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1 Introduction

Stochastic boolean function evaluation (SBFE) is the problem of determining the value
of a given Boolean function f on an unknown input x , when each bit xi of x can only
be determined by paying a given associated cost ci . Further, x is drawn from a given
product distribution: each bit xi is drawn independently from a Bernoulli distribution
with Pr[xi = 1] = pi . The goal is to minimize the expected cost of evaluation. This
problem has been studied in the Operations Research literature, where it is known
as “sequential testing” of Boolean functions (cf. [27]). It has also been studied in
learning theory in the context of learningwith attribute costs [20]. Recently,Deshpande
et al. addressed the problem using tools from stochastic submodular optimization
[11,12].

In this paper, we study the complexity of the SBFE problem for classes of DNF
formulas. We consider both exact and approximate versions of the problem for sub-
classes of DNF, for arbitrary costs and product distributions, and for unit costs and/or
the uniform distribution. Because it is co-NP hard to test if a DNF formula is true
on all assignments, the general SBFE problem is easily shown to be co-NP-hard for
arbitrary DNF formulas [16].

We present results on the SBFE problem for monotone k-DNF and k-term DNF
formulas. (A k-term DNF formula consists of at most k terms; a k-DNF formula
consists of terms containing at most k literals.) We use a simple reduction to show that
the SBFE problem for k-DNF isNP-hard, even for k = 2.We present an algorithm for
evaluating monotone k-DNF that achieves a solution whose expected cost is within a
factor of 4/ρk of optimal, where ρ is either the minimum pi value or the minimum
1− pi value, whichever is smaller. We present an algorithm for evaluating monotone

k-term DNF with an approximation factor of max
{
2k, 2

ρ
(1 + ln k)

}
. We also prove

that the SBFE problem for monotone k-termDNF can be solved exactly in polynomial
time for constant k.

Previously, Kaplan et al. [20] and Deshpande et al. [11,12] provided approximation
algorithms solving the SBFE problem for CDNF formulas (and decision trees). CDNF
formulas are formulas consisting of a DNF formula together with its equivalent CNF
formula, so the size of the input depends both on the size of the CNF and the size of
the DNF. The algorithm of Kaplan et al. worked only for monotone CDNF formulas,
unit costs, and the uniform distribution. The algorithm of Deshpande et al. worked for
the general case. The approximation factor achieved by both algorithms is O(log kd),
where k is the number of terms of the DNF and d is the number of clauses. The
algorithm of Kaplan et al. used a round-robin approach. We modify their round-robin
approach in our approximation algorithms to handle arbitrary costs.

While approximation factors for optimization problems are generally given with
respect to the cost of the optimal solution, for SBFE problems one can also give
approximation factorswith respect to the expected certificate cost, which lower bounds
the cost of the optimal solution. All of the new approximation bounds we give in this
paper also hold with respect to expected certificate cost.
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2 Stochastic Boolean Function Evaluation

The formal definition of the Stochastic boolean function evaluation (SBFE) problem
is as follows. The input is a representation of a Boolean function f (x1, . . . , xn) from
a fixed class of representations C , a probability vector p = (p1, . . . , pn), where
0 < pi < 1, and a real-valued cost vector (c1, . . . , cn), where ci ≥ 0. An algorithm
for this problem must compute and output the value of f on an x ∈ {0, 1}n drawn
randomly from the product distribution Dp defined by p. Specifically, Dp is the
distribution where pi = Pr[xi = 1] for each xi and the xi are independent. The
algorithm is not given direct access to x ; instead, it can discover the value of any xi
only by “testing” it, at a cost of ci . The algorithm must perform the tests sequentially,
each time choosing a single test to perform next. The algorithm can be adaptive, so the
choice of the next test can depend on the outcomes of the previous tests. The expected
cost of the algorithm is the cost it incurs on a random x drawn from Dp. (Note that
since each pi is strictly between 0 and 1, the algorithm must continue performing
tests until it has obtained either a 0-certificate or a 1-certificate for the function.) The
algorithm is optimal if it has the minimum possible expected cost with respect to Dp.

We consider the running time of the algorithm on input x to be the time it takes
to determine the value of f (x), assuming that once each test is chosen, its result is
available in constant time. The algorithm implicitly defines a Boolean decision tree
(testing strategy) computing f , indicating the adaptive sequence of tests.

SBFE problems arise in many different application areas. For example, in medical
diagnosis, the xi might correspond to medical tests performed on a given patient,
where f (x) = 1 if the patient should be diagnosed with a particular disease. In a
factory setting, the xi might be the results of quality-control tests performed on a
manufactured item, where f (x) = 1 if the item should be sold. In query optimization
in databases, f could correspond to a Boolean query, on predicates corresponding to
x1, . . . , xn , that has to be evaluated for every tuple in the database in order to find
tuples satisfying the query [10,19,21,26].

In what follows, unless otherwise noted, the term evaluation problem refers to the
SBFE problem.

2.1 Related Work

There are polynomial-time algorithms that solve the evaluation problem exactly for
a small number of classes of Boolean formulas, including read-once DNF formulas
and k-out-of-n formulas (see [27] for a survey of exact algorithms). There is a naïve
approximation algorithm for evaluating any function that achieves an approximation
factor of n under any distribution: Simply test the variables in increasing order of their
costs. Proving that the approximation factor of n holds follows easily from the fact
that the cost incurred by this algorithm in evaluating function f on an input x is at
most n times the cost of the min-cost certificate for f contained in x [20].

There is a sample variant of the evaluation problem, where the input is a sample of
size m of f (i.e, a set of m pairs (x, f (x))). The problem here is to build a decision
tree in polynomial time such that the tree correctly computes f on all x in the sample
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and minimizes the average cost of evaluation over the sample. There are O(logm)-
approximation algorithms solving this problem for arbitrary f [2,8,15]. Cicalese et al.
recently gave an O(logm)-approximation algorithm for a generalization of this prob-
lem, where a probability distribution is given on the pairs (x, f (x)) in the sample,
and the goal is to minimize the expected evaluation cost, rather than just the aver-
age evaluation cost th [8]. That algorithm also achieves an O(logm)-approximation
for worst-case evaluation cost [8]. A simpler O(logm)-approximation algorithm for
worst-case evaluation cost was given earlier byMoshkov [23]. Moshkov and Chikalov
proved a bound on average evaluation cost over a sample in terms of a combinatorial
measure of the sample [22].

The min-sum set cover problem is equivalent to the problem of minimizing the
average evaluation cost over a sample when f is a disjunction and the sample consists
only of positive examples of f . There is a 4-approximation algorithm for this prob-
lem [1,13,24]. The generalizedmin-sum set cover problem is equivalent to the problem
of minimizing the average cost over a sample when f is a k-out-of-n function and
the sample consists only of positive examples; this problem has a 12.4-approximation
algorithm [25].

Kaplan et al. [20] considered the problem of minimizing the expected cost of eval-
uating a Boolean function f with respect to a given arbitrary probability distribution,
where the distribution is given by a conditional probability oracle. They gave results
when f is a conjunction or a disjunction.

Deshpande et al. explored a generic approach to developing approximation algo-
rithms for SBFE problems, called the Q-value approach. It involves reducing the
problem to an instance of Stochastic Submodular Set Cover and then solving it using
the Adaptive Greedy algorithm of Golovin and Krause [14]. They used the Q-value
approach to obtain their O(log kd)-approximation algorithm for evaluatingCDNF for-
mulas. However, they also proved that the Q-value approach does not yield a sublinear
approximation bound for evaluating k-DNF formulas, even for k = 2. They developed
a new algorithm for solving Stochastic Submodular Set Cover, called Adaptive Dual
Greedy, and used it to obtain a 3-approximation algorithm solving the SBFE problem
for linear threshold formulas [12].

Charikar et al. [4] considered the problem of developing algorithms for Boolean
function evaluation that minimize competitive ratio. The competitive ratio of an algo-
rithm for evaluating f is the maximum, over all inputs x , of the ratio between the cost
incurred by the algorithm in determining f (x), and the cost of the min-cost certificate
of f contained in x . Charikar et al. also considered (cost-independent) algorithms
for minimizing extremal competitive ratio, which is the maximum of the competitive
ratio over all possible cost vectors. Significant further results on these problems were
subsequently obtained by Cicalese and Laber [7] and Cicalese et al. [6]. The modified
round-robin approach that we use in our approximation algorithms is similar to the
Balance algorithm of Charikar et al. [4].

In this paper we consider the ratio betwen the average cost of an algorithm on all
inputs x and the average cost of the min-cost certificates for these inputs. This ratio is
clearly upper bounded by the competitive ratio; however, it can be significantly lower.
For example, in the evaluation of an OR formula with unit costs, the competitive ratio
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is n, whereas the ratio we consider is 2(2n−1)
2n+n−1 , which is <2. Because the numerator in

our ratio is an average over all inputs x , we can amortize the costs incurred on different
assignments. In the analysis of our algorithms, we follow an approach of Kaplan et
al., charging costs incurred on one assignment to costs incurred on other assignments.

Table 1 summarizes the best results known for the SBFE problem for classes of
DNF formulas and for monotone versions of those classes.

3 Preliminaries

3.1 Definitions

A literal is a variable or its negation. A term is a possibly empty conjunction (∧) of
literals. If the term is empty, all assignments satisfy it. A clause is a possibly empty
disjunction (∨) of literals. If the clause is empty, no assignment satisfies it. The size
of a term or clause is the number of literals it contains.

A DNF (disjunctive normal form) formula is either the constant 0, the constant 1,
or a formula of the form t1 ∨ · · · ∨ tk , where k ≥ 1 and each ti is a term. Likewise, a
CNF (conjunctive normal form) formula is either the constant 0, the constant 1, or a
formula of the form c1 ∧ · · · ∧ ck , where each ci is a clause.

A k-term DNF is a DNF formula consisting of at most k terms. A k-DNF is a DNF
formula in which each term has size at most k. The size of a DNF (CNF) formula is
the number of terms (clauses) it contains; if it is the constant 0 or 1, its size is 1. A
DNF formula is monotone if it contains no negations. A read-once DNF formula is a
DNF formula in which each variable appears at most once.

Given a Boolean function f : {0, 1}n → {0, 1}, a partial assignment b ∈ {0, 1, ∗}n
is a 0-certificate (1-certificate) of f if f (a) = 0 ( f (a) = 1) for all a ∈ {0, 1}n
such that ai = bi for all bi �= ∗. It is a certificate for f if it is either a 0-certificate
or a 1-certificate. Given a cost vector c = (c1, . . . , cn), the cost of a certificate b is∑

j :b j �=∗ c j . The variables in a certificate b are all xi such that bi �= ∗. We say that
x ∈ {0, 1}n contains certificate b if xi = bi on the variables of b. A certificate for f
on x is a certificate b of f that is contained in x . If x contains b and S is a superset of
the variables in b, then we say that S contains b.

The expected certificate cost of f , with respect to cost vector c = (c1, . . . , cn) and
distribution D on {0, 1}n , is the expected cost of the minimum cost certificate of f
contained in x , when x ∼ D.

The Set Cover problem is as follows: Given a ground set A = {e1, . . . , em} of
elements, a set S = {S1, . . . , Sn} of subsets of A, and a positive integer k, does there
exist S ′ ⊆ S such that

⋃
Si∈S ′ Si = A and |S ′| ≤ k? Each set Si ∈ S is said to cover

the elements it contains. Thus the set covering problem asks whether A has a cover
of size at most k.

4 Hardness of the SBFE Problem for Monotone DNF

Before presenting approximation algorithms solving the SBFE problem for classes of
monotone DNF, we begin by discussing the hardness of the exact problem.
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Greiner et al. [16] showed that the SBFE problem for CNF formulas is NP-hard as
follows. If a CNF formula is unsatisfiable, then no testing is necessary to determine
its value on an assignment x . If there were a polynomial-time algorithm solving the
SBFE problem for CNF formulas, we could use it to solve SAT: given CNF Formula
φ, we could run the SBFE algorithm on φ (with arbitrary p and c) and simply observe
whether the algorithm chooses a variable to test or whether it immediately outputs 0
as the value of the formula. Thus the SBFE problem on CNF formulas is NP-hard,
and by duality, it is co-NP-hard on DNF formulas.

Moreover, if P �= co-NP, we cannot approximate the SBFE problem for DNF
within any factor τ > 1. If a τ -approximation algorithm existed, then on a tautological
DNF φ, the algorithm would have to immediately output 1 as the value of φ, because
τ × 0 = 0. On non-tautological φ, the algorithm would instead have to specify a
variable to test.1

The SBFE problem for DNF isNP-hard even when the DNF is monotone. To show
this, we use an argument similar to one used byCox et al. [9] in provingNP-hardness of
linear threshold function evaluation. Intuitively, in an instance of SBFEwith unit costs,
if the probabilities pi are very close to 0 (or 1), then the expected cost of evaluation is
dominated by the cost of evaluating the given function f on a specific input x∗. That
cost is minimized by testing only the variables in a minimum-cost certificate for f on
x∗. Then the idea is to show hardness of the SBFE problem for a class of formulasC by
reducing anNP-hard problem to the problem of finding, given f ∈ C and a particular
input x∗, a smallest size certificate of f contained in x∗. We also show hardness of
approximation.

For this reduction, it will be useful to demonstrate that for a particular distribution
(namely one with small pi ) , the optimal decision tree over this distribution is also
optimal for the specific case where x is the all-zero vector. We obtain a reduction from
vertex cover by fixing the value of the input to be the all-zero assignment and then
running an SBFE algorithm over the input. It is therefore necessary to demonstrate that
there exists a distribution for which the optimal decision tree with respect to expected
cost is also optimal on this fixed input.

Lemma 1 Let T be the set of decision trees computing f (x1, . . . , xn). Define Dγ to

be the distribution on x1, . . . , xn where each qi = 1 − pi =
(

γ n+0.5
γ n+1

)1/n
for some

parameter γ ≥ 1. Denote by costT (x) the cost incurred by tree T on assignment x. Let
cost∗ = minT∈T E

x∼Dγ

[costT (x)] and let T ∗ = {T ∈ T : E
x∼Dγ

[costT (x)] = cost∗}.
(T ∗ is the set of all decision trees computing f that are optimal with respect to Dγ .)
Denote by 0 the all-zero vector. Let Z be the set of all minimum-cost certificates
contained in 0 and let ζ denote the number of variables set to 0 in an element of Z.
Then the following hold:

1 We note that Kaplan et al. actually define the problem slightly differently. They require the evaluation
strategy to output a proof of the function value upon termination. In the case of a tautological DNF formula,
they would require testing of the variables in one term of the DNF in order to output that term as a certificate.
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1. If γ = 1, then for every T ∗ ∈ T ∗, the variables tested by T ∗ on assignment 0 are
exactly the variables set to zero in some element of Z.

2. For every T ∈ T , if E
x∼Dγ

[costT (x)] ≤ γ cost∗, then costT (0) ≤ 2γ ζ .

Proof We begin by proving the first statement. Suppose for sake of contradiction
that there exists some T ∗ in T ∗ such that the variables tested on assignment 0 do
not correspond to an element of Z . Then costT ∗(0) ≥ ζ + 1 and it follows that
cost∗ ≥ (ζ + 1)qn .

Let T 0 ∈ T be such that costT 0(0) = ζ . (T 0 tests exactly the variables in some
element of Z on the all-zeros assignment). Then E[costT 0 ] ≤ ζqn + n(1 − qn) and
we have the following:

E[costT 0(x)] ≤ ζqn + n(1 − qn)

=
(
n+0.5
n+1

)
ζ +

(
0.5n
n+1

)

<
(
n+0.5
n+1

)
ζ +

(
n+0.5
n+1

)

= (ζ + 1)qn

≤ cost∗,

which contradicts the optimality of T ∗.
The proof of the second statement is similar. Suppose that there exists T ∈ T such

that Ex∼Dγ [costT (x)] ≤ γ cost∗ and costT (0) > 2γ ζ. Then

qn(2γ ζ + 1) ≤ E
x∼Dγ

[costT (x)].

By assumption,

cost∗ ≥ 1
γ

(
E

x∼Dγ

[costT (x)]
)

≥ qn
(
2ζ + 1

γ

)
(1)

Let T ′ be the tree obtained by the following algorithm: the algorithm tests the variables
in minimum-cost 0-certificate. If all the variables in this minimum-cost 0-certificate
are 0, the algorithm outputs 0. If any of these variables is 1, then the algorithm tests
the variables in any order and outputs 0 and 1, as appropriate. Then we have,

cost∗ ≤ E
x∼Dγ

[costT ′(x)] ≤ qnζ + (1 − qn)n (2)

By using (1), we have that,

cost∗ ≤ qnζ + (1 − qn)n

= qn
(
ζ + 0.5n

γ n+0.5

)
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< qn
(
ζ + 0.5n

γ n

)

= 1
2q

n
(
2ζ + 1

γ

)

and we obtain a contradiction with the lower bound of (1).

Theorem 1 If P �= NP, there is no polynomial time algorithm solving the SBFE
problem for monotone DNF. This holds even with unit costs, and even for k-DNF
where k ≥ 2. Also, if P �= NP, the SBFE problem for monotone DNF, even with unit
costs, cannot be approximated to within a factor of less than c′ ln n, for some constant
c′ > 0.

Proof Suppose there is a polynomial-time algorithm ALG for the SBFE problem for
monotone 2-DNF, with unit costs and arbitrary probabilities. We show this algorithm
could be used to solve the Vertex Cover problem: Given a graph G(V, E), find a
minimum-size vertex cover for G, i.e., a minimum-size set of vertices V ′ ⊆ V such
that for each edge (v j , vk) ∈ E , {v j , vk} ⋂

V ′ �= ∅.
The reduction is as follows. On graph G(V, E), construct a monotone 2-DNF

formula φ whose variables x j correspond to the vertices v j ∈ V , and whose terms
x j xk correspond to the edges e = (v j , vk) in E . Consider the all 0’s assignment 0.
Since a 0-certificate for φ must set each term of φ to 0, any min-cost certificate for φ

contained in 0 must also be a minimum-size vertex cover for G. Thus by the previous
lemma, one can find a minimum-size vertex cover for G by using ALG to evaluate φ

on input 0 with unit costs and the probabilities pi given in Lemma 1, and observing
which variables are tested.

We can also reduce from the Set Cover problem to the SBFE problem on DNF
formulas with terms of arbitrary lengths as follows: We construct a DNF formula φ

whose variables correspond to the subsets si in the Set Cover instance S. We include
in φ a term t j for each ground element e j such that t j = ∧

i |e j∈si xi . Now consider
the all 0’s assignment 0. The size of the min-cost certificate for φ must also be a
minimum-size cover for S.

Suppose there is a polynomial-time algorithm ALG for the SBFE problem on
monotone DNF, with unit costs and arbitrary probabilities. Then we could use ALG to
evaluate φ on input 0with unit costs and the probabilities given in Lemma 1, observing
which variables are tested. The inapproximability bound in the theorem follows from
the c ln n inapproximability result for set cover [13], where c = 2c′. ��

Given the difficulty of exactly solving the SBFE problem for montone DNF for-
mulas, we will instead consider approximation algorithms.

5 Approximation Algorithms for the Evaluation of Monotone k-DNF
and k-term DNF

5.1 Monotone k-DNF Formulas

In this section, we present a polynomial time algorithm for evaluating monotone k-
DNF formulas. To evaluate f we will alternate between two algorithms, Alg0 and
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Alg1, each of which performs tests on the variables xi . It would be possible for the
protocol to share information between Alg0 and Alg1, so that if xi were tested by
Alg0, Alg1 would not need to retest xi . However, to simplify the analysis, we assume
the algorithms do not share test outcomes. Alg0 tries to find a min-cost 0-certificate
for f , and Alg1 tries to find a min-cost 1-certificate for f . As soon as one of these
algorithms succeeds in finding a certificate, we know the value of f (x), and can output
it.

This basic approach was used previously by Kaplan et al. [20] in their algorithm for
evaluating monotone CDNF formulas in the unit cost, uniform distribution case. They
used a standard greedy set-cover algorithm for both Alg0 and Alg1 along with with
a strict round-robin policy that alternated between performing one test of Alg0 and
one test of Alg1. Our algorithm uses a dual greedy set-cover algorithm for Alg0 and
a different, simple algorithm for Alg1. The strict round-robin policy used by Kaplan
et al. is suitable only for unit costs, whereas our algorithm handles arbitrary costs by
modifying the round-robin protocol. We begin by presenting that protocol.

Although we will use the protocol with a particular Alg0 and Alg1, it works for any
Alg0 andAlg1 that “try” to find 0-certificates and 1-certificates respectively. In the case
of Alg0, this means that if f (x) = 0, Alg0 will succeed in outputting a 0-certificate of
f contained in x . Similarly, if f (x) = 1, Alg1 will successfully output a 1-certificate
contained in x . Since x cannot contain both a 0-certificate and a 1-certificate, if Alg0
and Alg1 are both run on the same input x , only one can succeed in outputting the
type of certificate it is trying to find.

The modified round-robin protocol works as follows. It maintains two values: K0
and K1, where K0 is the cumulative cost of all tests performed so far in Alg0, and
K1 is the cumulative cost of all tests performed so far in Alg1. At each step of the
protocol, each of Alg0 and Alg1 independently determines a test to be performed next
and the protocol chooses one of them. (Initially, the two tests are the first tests of Alg0
and Alg1 respectively.) Let x j 1 denote the next test of Alg1 and let x j 0 denote the next
test of Alg0, and let c j 1 and c j 0 denote the costs of the next test of Alg1 and Alg0
respectively. To choose which test to perform, the protocol uses the following rule: if
K0 + c j 0 ≤ K1 + c j 1 it performs test x j 0; otherwise it performs test x j 1. We present
the pseudocode for this procedure in Algorithm 1.

The result of the test is combined with the results of the other tests performed by the
algorithm. If these results constitute a certificate of the “correct” type (a 1-certificate
forAlg1, or a 0-certificate forAlg0), then the algorithm successfully terminates and the
protocol ends. If the results constitute a certificate of the “wrong” type (a 0-certificate
for Alg1, or a 1-certificate for Alg0), then the algorithm has failed; the other algorithm
is run to successful termination and the protocol ends. Otherwise, the algorithm has
not found a certificate and it must make at least one more test. In this case, the protocol
again chooses between the next test of Alg0 and Alg1 using the rule above.

We now show that the following invariant holds at the end of each step of the
protocol, provided that neither Alg0 nor Alg1 failed in that iteration.

Lemma 2 At the end of each step of the above modified round-robin protocol, if x j 1
was tested in that step, then K1 − c j 0 ≤ K0 ≤ K1. Otherwise, if x j 0 was tested, then
K0 − c j 1 ≤ K1 ≤ K0 at the end of the step.
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Initialize execution of Alg1 and Alg0
K0 ← 0, K1 ← 0
repeat

if {xi | xi was tested by Alg1} contains a 0-certificate then
Let Alg0 run to successful termination //Alg1 has failed, x does not have a 1-certificate

else if {xi | xi was tested by Alg0} contains a 1-certificate then
Let Alg1 run to successful termination // Alg0 has failed, x does not have a 0-certificate

else
x j 0 ← the next test of Alg0, x j 1 ← the next test of Alg1
if K0 + c j 0 ≤ K1 + c j 1 then
test x j 0 //perform the next step of Alg0
K0 = K0 + c j 0

else
test x j 1 //perform the next step of Alg1
K1 = K1 + c j 1

end if
end if

until Alg0 terminates successfully OR Alg1 terminates successfully

Algorithm 1: Modified round robin protocol

Proof The invariant clearly holds after the first step. Suppose it is true at the end of the
kth step, and without loss of generality assume that x j 1 was tested during that step.
Thus K1 − c j 0 ≤ K0 ≤ K1 at the end of the kth step.

Consider the (k+1)st step. Note that x j 0, the variable to be tested next byAlg0 is the
same in this step as in the previous one, because in the previous step, we did not execute
the next step of Alg0. There are 2 cases, depending on which if-condition is satisfied
when the rule is applied in this step, K0 + c j 0 ≤ K1 + c j 1 or K0 + c j 0 > K1 + c j 1.

Case 1 K0 + c j 0 ≤ K1 + c j 1 is satisfied.
Then x j 0 is tested in this step and K0 increases by c j 0.We show that K0−c j 1 < K1

and K1 ≤ K0 at the end of the step, which is what we need. At the start of the step,
K0 + c j 0 ≤ K1 + c j 1 and at the end, K0 is augmented by c j 0, so K0 ≤ K1 + c j 1.
Consequently, K0 − c j 1 ≤ K1. Further, by assumption, K1 − c j 0 ≤ K0 at the start of
the step, and hence at the end, K1 ≤ K0.

Case 2 K0 + c j 0 > K1 + c j 1 is satisfied.
By assumption, therefore, K1 − c j 0 ≤ K0 ≤ K1 at the start. Then x j 1 is tested in

this step, and K1 increases by c j 1. We show that K1 − c j 0 ≤ K0 and K0 ≤ K1 at the
end of the step. By the condition in the case, K0 + c j 0 > K1 + c j 1 at the start of the
step, so at the end, K0+c j0 > K1, and hence K1−c j 0 < K0. Further, by assumption,
K0 ≤ K1 at the start, and since only K1 was increased, this also holds at the end. ��

We can now prove the following lemma:

Lemma 3 If f (x) = 1, then at the end of themodified round-robin protocol, K1 ≥ K0.
Symmetrically, if f (x) = 0, then at the end of the modified round-robin protocol,
K0 ≥ K1.

Proof There are twoways for the protocol to terminate. EitherAlg0 orAlg1 is detected
to have succeeded at the start of the repeat loop, or one of the two algorithms fails and
the other is run to successful termination.
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Suppose the former, andwithout loss of generality suppose it isAlg0 that succeeded.
It follows that it was x j 0 that was tested at the end of the previous step (unless this is
the first step, which would be an easy case), because otherwise, the success of Alg0
would have been detected in an earlier step.

Thus at the end of the last step, by Lemma 2, K1 ≤ K0.
Suppose instead that one algorithm fails and without loss of generality, suppose

it was Alg0 and thus we ran Alg1 to termination. Since Alg0 did not fail in a prior
step, it follows that in the previous step, x j 0 was tested (unless this is the first step,
which would be an easy case). Thus at the end of the previous step, by the invariant,
K0 − c j 1 ≤ K1 and so K0 ≤ K1 + c j 1. We have to run at least one step of Alg1 when
we run it to termination. Thus running Alg1 to termination augments K1 by c j 1, and
so at the end of the algorithm, we have K0 ≤ K1. ��

We now describe the particular Alg0 and Alg1 that we use in our algorithm for
evaluating monotone k-DNF. We describe Alg0 first. Since f is a monotone function,
the variables in any 0-certificate for f must all be set to 0. Consider an assignment
x ∈ {0, 1}n such that f (x) = 0. Let Z = {xi |xi = 0}. Finding a min-cost 0-certificate
for f contained in x is equivalent to solving the Set Cover instance where the
elements to be covered are the terms t1, . . . , tm , and for each xi ∈ Z , there is a
corresponding subset {t j |xi ∈ t j }.

Suppose f (x) = 0. If Alg0was given both Z and f as input, it could find an approx-
imate solution to this set cover instance using Hochbaum’s Dual Greedy algorithm for
(weighted) Set Cover [18]. This algorithm selects items to place in the cover, one
by one, based on a certain greedy choice rule. Briefly, Hochbaum’s algorithm is based
on the dual of the standard linear program for Set Cover. The variables of the dual
correspond to the elements that need to be covered, and the constraints correspond
to the subsets that can be used to form the cover. The algorithm chooses subsets to
place in the cover, one by one until all elements are covered. At each iteration, the
algorithm greedily chooses a dual variable and assigns it a non-zero value, causing
a new constraint of the dual to become tight without violating any constraints. The
subset corresponding to the newly tight constraint is then added to the cover.

Alg0 is not given Z , however. It can only discover the values of variables xi by test-
ing them. We get around this as follows. Alg0 begins running Hochbaum’s algorithm,
using the assumption that all variables are in Z . Each time that algorithm chooses
a variable xi to place in the cover, Alg0 tests the variable xi . If the test reveals that
xi = 0, Alg0 continues directly to the next step of Hochbaum’s algorithm. If, however,
the test reveals that xi = 1, it removes the xi from consideration and uses the greedy
choice rule to choose the best variable from the remaining variables. The variables
that are placed in the cover by Alg0 in this case are precisely those that would have
been placed in the cover if we had run Hochbaum’s algorithm with Z as input.

Hochbaum’s algorithm is guaranteed to construct a cover whose total cost is within
a factor of α of the optimal cover, where α is the maximum number of subsets in which
any ground element appears. Since each term t j can contain a maximum of k literals,
each term can be covered at most k times. It follows that when f (x) = 0, Alg0 outputs
a certificate that is within a factor of at most k of the minimum cost certificate of f
contained in x .
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If f (x) = 1, Alg0 will eventually test all elements without having constructed a
cover, at which point it will terminate and report failure.

We now describe Alg1. Alg1 begins by evaluating the min-cost term t of f , where
the cost of a term is the sum of the costs of the variables in it. (In the unit-cost case,
this is the shortest term. If there is a tie for the min-cost term, Alg1 breaks the tie in
some suitable way, e.g., by the lexicographic ordering of the terms.) The evaluation
is done by testing the variables of t one by one in order of increasing cost until a
variable is found to equal 0, or all variables have been found to equal 1. (For variables
xi with equal cost, Alg1 breaks ties in some suitable way, e.g., in increasing order of
their indices i .) In the latter case, Alg1 terminates and outputs the certificate setting
the variables in the term to 1.

Otherwise, for each tested variable in t ,Alg1 replaces all occurrences of that variable
in f with its tested value. It then simplifies the formula (deleting terms with 0’s and
deleting 1’s from terms, and optionally making the resulting formula minimal). Let
f ′ denote the simplified formula. Because t was not satisfied, f ′ does not contain
any satisfied terms. If f ′ is identically 0, x does not contain a 1-certificate and Alg1
terminates unsuccessfully. Otherwise, Alg1 proceeds recursively on the simplified
formula, which contains only untested variables.

Having presented our Alg0 and Alg1, we are ready to prove the main theorem of
this section.

Theorem 2 The evaluation problem for monotone k-DNF can be solved by a
polynomial-time approximation algorithm computing a strategy whose expected cost
is within a factor of 4

ρk of the expected certificate cost. Here ρ is either the minimum
pi value or the minimum 1 − pi value, whichever is smaller.

Proof Let f be the input monotone k-DNF, defined on x ∈ {0, 1}n . We will also use
f to denote the function computed by this formula.
Let Alg be the algorithm for evaluating f that alternates between the Alg0 and

Alg1 algorithms just described, using the modified round-robin protocol.
Let S1 = {x | f (x) = 1} and S0 = {x | f (x) = 0}. Let E[cost f (x)] denote the

expected cost incurred by the round-robin algorithm in evaluating f on random x . Let
cost f (x) denote the cost incurred by running the algorithm on x . Let Pr[x] denote
the probability that x is realized with respect to the product distribution Dp. Thus
E[cost f (x)] is equal to

∑
x∈S1 Pr[x] cost f (x) + ∑

x∈S0 Pr[x] cost f (x). Similarly,
let cert f (x) denote the cost of the minimum cost certificate of f contained in x ,
and let E[cert f (x)] = ∑

x Pr[x] cert f (x). We need to show that the ratio between

E[cost f (x)] and E[cert f (x)] is at most 4
ρk .

We consider first the costs incurred by Alg0 on inputs x ∈ S0. Following the
approach of Kaplan et al., we divide the tests performed by Alg0 into two categories,
which we call useful and useless, and amortize the cost of the useless tests by charging
them to the useful tests. More formally, we say that a test on variable xi is useful to
Alg0 if xi = 0 (xi is added to the 0-certificate in this case) and useless if xi = 1. The
number of useful tests on x is equal to the size of the certificate output by Alg0, and
thus the total cost of the useful tests Alg0 performs on x is at most k(cert f (x)).
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Let cost0f (x) denote the cost incurred byAlg0 alonewhen runningAlg to evaluate f

on x , and let cost1f (x) denote the cost incurred by Alg1 alone. Suppose Alg0 performs
a useless test on an x ∈ S0, finding that xi = 1. Let x ′ be the assignment produced from
x by setting xi to 0. Because f (x) = 0 and f is monotone, f (x ′) = 0 too. Because x
and x ′ differ in only one bit, ifAlg0 tests xi on assignment x , it will test x ′

i on x
′, and that

test will be useful. Thus each useless test performed by Alg0 on x ∈ S0 corresponds to
a distinct useful test performed on an x ′ ∈ S0. When xi is tested, the probability that it
is 1 is pi , and the probability that it is 0 is 1− pi . Each useless test contributes ci pi to
the expected cost, whereas each useful test contributes (1 − pi )ci . If we multiply the
contribution of the useful test by 1/(1 − pi ), we get the contribution of both a useful
and a useless test, namely ci . To charge the cost of a useless test to its corresponding
useful test, we can thereforemultiply the cost of the useful test by 1/(1− pi ) (so that if,
for example, pi = 1/2, we charge double for the useful test). Because 1/(1− pi ) ≤ 1

ρ

for all i , it follows that
∑

x∈S0 Pr[x] cost0f (x) ≤ 1
ρ

∑
x∈S0 Pr[x](k(cert f (x))). Hence,

∑
x∈S0 Pr[x]cost0f (x)∑
x∈S0 Pr[x]cert f (x) ≤ k

ρ
. (3)

We will now show, by induction on the number of terms of f , that E
[
cost1f (x)

]
/

E[cert f (x)] ≤ 1
ρk .

If f has only one term, it has at most k variables. In this case, Alg1 is just using the
naïve algorithm which tests the variables in order of increasing cost until the function
value is determined. Since the cost of using the naïve algorithm on x in this case
is at most k times cert f (x), ρ ≤ 1/2, and k ≤ 2k for all k ≥ 1, it follows that

E
[
cost1f (x)

]
/ E[cert f (x)] ≤ k ≤ 2k ≤ 1

ρk . Thus we have the base case.

Assume for the purpose of induction that E
[
cost1f (x)

]
/ E[cert f (x)] ≤ 1

ρk holds

for f having at most m terms. Suppose f has m + 1 terms. Let t denote the min-cost
term. Let C denote the sum of the costs of literals in t , and k′ the number of variables
in t , so k′ ≤ k. If x does not satisfy term t , then after Alg1 evaluates term t on x , the
results of the tests performed in the evaluation correspond to a partial assignment a
to the variables in t . More particularly, if Alg1 tested exactly z variables of t , the test
results correspond to the partial assignment a setting the z − 1 cheapest variables of
t to 1 and the zth to 0, leaving all other variables in t unassigned. Thus there are k′
possible values for a. Let T denote this set of partial assignments a.

For a ∈ T , let f [a] denote the formula obtained from f by replacing any occur-
rences of variables in t by their assigned values in a (if a variable in t is not assigned
in a, then occurrences of those variables are left unchanged). Let T0 = {a ∈ T | f [a]
is identically 0 }, and let T∗ = T − T0. For any x , the cost incurred by Alg1 in eval-
uating t on x is at most C . For x ∈ T0, Alg1 only evaluates t , so its total cost on x
is at most C . Let Pr[a] denote the joint probability of obtaining the observed values
of those variables tested in t . More formally, if W is the set of variables tested in t ,
Pr[a] = ∏

i :xi∈W∧xi=1 pi
∏

i :xi∈W∧xi=0(1− pi ).We thus have the following recursive
expression:
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E
[
cost1f (x)

]
≤ C +

∑
a∈T∗

Pr[a] E
[
cost1f [a](x[a])

]

where x[a] is a random assignment to the variables of f not assigned values in a,
chosen independently according to the relevant parameters of Dp.

For any x satisfying t , since t is min-cost and f is monotone, cert f (x) = C . Let
x ∈ T∗, and let ax be the partial assignment representing the results of the tests Alg1
performed in evaluating t on x . Let x̂ be the restriction of x to the variables of f not
assigned values by ax . Any certificate for f that is contained in x can be converted
into a certificate for f [ax ], contained in x̂ , by simply removing the variables assigned
values by ax . It follows that cert f (x) ≥ cert f [ax ](x̂).

Since k′ ≤ k, the probability that x satisfies the first term is at least ρk . By ignoring
the x ∈ T0 we get

E[cert f (x)] ≥ ρkC +
∑
a∈T∗

Pr[a] E[cert f [a](x[a])]

The ratio between the first term in the expression bounding E
[
cost1f (x)

]
to the first

term in the expression bounding E[cert f (x)] is equal to 1/ρk . By induction, for each
a ∈ T∗,

E
[
cost1f [a](x[a])

]
/ E[cert f [a](x[a])] ≤ 1

ρk
.

Thus

E
[
cost1f (x)

]
/ E[cert f (x)] ≤ 1

ρk
. (4)

Setting β = ∑
x∈S1 Pr[x]cost f (x) + ∑

x∈S0 Pr[x]cost1f (x), we have

E[cost f (x)] = β +
∑
x∈S0

Pr[x]cost0f (x).

By Lemma 3, the cost incurred by Alg on any x ∈ S1 is at most twice the cost
incurred by Alg1 alone on that x . Thus

β ≤
∑
x∈S1

2Pr[x]cost1f (x) +
∑
x∈S0

Pr[x]cost1f (x) ≤
∑

x∈S0 ⋃
S1

2Pr[x]cost1f (x)

= 2E
[
cost1f (x)

]
.

It follows that

E[cost f (x)] ≤ 2E
[
cost1f (x)

]
+

∑
x∈S0

Pr[x]cost0f (x). (5)
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Further, since E[cert f (x)] ≥ ∑
x∈S0 Pr[x] cert f (x),

E[cert f (x)] ≥ 1

2
(E[cert f (x)] +

∑
x∈S0

Pr[x]cert f (x)). (6)

It follows from the above numbered lines that E[cost f (x)]/ E[cert f (x)] is at most

max
{

4
ρk ,

2k
ρ

}
= 4

ρk , since k ≥ 1 and ρ ≤ 1
2 . ��

5.2 Monotone k-term DNF Formulas

We can use techniques from the previous subsection to obtain results for the class of
monotone k-term DNF formulas as well. In Sect. 6, we will present an exact algorithm
whose running time is exponential in k. Here we present an approximation algorithm
that runs in time polynomial in n, with no dependence on k.

Theorem 3 The evaluation problem for monotone k-term DNF can be solved by a
polynomial-time approximation algorithm computing a strategy whose expected cost

is within a factor of max
{
2k, 2

ρ
(1 + ln k)

}
of the expected certificate cost. Here ρ is

either the minimum pi value or the minimum 1 − pi value, whichever is smaller.

Proof Let f be the input monotone k-term DNF, defined on x ∈ {0, 1}n .
Just as in the proof of Theorem 2, we will use a modified round robin protocol that

alternates between one algorithm for finding a 0-certificate (Alg0) and one for finding
a 1-certificate (Alg1). Again, let S1 = {x | f (x) = 1} and S0 = {x | f (x) = 0}.

However, in this case Alg0 will use Greedy, Chvátal’s well-known greedy algo-
rithm forweightedSet Cover [5] instead of theDualGreedy algorithmofHochbaum.
Greedy simplymaximizes, at each iteration, “bang for the buck” by selecting the sub-
set that maximizes the ratio between the number of uncovered elements covered by
the subset, and the cost of the subset. Greedy yields an H(m) approximation, where
m is the number of ground elements in the Set Cover instance and H(m) is the mth

harmonic number, which is upper bounded by 1+ lnm. Once again, we will view the
terms as ground elements and the variables that evaluate to 0 as the subsets. Since f
has at most k terms, there are at most k ground elements. On any x ∈ S0,Greedywill
yield a certificate whose cost is within a factor of 1+ ln k of the min-cost 0-certificate
cert f (x), and thus the cost incurred by the useful tests on x (tests on xi where xi = 0)
is at most cert f (x)(1 + ln k). By multiplying by 1/ρ the charge to the variables that
evaluate to 0, to account for the useless tests, we get that the expected cost incurred
by Alg0 on x , for x ∈ S0, is at most 1

ρ
cert f (x)(1 + ln k).

Alg1 in this case simply evaluates f term by term, each time choosing the remain-
ing term of minimum cost and evaluating all of the variables in it. Without loss of
generality, let t1 be the first (cheapest) term evaluated by Alg1 and let ti be the i th term
evaluated. Suppose x ∈ S1. If x falsifies terms t1 through ti−1 and then satisfies ti ,
cert f (x) is precisely the cost of ti and Alg1 terminates after evaluating ti . Since none
of the costs of the first i − 1 terms exceeds the cost of ti , the total cost of evaluating
f is at most k times the cost of ti . Hence, Alg1 incurs a cost of at most k(cert f (x)).
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By executing the two algorithms according to the modified round robin protocol,
we can solve the problem of evaluating monotone k-term DNF with cost no more than
double the cost incurred by Alg1, when x ∈ S1, and no more than double the cost
incurred by Alg0, when x ∈ S0. Hence the total expected cost of the algorithm is

within a factor of max
{
2k, 2

ρ
(1 + ln k)

}
of the expected certificate cost. ��

We now prove that the problem of exactly evaluating monotone k-term DNF can
be solved in polynomial time for constant k.

6 Minimum Cost Evaluation of Monotone k-term DNF

In this section, we provide an exact algorithm for evaluating k-term DNF formulas in
polynomial time for constant k. First, we will adapt results from Greiner et al. [16]
to show some properties of optimal strategies for monotone DNF formulas. Then we
will use these properties to compute an optimal strategy for monotone k-term DNF
formulas.Greiner et al. [16] consider evaluating read-once formulaswith theminimum
expected cost. Each read-once formula can be described by a rooted and-or tree where
each leaf node is labeled with a variable and each internal node is labeled as either
an or-node or an and-node. The simplest read-once formulas are the simple AND and
OR functions, where the depth of the and-or tree is 1. Other read-once formulas can
be obtained by taking the AND or OR of other read-once formulas over disjoint sets
of variables, as indicated by the label of the associated internal node in the and-or tree.
In the and-or tree, an internal node whose children include at least one leaf is called
a leaf-parent, leaves with the same parent are called leaf-siblings (or siblings) and
the set of all children of a leaf-parent is called a sibling class. Intuitively, the siblings
have the same effect on the value of the read-once formula. The ratio of a variable
xi is defined to be R(xi ) = pi/ci . Further, variables x1 and x2 are R-equivalent if
they are leaf-siblings and R(x1) = R(x2). An R-class is an equivalence class with
respect to the relation of being R-equivalent. Let a variable be considered redundant if
testing it is unnecessary to determine the correct value of the function. Let a strategy
be considered redundant if it tests redundant variables. A strategy S is considered
contiguous with respect to a subset C of variables if, along all paths of S, whenever a
variable of C is tested, S continues to test all of the other variables in C (provided that
they do not become redundant as the results of the tests are obtained), until either C
is exhausted or the path of S is terminated (reaches a leaf node). Greiner et al. show
that, for any and-or tree, (without loss of generality, they assume that leaf-parents are
OR nodes), there is an optimal strategy S that satisfies the following conditions:

(a) For any sibling variables x and y such that R(y) > R(x), x is not tested before y
on any root-to leaf path of S.

(b) For any R-class W , S is contiguous with respect to W .

We show that by redefining siblings and sibling classes, corresponding properties
hold for general monotone DNF formulas. Let us define a maximal subset of the
variables that appear in exactly the same set of terms as a sibling class in a monotone
DNF formula. Here maximal means that no proper super-set of a sibling class is a
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sibling class. We will refer to the elements of a sibling class as siblings or sibling
variables. For instance, all variables are siblings for an AND function, whereas no two
variables are siblings in an OR function. All the other definitions can easily be adapted
accordingly. In this case, the ratio of a variable xi is R(xi ) = 1−pi

ci
, since each term

of the monotone DNF formula is a conjunction.
It is possible to adapt the proof of Theorem 20 in [16] to apply to monotone DNF

formulas. All the steps of the proof can be adapted in this context, using the new
definitions of siblings and the ratio of a variable. The proofs of Lemma 4 and Theorem
4 are very similar to the proofs of Theorem 20 and Observation 26 in [16]. We present
the proofs here for the sake of completeness.

Lemma 4 Let x and y be sibling variables in a monotone k-term DNF. Let S be a
non-redundant strategy that tests x first and if x is 1 then y is tested next. (Note that
if x is 0, then y becomes redundant.) Let S′ be obtained from S by exchanging x and
y, which is also a non-redundant strategy. Then

(a) if R(y) > R(x) then S′ has lower expected cost then S.
(b) if R(y) = R(x) then S′ has the same expected cost as S.

Proof The strategies S and S′ are depicted in Fig. 1. S+(−) is the sub-strategy followed
when the variable in the root is 1(0). Note that the subtrees S−, rooted at x , and S−,
rooted at y, are identical since x and y are siblings. By definition of siblings, the
function obtained by fixing x at 0 and the function obtained by fixing x at 1 and y at
0 are the sam. Since x and y are sibling variables, it is clear that S′ is a non-redundant
valid strategy. Let C(S) denote the expected cost of strategy S.

C(S) = cx + pxcy + (qx + pxqy)C(S−) + px pyC(S+)

and

C(S′) = cy + pycx + (qy + pyqx )C(S−) + px pyC(S+).

x

S−

y

S− S+

y

S−

x

S− S+

(a) (b)

Fig. 1 Modification of S to obtain S′

123



Algorithmica

Then we find that C(S) − C(S′) = qycx − qxcy . The result follows immediately. ��
Theorem 4 For any monotone DNF, there exists an optimal testing strategy S that
satisfies both of the following conditions.

(a) For any sibling variables x and y such that R(y) > R(x), x is not tested before
y on any root-to-leaf path of S.

(b) For any sibling class where each element of the sibling class has the same ratio,
S is contiguous with respect to the sibling class.

Proof We prove the theorem by induction on the number of variables. The theorem
holds for functions with a single variable. Suppose the theorem holds for any function
that has at most n−1 variables. Now let us consider a function with n variables and an
optimal strategy S for evaluating this function. Let x be the first variable of S, at the
root node. Let S+

x and S−
x be the sub-strategies of S when x is 1 and 0, respectively.

Let us note that since S is optimal so are S+
x and S−

x for the function restricted to
x = 1 and x = 0 respectively. By induction, we can assume that S+

x and S−
x satisfy

the conditions of the theorem. So on any path from the root to the leaves in S+
x and

S−
x , the sibling appears before its other siblings that have smaller (worse) ratio and

the siblings with the same ratio come one after another. Now let us assume that S
does not satisfy the theorem. That means that x has at least one sibling that has the
same or higher ratio that appears on some leaf to root path(s) of S. We will show, in
this case, that there exists another optimal strategy that satisfies the conditions of the
theorem. We will construct this strategy starting from S and by changing the order of
sub-strategies of S. Let Y be the set of sibling variables of x with an equal or higher
ratio than x . Let y be the variable with the minimum ratio among tests in Y . Since
all sibling variables with the same ratio are tested one after another in S+

x , we may
assume that y is tested the last among all variables in Y by the sub-strategy S+

x . Let
M be the number of nodes of S+

x labeled by the variable y, and let Sy1 , Sy2 , ..., SyM
be the sub-trees of S+

x for which the roots are labeled by y. So y appears M times
in S+

x . For k = 1, ..., M , let S+
yk and S−

yk be the sub-strategies of Syk when y is true
or false, respectively. Let Sr denote the part of S+

x that contains nodes that are not in
Sy1 , Sy2 , ..., Syk . Now let us construct another strategy, S′, where S′ is constructed by
taking Sr (so the root of Sr is the root of S′) and changing Syk as follows for each
k = 1, ..., M . We test x just before y. If x is 0, we continue with strategy S−

yk . If x
is 1, we test y next. Depending on the value of y, we continue with strategy S+

yk or
S−
yk . Strategies S and S′ are depicted in Fig. 2. First, we need to show that S′ is indeed

a valid strategy. In order to show this, we should show that for all paths in S′, we
correctly evaluate the original function. There are three possible cases with regard to
the paths in S′.

(a) Both x and y are tested along the path. These paths differ only in the ordering of
the variables from S. So they should evaluate the function correctly.

(b) x is tested along the path but not y. Since x and y are sibling variables, their
values affect the function in the same way. When we compare these paths with
the corresponding paths in S, the only difference is that x is tested instead of y.
So these paths should evaluate the function correctly.
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Fig. 2 Creating S′ from S

(c) Neither x nor y is tested along the path. If we consider the corresponding paths in
S, we see that in these paths y is not tested and x is 1. If x is 1 and y is not tested
in S, that means that the results of the other variables provide a certificate and
value of x is irrelevant, given the values of other variables. In S′, these paths are
the same as S except that x is not tested. Since x is irrelevant given the values of
other variables on these paths, the function is evaluated correctly on these paths.

Now let S
′′
be obtained from S′ by switching the labels of x and y. By Lemma 4, S

′′
is a

valid strategy for evaluating the function and expected cost of S
′′
is not higher than the

expected cost of S′. Since S′′
satisfies the conditions of the theorem, it suffices to show

that S′ is optimal. Before showing that we note the following: if x has other siblings
with the same ratio, then y should be one of those siblings. Hence S

′′
is contiguous

with respect to these variables. We also observe that S
′′
is contiguous on any other set

of tests with the same ratio that does not include x but include y since y is tested as
the last test from Y . Also since x is tested right after y, when y is false, S

′′
preserves

the right order of sibling variables.
Now we show that S′ is not worse than S. We compare C(S′) with C(S). Let us

first consider the strategy S. In S, let Cr be the expected cost associated with nodes
where x is 1 and y is not tested at all. That is, Cr = ∑

v∈Sr pvc(xv) where the sum
is over all nodes of Sr , pv is the probability of the path from the root of S+

x to node
v and c(xv) is the cost of the variable of node v. For any k = 1, ..., M , let pyk be the
probability of the path from the root of S+

x to the root of Syk .
Expected cost of strategy S can be written in the following way:

C(S) = cx + pxC(S+
x ) + qxC(S−

x )

where

C(S+
x ) = Cr +

M∑
k=1

pyk
[
cy + pyC(S+

yk ) + qyC
(
S−
yk

)]
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Fig. 3 Strategy Sx=1
y

whereas for the expected cost of S′ we have

C(S′) = Cr +
M∑
k=1

pyk

{[
cx + qxC

(
S−
yk

)]
+ px

[
cy + pyC

(
S+
yk

)
+ qyC

(
S−
yk

)]}

By contradiction, let us assume that the expected cost of S′ is higher than S. For

notational convenience, let D = Cr + ∑M
k=1 pykC

(
S−
yk

)
− C

(
S−
x

)
and Pr = 1 −

∑M
k=1 pyk , then we obtain

qx D > Prcx .

Since
∑M

k=1 pyk is the probability of reaching any node labeled by y in the strategy
S−, Pr ≥ 0. Consequently, D > 0 and so

qx
cx

>
Pr

D
. (7)

We will show that, in this case, we can replace the sub-strategy S+
x of S by a sub-

strategy with strictly lower expected cost, contradicting the optimality of S+
x .

Consider the strategy in Fig. 3, that starts evaluation by testing y first, if y is 1,
it continues with Sr until it hits any node labeled as y. In this case since we already
know that y is 1, we replace this with sub-strategy S+

yk . If y is 0 it continues with S−
x .

This strategy is a valid and non-redundant strategy when x is 1. Let us refer to this
strategy as Sx=1

y The expected cost of this strategy can be written as:

C
(
Sx=1
y

)
= cy + py

(
Cr +

M∑
k=1

pykC
(
S+
yk

)
+ qyC

(
S−
x

))
.

Then we obtain

C
(
S+
x

) − C
(
Sx=1
y

)
= qyD − Prcy .
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But then from 7 and the fact that

qy
cy

≥ qx
cx

it follows that C
(
S+
x

)
> C

(
Sx=1
y

)
which is a contradiction. ��

In other words, there exists an optimal strategy such that on any path from the root
to the leaf, sibling tests appear in non-increasing order of their ratios. Further, for
this strategy, sibling tests with the same ratio (R-class) appear one after another on
any path from the root to the leaf. By a duality argument, a similar result holds for
monotone CNFs by defining the ratio of a variable as ci/pi and sibling class as a set
of variables that appear in exactly the same set of clauses. For a k-term monotone
DNF there are at most 2k − 1 sibling classes, since each sibling class corresponds to
a non-empty subset of the terms of the monotone DNF formula. Next, we provide a
dynamic programming based method to find an optimal strategy.

Theorem 5 The evaluation problem for monotone k-term DNF formula φ over a
product distribution on input x and with arbitrary costs can be solved exactly in
polynomial time for constant k.

Proof We will use a dynamic programming method similar to that used by Guijarro
et al. in [17] for building decision trees for functions defined by truth tables. We will
exploit condition (a) above.

Let f be the function that is defined by φ. We will construct a table P indexed by
partial assignments to the t = 2k sibling classes. By Theorem 4, there is an optimal
evaluation order of the variables within each sibling class. Let 1 ≤ j ≤ t index the
sibling classes in arbitrary order. For each sibling class s j , let us rename the variables
contained in it x j

i , where 1 ≤ i ≤ 	 j refers to the position of the variable in the testing
order according to their ratios R(i) = qi/ci , and where 	 j refers to the number of
variables within the class s j . Hence, for each class we will have 	 j + 2 states in P:
not evaluated, variable x j

1 evaluated to 1, variable x j
2 evaluated to 1, …variable x j

	 j

evaluated to 1, any variable evaluated to 0. (Due to monotonicity, the evaluation of
any variable to 0 ends the evaluation of the entire class.) Given the optimal ordering,
the knowledge of which variable i of a sibling class was evaluated last is sufficient
to determine which variable i + 1 should be evaluated next within that class. Given a
partial assignment α that is being evaluated under an optimal testing strategy, let s ji
denote the variable x j

i that will be evaluated next for each class s j (that is, that the

values of variables x j
h for all h < i have already been revealed).

At each position α in the table, we will place the decision tree with the minimum
expected cost that computes the function fα , where fα is the function f defined
by φ projected over the partial assignment α. Then, once the full table P has been
constructed, P[∗n] (the value for the empty assignment) will provide the minimum
expected cost decision tree for f .

For any Boolean function g, let |g| denote the expected cost of the minimum
expected cost decision tree consistent with g. For any partial assignment α and any
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variable v not assigned a value inα, letα∪v ← b denote the partial assignment created
by assigning the value b ∈ {0, 1} to v to extend α. Let c ji denote the cost of evaluating

x j
i , let p

j
i denote the probability that x j

i = 1, and let q j
i denote the probability that

x j
i = 0.
We can construct the table P using dynamic programming by following these rules:

1. For any complete assignment α, the minimum size decision tree has a cost of 0,
since no variables need to be evaluated to determine its value. Hence, the value
P[α] = 0.

2. For any partial assignment α such that there exists a variable v that has not yet
been evaluated and fα∪v←0 = fα∪v←1, then fα = fα∪v←0 and the entry P[α] =
P[α ∪ v ← 0].

3. For any partial assignment α that does not meet conditions 1 or 2, then

| fα| = min
j,i

{
c ji + p j

i

∣∣∣ f
α∪x j

i ←1

∣∣∣ + q j
i

∣∣∣ f
α∪x j

i ←0

∣∣∣
}

Then we can fill in the entry for P[α] by finding the next variable s ji that has the
minimum expected cost testing strategy, placing it at the root of a tree and creating
left and right subtrees accordingly.

Let 	 denote the size of the largest sibling class. Then, since there are t sibling
classes, P will have size at most t	. Clearly, 	 ≤ n, so the size of P is at most tn,
and we can construct P in time O(tnt ). Since t = 2k and k is constant, the dynamic
program will run in time O(n2

k
). ��

Corollary 1 The evaluation problem for monotone k-term DNF restricted to the uni-
form distribution on input x and unit costs can be solved exactly in polynomial time
for k = O(log log n).

Proof Under the uniformity assumption the ratios are the same for all variables.Hence,
each sibling class will be evaluated as a single block and tested in an arbitrary order
until either a variable evaluates to 0 or a term evaluates to 1, or until the sibling class
is exhausted. Since we will evaluate each sibling class together, we can view each
class as a single variable. Then we have a k-term DNF defined over 2k variables. Let
V be the set of the new variables. For each v ∈ V , let v	 denote the number of “real”
variables in v.

We can then find the optimal strategy using a dynamic programming method as
before. The first two rules are as in the previous table formulation method. We will
modify the third rule as follows:

For any partial assignment α that does not meet the first two conditions, then

| fα| = min
v∈V

{
v	∑
i=1

[(
1

2

)i

| fα∪v←0|
]

+
(
1

2

)v	

| fα∪v←1| + 1

}
.

which follows directly from the unit costs and uniform probabilities.

123



Algorithmica

The size of the table will be only 3t ; hence we can determine the optimal testing

strategy over the sibling classes in time O
(
22

k
)
. The evaluation of the original n

variables can hence be done in time O
(
n22

k
)

. ��

Acknowledgments Sarah R. Allen was partially supported by an NSF Graduate Research Fellowship
under Grant 0946825 and by NSF Grant CCF-1116594. Lisa Hellerstein was partially supported by NSF
Grants 1217968 and 0917153. Devorah Kletenik was partially supported by NSF Grant 0917153. Tonguç
Ünlüyurt was partially supported by TUBITAK 2219 programme. Part of this research was performed while
Tonguç Ünlüyurt was visiting faculty at the NYU School of Engineering and Sarah Allen and Devorah
Kletenik were students there. We thank anonymous referees for their helpful suggestions.

References

1. Bar-Noy, A., Bellare, M., Halldórsson, M., Shachnai, H., Tamir, T.: On chromatic sums and distributed
resource allocation. Inform. Comput. 140(2), 183–202 (1998)

2. Bellala, G., Bhavnani, S.K., Scott, C.: Group-based active query selection for rapid diagnosis in time-
critical situations. Inst. Elect. Electron. Eng. Trans. Inform. Theory 58(1), 459–478 (2012)

3. Boros, E., Ünlüyurt, T.: Computing tools for modeling, optimization and simulation, operations
research/computer science interfaces series. In: Sequential Testing of Series-Parallel Systems of Small
Depth, vol. 12, pp. 39–73. Springer, Heidelberg (2000)

4. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J., Raghavan, P., Sahai, A.: Query strategies for
priced information. J. Comput. Syst. Sci. 64(4), 785–819 (2002)

5. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)
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