Further adventures with GeekQOS

David Hovemeyer
http: //geekos.sourceforge.net/

quRSIT}*

Q% N O«\

18

2, YOWS
TRYLAS

56

http://geekos.sourceforge.net/

Outline

e \Where we left off

e New stuff

> Context switch

> Scheduling and timeslicing
> User mode

> Thread synchronization

e Work in progress

e [he future

GeekOS — http://geekos.sourceforge.net/

http://geekos.sourceforge.net/

Where we left off

e Old version of the code, April 2001

e Boots from floppy, executes 32 bit C code
e Drivers for keyboard and VGA text mode

e Cooperatively scheduled threads

> Kernel-mode only

> Round robin scheduling (no priorities)

> No scheduling in interrupt return code; interrupted thread will
continue executing until it voluntarily gives up the CPU

> Wait () and Wake_Up() functions for events

GeekOS — http://geekos.sourceforge.net/

http://geekos.sourceforge.net/

Outline

e Where we left off

e New stuff

> Context switch

> Scheduling and timeslicing
> User mode

> Thread synchronization

e Work in progress

e [he future

GeekOS — http://geekos.sourceforge.net/

http://geekos.sourceforge.net/

Background

e T his talk describes the code as of October 12th, 2001
e ‘User mode thread’ == Process

e Some threads stay in kernel mode all the time

GeekOS — http://geekos.sourceforge.net/

http://geekos.sourceforge.net/

Context switch

e To have real preemptive multitasking, we need to be able to
choose a new thread when returning from an interrupt (for
example, the timer interrupt)

e Obviously, the context of the original thread must be saved first

e Originally the context was saved in the Registers struct in the
Kernel_Thread object

e However, the Interrupt_State struct already contains enough
context to fully suspend and resume the thread — why not use it
instead?

e Solution: use iret for both thread activation and resumption from
Interrupt

GeekOS — http://geekos.sourceforge.net/ 5

http://geekos.sourceforge.net/

iret based context switch

e Change Switch_To_Thread to make the stack look like an
interrupt has occurred (lowlevel.asm, line 267)

> Push values for eflags and cs before return address

> Then use the Save_Registers macro to save context, just as
though we were handling an interrupt

> Save stack pointer in thread object

e Change Restore_Thread to simply switch to the stack of the new
thread, Restore_Registers, and execute iret

> There are some other details having to do with scheduling and
user mode, but that's the basic idea

e Now the only context information stored explicitly in the
Kernel_Thread structure is the stack pointer (the esp field)

GeekOS — http://geekos.sourceforge.net/

http://geekos.sourceforge.net/

Scheduling in the interrupt return code

e With the (voluntary) context switch code using the
{Save,Restore}_Registers macros and the iret instruction,
it's easy to suspend/resume threads from the interrupt return code

e Handle_Interrupt, lowlevel.asm, line 216

> After calling the C handler function, check the

g_needReschedule flag
> If set, save stack pointer, choose a new thread to run, and

switch to its stack

GeekOS — http://geekos.sourceforge.net/

http://geekos.sourceforge.net/

Scheduling and timeslicing

e Now that interrupt handlers can force a new thread to be chosen,
we can implement timeslicing by installing a handler for the timer

interrupt (in timer.c)

> Threads are allowed to execute for a given number of ticks, then
they are put on the end of the run queue and a new thread is

chosen
> When choosing a new thread to run, selection is based on static

priority (Find_Best (), kthread.c, line 350)

o Yes, this is cheesy
o Good project: a implement real scheduler with dynamically

adjusted priorities

GeekOS — http://geekos.sourceforge.net/

http://geekos.sourceforge.net/

User mode

e To be a proper OS, we obviously want user programs to be isolated
from the kernel and other user programs

e The x86 gives us a really easy way to implement this using
segmentation

> Create_User_Context (), user.c, line 52

> Allocate a flat chunk of memory for the user program (code and
data, like .com files in DOS)

> Create user-level (ring 3) code and data segments describing the
memory chunk

> Put the segments in a local descriptor table (LDT)

> By having a separate LDT for each user context, user programs
cannot access each other’'s code or data

GeekOS — http://geekos.sourceforge.net/ 9

http://geekos.sourceforge.net/

User mode programs

e What is a user-mode program?

> We prepare the images for user mode programs in much the
same way as the kernel image (1d, objcopy), except that user
programs are linked at base address 0

> These images can be copied directly into user memory

> Because we have no filesystem, user programs are linked directly
into the program as data structures (see the rule for uprogs.c in
the Makefile)

> Start_User_Program(), user.c, line 218: takes a
User_Program data structure and starts a user-mode thread
(process)

GeekOS — http://geekos.sourceforge.net/ 10

http://geekos.sourceforge.net/

Stack switch, privilege transition

e When an interrupt occurs in user mode (causing a transition to
kernel mode), we would like to handle it on the kernel thread’s
stack

e The x86 TSS data structure allows us to specify a particular stack
for each privilege level

e user.c, line 207: setting the kernel stack pointer before entering
user mode

e When an interrupt causes a privilege transition, the processor
pushes the original stack segment selector and stack pointer onto
the receiving (kernel) stack before the usual eflags, cs, and eip
sequence

GeekOS — http://geekos.sourceforge.net/ 11

http://geekos.sourceforge.net/

Note about the TSS

e A TSS (task state segment) is an x86-specific data structure that
represents the state of a task

e They can be used to take advantage of the x86's automatic task
switch mechanism (using one TSS for each thread or process)

o GeekOS currently uses a single TSS, only for the purpose of
specifying the kernel stack of the current thread for interrupts
which occur while executing in user mode

e In fact, just think of the TSS's esp0 and ssO fields as special
processor registers for specifying the location of the current kernel
stack

GeekOS — http://geekos.sourceforge.net/

12

http://geekos.sourceforge.net/

Entering user mode

e To summarize, when entering user mode (via an iret instruction):

restore user mode registers (Restore_Registers macro)

call Switch_User_Context (), user.c, line 162, which

checks to see if we're actually returning to user mode

iIf so, checks to see if the context we're returning to is different
than the current one (lazy switching)

If so, switches to the new user context's LDT

> and switches to the new thread’s kernel stack

v V. V V

\Y4

e Once all of the above has taken place, iret will transfer control
back into user mode

GeekOS — http://geekos.sourceforge.net/ 13

http://geekos.sourceforge.net/

System calls

e System calls are software interrupts generated from user mode
e GeekOS uses interrupt 0x90

e This interrupt descriptor of this interrupt gate has dpl set to 3, to
allow access from user mode (see idt.c, line 64)

e System call number is passed in the eax register
e Arguments are passed In other registers

e Return value is passed in the eax register

GeekOS — http://geekos.sourceforge.net/ 14

http://geekos.sourceforge.net/

Example system call (user mode side)

e test/libuser.c, line 52:

int Print_String(const char* message)

{
int num = SYS_PRINTSTRING, rc;

size_t len = strlen(message);

asm__ __volatile__ (
"int $0x90"
N=g " (I‘C)
"a" (num), "b" (message), "c" (len)

);

return rc;

GeekOS — http://geekos.sourceforge.net/

15

http://geekos.sourceforge.net/

Example system call (kernel side)

e trap.c, line 32 (system call trap handler)

static void Syscall_Handler(struct Interrupt_State* state)
{

unsigned int syscallNum = state->eax;

int rc;

if (syscallNum >= g_numSyscalls)
// ... illegal system call, kill current thread ...
return;

+
Enable_Interrupts(); // system calls run with ints enabled
rc = g_syscallTable[syscallNum] (state);// call handler

state->eax = rc; // return value in eax
if (Interrupts_Enabled())
Disable_Interrupts(); // disable ints for int return

GeekOS — http://geekos.sourceforge.net/

16

http://geekos.sourceforge.net/

Example system call (kernel side)

e syscall.c, line 48

static int Sys_Printstring(struct Interrupt_State* state) {
const void* userPtr = (const void*) state->ebx;
unsigned int length = state->ecx;
unsigned char* buf;

if (length > 1024) return -1;

buf = Malloc_Atomic(length + 1);

if (buf == 0) return -1;

if (!Copy_From_User(buf, userPtr, length)) return -1;
buf [length] = ’\0’;

Mutex_Lock(&s_screenLock);

Print("%s", buf);

Mutex_Unlock(&s_screenLock);

Free_Atomic(buf);

return O;

GeekOS — http://geekos.sourceforge.net/ 17

http://geekos.sourceforge.net/

Thread synchronization

e Threads are expected, as much as possible, to run with interrupts
enabled

> Interrupts are always enabled in user mode
> They may be disabled in kernel mode

e Mutual exclusion and waiting on a condition are needed when
acessing shared kernel data structures

e {Disable,Enable}_Interrupts(), Wait(), and Wake_Up() can
be used, but are somewhat clumsy

e Better solution: mutexes and condition variables

GeekOS — http://geekos.sourceforge.net/ 18

http://geekos.sourceforge.net/

Mutexes and condition variables

e Implemented as header file synch.h, structs Mutex and Condition
e [hese work very much like pthread_mutex_t and
pthread_cond_t from POSIX threads

> Mutex has lock and unlock operations
> Condition has wait, signal, and broadcast operations

e Implemented internally using {Disable,Enable}_Interrupts(),
Wait (), and Wake_Up()

GeekOS — http://geekos.sourceforge.net/ 19

http://geekos.sourceforge.net/

Other new thread operations

e Exit (): explicitly exit a thread (rather than returning from its
start function)

e Join(): wait for a thread to exit

> Currently, must be thread’s parent to be allowed to Join()
> Lots of potential race conditions here

GeekOS — http://geekos.sourceforge.net/

20

http://geekos.sourceforge.net/

Outline

e Where we left off

e New stuff

> Context switch

> Scheduling and timeslicing
> User mode

> Thread synchronization

e Work in progress

e [he future

GeekOS — http://geekos.sourceforge.net/

21

http://geekos.sourceforge.net/

Work in progress

e I'm working on message passing with the following operations:

struct Mailbox* Create_Mailbox(void* buf, unsigned long bufSize,
Boolean isBlocking);

int Send(struct Mailbox* mb, const void* data, unsigned long sz);

void Receive(struct Mailbox* mailbox, unsigned long* sz);

void Acknowledge(struct Mailbox* mailbox);

void Receive_Any(struct Mailbox** pMailbox, unsigned long* sz);

> A mailbox has a single fixed size buffer

> Sender calls Send () (blocks until buffer is available)

> Recipient must Receive () (blocks until a message is sent), then
Acknowledge () (unblocks sender if mailbox is blocking, makes
mailbox available again)

> Receive_Any () is like Receive (), but blocks until any mailbox
has a message available

GeekOS — http://geekos.sourceforge.net/ 22

http://geekos.sourceforge.net/

Work in progress

e Eventually, | would like to use message passing for all 1/O and IPC
(i.e., microkernel)

e More thought needed here

GeekOS — http://geekos.sourceforge.net/ 23

http://geekos.sourceforge.net/

Outline

e Where we left off

e New stuff

> Context switch

> Scheduling and timeslicing
> User mode

> Thread synchronization

e Work in progress

e [he future

GeekOS — http://geekos.sourceforge.net/

24

http://geekos.sourceforge.net/

The future

e Stuff that might get done at some point:

Proper scheduler with dynamically adjusted priorities
Real C library (maybe newlib from RedHat)

Mass storage drivers (floppy, IDE disk)

Filesystem layer

Framebuffer, window system

Misc. devices (mouse, serial port, parallel port)
Network support (maybe)

Paging, virtual memory (maybe)

Ports to other architectures?
Nethack

v V. vV VvV V V V V V V

e Volunteers?

GeekOS — http://geekos.sourceforge.net/

25

http://geekos.sourceforge.net/

