
Further adventures with GeekOS

David Hovemeyer

http://geekos.sourceforge.net/

http://geekos.sourceforge.net/

Outline

• Where we left off

• New stuff

. Context switch

. Scheduling and timeslicing

. User mode

. Thread synchronization

• Work in progress

• The future

GeekOS — http://geekos.sourceforge.net/ 1

http://geekos.sourceforge.net/

Where we left off

• Old version of the code, April 2001

• Boots from floppy, executes 32 bit C code

• Drivers for keyboard and VGA text mode

• Cooperatively scheduled threads

. Kernel-mode only

. Round robin scheduling (no priorities)

. No scheduling in interrupt return code; interrupted thread will

continue executing until it voluntarily gives up the CPU

. Wait() and Wake Up() functions for events

GeekOS — http://geekos.sourceforge.net/ 2

http://geekos.sourceforge.net/

Outline

• Where we left off

• New stuff

. Context switch

. Scheduling and timeslicing

. User mode

. Thread synchronization

• Work in progress

• The future

GeekOS — http://geekos.sourceforge.net/ 3

http://geekos.sourceforge.net/

Background

• This talk describes the code as of October 12th, 2001

• ‘User mode thread’ == Process

• Some threads stay in kernel mode all the time

GeekOS — http://geekos.sourceforge.net/ 4

http://geekos.sourceforge.net/

Context switch

• To have real preemptive multitasking, we need to be able to

choose a new thread when returning from an interrupt (for

example, the timer interrupt)

• Obviously, the context of the original thread must be saved first

• Originally the context was saved in the Registers struct in the

Kernel Thread object

• However, the Interrupt State struct already contains enough

context to fully suspend and resume the thread — why not use it

instead?

• Solution: use iret for both thread activation and resumption from

interrupt

GeekOS — http://geekos.sourceforge.net/ 5

http://geekos.sourceforge.net/

iret based context switch

• Change Switch To Thread to make the stack look like an

interrupt has occurred (lowlevel.asm, line 267)

. Push values for eflags and cs before return address

. Then use the Save Registers macro to save context, just as

though we were handling an interrupt

. Save stack pointer in thread object

• Change Restore Thread to simply switch to the stack of the new

thread, Restore Registers, and execute iret

. There are some other details having to do with scheduling and

user mode, but that’s the basic idea

• Now the only context information stored explicitly in the

Kernel Thread structure is the stack pointer (the esp field)

GeekOS — http://geekos.sourceforge.net/ 6

http://geekos.sourceforge.net/

Scheduling in the interrupt return code

• With the (voluntary) context switch code using the

{Save,Restore} Registers macros and the iret instruction,

it’s easy to suspend/resume threads from the interrupt return code

• Handle Interrupt, lowlevel.asm, line 216

. After calling the C handler function, check the

g needReschedule flag

. If set, save stack pointer, choose a new thread to run, and

switch to its stack

GeekOS — http://geekos.sourceforge.net/ 7

http://geekos.sourceforge.net/

Scheduling and timeslicing

• Now that interrupt handlers can force a new thread to be chosen,

we can implement timeslicing by installing a handler for the timer

interrupt (in timer.c)

. Threads are allowed to execute for a given number of ticks, then

they are put on the end of the run queue and a new thread is

chosen

. When choosing a new thread to run, selection is based on static

priority (Find Best(), kthread.c, line 350)

◦ Yes, this is cheesy

◦ Good project: a implement real scheduler with dynamically

adjusted priorities

GeekOS — http://geekos.sourceforge.net/ 8

http://geekos.sourceforge.net/

User mode

• To be a proper OS, we obviously want user programs to be isolated

from the kernel and other user programs

• The x86 gives us a really easy way to implement this using

segmentation

. Create User Context(), user.c, line 52

. Allocate a flat chunk of memory for the user program (code and

data, like .com files in DOS)

. Create user-level (ring 3) code and data segments describing the

memory chunk

. Put the segments in a local descriptor table (LDT)

. By having a separate LDT for each user context, user programs

cannot access each other’s code or data

GeekOS — http://geekos.sourceforge.net/ 9

http://geekos.sourceforge.net/

User mode programs

• What is a user-mode program?

. We prepare the images for user mode programs in much the

same way as the kernel image (ld, objcopy), except that user

programs are linked at base address 0

. These images can be copied directly into user memory

. Because we have no filesystem, user programs are linked directly

into the program as data structures (see the rule for uprogs.c in

the Makefile)

. Start User Program(), user.c, line 218: takes a

User Program data structure and starts a user-mode thread

(process)

GeekOS — http://geekos.sourceforge.net/ 10

http://geekos.sourceforge.net/

Stack switch, privilege transition

• When an interrupt occurs in user mode (causing a transition to

kernel mode), we would like to handle it on the kernel thread’s

stack

• The x86 TSS data structure allows us to specify a particular stack

for each privilege level

• user.c, line 207: setting the kernel stack pointer before entering

user mode

• When an interrupt causes a privilege transition, the processor

pushes the original stack segment selector and stack pointer onto

the receiving (kernel) stack before the usual eflags, cs, and eip
sequence

GeekOS — http://geekos.sourceforge.net/ 11

http://geekos.sourceforge.net/

Note about the TSS

• A TSS (task state segment) is an x86-specific data structure that

represents the state of a task

• They can be used to take advantage of the x86’s automatic task

switch mechanism (using one TSS for each thread or process)

• GeekOS currently uses a single TSS, only for the purpose of

specifying the kernel stack of the current thread for interrupts

which occur while executing in user mode

• In fact, just think of the TSS’s esp0 and ss0 fields as special

processor registers for specifying the location of the current kernel

stack

GeekOS — http://geekos.sourceforge.net/ 12

http://geekos.sourceforge.net/

Entering user mode

• To summarize, when entering user mode (via an iret instruction):

. restore user mode registers (Restore Registers macro)

. call Switch User Context(), user.c, line 162, which

. checks to see if we’re actually returning to user mode

. if so, checks to see if the context we’re returning to is different

than the current one (lazy switching)

. if so, switches to the new user context’s LDT

. and switches to the new thread’s kernel stack

• Once all of the above has taken place, iret will transfer control

back into user mode

GeekOS — http://geekos.sourceforge.net/ 13

http://geekos.sourceforge.net/

System calls

• System calls are software interrupts generated from user mode

• GeekOS uses interrupt 0x90

• This interrupt descriptor of this interrupt gate has dpl set to 3, to

allow access from user mode (see idt.c, line 64)

• System call number is passed in the eax register

• Arguments are passed in other registers

• Return value is passed in the eax register

GeekOS — http://geekos.sourceforge.net/ 14

http://geekos.sourceforge.net/

Example system call (user mode side)

• test/libuser.c, line 52:

int Print_String(const char* message)
{

int num = SYS_PRINTSTRING, rc;
size_t len = strlen(message);

__asm__ __volatile__ (
"int $0x90"
: "=a" (rc)
: "a" (num), "b" (message), "c" (len)

);

return rc;
}

GeekOS — http://geekos.sourceforge.net/ 15

http://geekos.sourceforge.net/

Example system call (kernel side)

• trap.c, line 32 (system call trap handler)

static void Syscall_Handler(struct Interrupt_State* state)
{

unsigned int syscallNum = state->eax;
int rc;

if (syscallNum >= g_numSyscalls) {
// ... illegal system call, kill current thread ...
return;

}
Enable_Interrupts(); // system calls run with ints enabled
rc = g_syscallTable[syscallNum](state);// call handler
state->eax = rc; // return value in eax
if (Interrupts_Enabled())

Disable_Interrupts(); // disable ints for int return
}

GeekOS — http://geekos.sourceforge.net/ 16

http://geekos.sourceforge.net/

Example system call (kernel side)

• syscall.c, line 48

static int Sys_Printstring(struct Interrupt_State* state) {
const void* userPtr = (const void*) state->ebx;
unsigned int length = state->ecx;
unsigned char* buf;

if (length > 1024) return -1;
buf = Malloc_Atomic(length + 1);
if (buf == 0) return -1;
if (!Copy_From_User(buf, userPtr, length)) return -1;
buf[length] = ’\0’;
Mutex_Lock(&s_screenLock);
Print("%s", buf);
Mutex_Unlock(&s_screenLock);
Free_Atomic(buf);
return 0;

}

GeekOS — http://geekos.sourceforge.net/ 17

http://geekos.sourceforge.net/

Thread synchronization

• Threads are expected, as much as possible, to run with interrupts

enabled

. Interrupts are always enabled in user mode

. They may be disabled in kernel mode

• Mutual exclusion and waiting on a condition are needed when

acessing shared kernel data structures

• {Disable,Enable} Interrupts(), Wait(), and Wake Up() can

be used, but are somewhat clumsy

• Better solution: mutexes and condition variables

GeekOS — http://geekos.sourceforge.net/ 18

http://geekos.sourceforge.net/

Mutexes and condition variables

• Implemented as header file synch.h, structs Mutex and Condition

• These work very much like pthread mutex t and

pthread cond t from POSIX threads

. Mutex has lock and unlock operations

. Condition has wait, signal, and broadcast operations

• Implemented internally using {Disable,Enable} Interrupts(),

Wait(), and Wake Up()

GeekOS — http://geekos.sourceforge.net/ 19

http://geekos.sourceforge.net/

Other new thread operations

• Exit(): explicitly exit a thread (rather than returning from its

start function)

• Join(): wait for a thread to exit

. Currently, must be thread’s parent to be allowed to Join()

. Lots of potential race conditions here

GeekOS — http://geekos.sourceforge.net/ 20

http://geekos.sourceforge.net/

Outline

• Where we left off

• New stuff

. Context switch

. Scheduling and timeslicing

. User mode

. Thread synchronization

• Work in progress

• The future

GeekOS — http://geekos.sourceforge.net/ 21

http://geekos.sourceforge.net/

Work in progress

• I’m working on message passing with the following operations:

struct Mailbox* Create_Mailbox(void* buf, unsigned long bufSize,
Boolean isBlocking);

int Send(struct Mailbox* mb, const void* data, unsigned long sz);
void Receive(struct Mailbox* mailbox, unsigned long* sz);
void Acknowledge(struct Mailbox* mailbox);
void Receive_Any(struct Mailbox** pMailbox, unsigned long* sz);

. A mailbox has a single fixed size buffer

. Sender calls Send() (blocks until buffer is available)

. Recipient must Receive() (blocks until a message is sent), then

Acknowledge() (unblocks sender if mailbox is blocking, makes

mailbox available again)

. Receive Any() is like Receive(), but blocks until any mailbox

has a message available

GeekOS — http://geekos.sourceforge.net/ 22

http://geekos.sourceforge.net/

Work in progress

• Eventually, I would like to use message passing for all I/O and IPC

(i.e., microkernel)

• More thought needed here

GeekOS — http://geekos.sourceforge.net/ 23

http://geekos.sourceforge.net/

Outline

• Where we left off

• New stuff

. Context switch

. Scheduling and timeslicing

. User mode

. Thread synchronization

• Work in progress

• The future

GeekOS — http://geekos.sourceforge.net/ 24

http://geekos.sourceforge.net/

The future

• Stuff that might get done at some point:

. Proper scheduler with dynamically adjusted priorities

. Real C library (maybe newlib from RedHat)

. Mass storage drivers (floppy, IDE disk)

. Filesystem layer

. Framebuffer, window system

. Misc. devices (mouse, serial port, parallel port)

. Network support (maybe)

. Paging, virtual memory (maybe)

. Ports to other architectures?

. Nethack

• Volunteers?

GeekOS — http://geekos.sourceforge.net/ 25

http://geekos.sourceforge.net/

