. Discrete Applied Mathematics, 142(1-3):189–205,

2004.

[44] L. Wolsey. An analysis of the greedy algorithm for the

submodular set covering problem. Combinatorica, 2:385–

393, 1982. 10.1007/BF02579435.

1466 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

A Table of notation
xi the ith variable
pi probability that variable xi is 1
ci cost of testing xi

p the probability product vector (p1, p2, . . . , pn)
c the cost vector (c1, c2, . . . , cn)
b a partial assignment, an element of {0, 1, ∗}n
a ∼ b a extends b (is identical to b for all variables i such that bi �= ∗)
Dp product distribution, defined by p
x ∼ Dp a random x drawn from distribution Dp

Q goal utility
P maximum utility that testing a single variable xi can contribute
g utility function defined on partial assignments with a value in {0, . . . , Q}
N the set {1, . . . , n}
S a subset of N
g(S, b) utility of testing only the items in S, with outcomes specified by b
gS,b(j) g(S ∪ {j}, b)− g(S, b)
bxi←l b extended by testing variable i with outcome l
W the set of partial assignments that contain exactly one ∗
w(0), w(1) for w ∈ W , the extensions obtained from w by setting the ∗ to 0 and 1, respectively
j(w) for w ∈ W , the j for which wj = ∗
aj the partial assignment produced from a by setting the jth bit to ∗ for assignment a
a′ the assignment produced from a by complementing the jth bit
ga(S) g(S, a)
yS,a the variable in LP2 for SSSC associated with subset S and assignment a
C(a) the sequence of items tested by ADG on assignment a, in order of testing
YS,a the value of ADG variable yS after running ADG on input a
h′
w(y) the left hand side of the constraint in LP2 for w (a function of the yS,a variables)

Y t assignment to the yS,a variables s.t. yS,a is the value of ADG variable yS at the end of iteration t
of its while loop, when ADG is run on input a

F t variable of ADG, the set containing the first t variables it tests
T x the number of iterations of the Adaptive Greedy (AG) while loop on input x
btx the value of b on input x after the tth iteration of the loop of AG on x
Y x the assignment to the LP2 variables used in the analysis of the new bound for AG
qx(y)

∑
S⊂N (Q− g(S, x))yS,x

gb(i, l) equals increase in utility of test on i with outcome l if i was not yet tested (else equals 0), used in analysis of AG
g(j) equals maxl∈{0,1} gr(j, l) where r = (∗, . . . , ∗), used in analysis of AG

1467 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

