
The Network File System

Jaime Spacco David Hovemeyer



Outline

• Introduction

• Protocol

• Conclusions

1



Introduction

• NFS - Network File System

• Version 2 is described in RFC 1094

• Version 3 is described in RFC 1813

• Layered on top of RPC and XDR

. RPC - Remote Procedure Call

. XDR - eXternal Data Representation

• May be implemented as a stand-alone protocol

2



RPC – protocol for making prodedure calls to
remote hosts

• Described in RFC 1057

• Uses XDR for arguments and return values

• Uses either UDP or TCP for transport

• A request-reply protocol, which is cool because call and response

headers differ

• Approximates “at most once” semantics to handle duplicated

requests

• Uses port mapper (described in appendix A) to connect client to

server

3



• Supports authentication, but in a much later chapter than I read

4



XDR - A ‘canonical format for data exchange’

• Described in RFC 1014

• Specifies endianness and alignment

• Can describe complex recursive data structures

• Looks a lot like C actually...

5



Design goals

• Simple

. Can be implemented on all kinds of clients

. Doesn’t provide access to block devices or printers

• Stateless

. No hard state is kept on the server; i.e. server doesn’t track who

has opened a file

. Server can crash and reboot; clients won’t lose data

. Implies that I/O on server must be synchronous!

. In practice, servers often store some state information in a cache

to help with “at most once” semantics

• Unix semantics

6



Some notes about NFS versions

• NFS is up to version 3, version 4 under construction

• But version 2 is still widely deployed

• Version 2 is geared toward Unix, and doesn’t provide access to all

available features on other OSes

• v3 removes some unused fields from v2

• Also removes two unimplemented/undefined procedures

• and of course, adds more functionality

• Including:

. 64 bit offsets to allow files bigger than 4 Gb

7



. explicit access checks, freeing protocol from reliance on

UNIX-style bit modes

. changes filehandles from fixed 32 bytes to variable length 64 byte

max

. removes maximum data sizes, allows clients and servers to

negotiate preferred sizes

. Allows errors to return data

. Every procedure now returns file attributes to cut down on

number of GETATTRibutes requests by clients

. What do we do about a 32-bit client and a 64-bit server? Left

up to the implementors...

• Which one are we focused on? I’ll go over v2 procedures

• And mention v3 tidbits when I can

• and if there’s time talk about some of the new v3 procedures

8



Outline

• Introduction

• Protocol

• Conclusions

9



Protocol

• The Filehandle

. Opaque identifier– 32 byte fixed-length in v2, 64 byte variable

length in v3

. Refers to a file or directory

. Virtually all NFS protocol functions take it as a parameter

. Clients expect filehandles to be persistent, i.e. to survive a server

crash.

. It may become ‘stale’ at any time (for example, if someone

moves the file)

. A separate protocol (the MOUNT protocol, Appendix I) is used

to get the root filehandle

10



Consistency issues

• In NFS v3, most operations may optionally return pre- and post-

operation file attributes

• The pre-operation attributes can be used to detect whether the file

was modified by another client prior to the operation

. If so, the client can invalidate any cached data from previous

operations

. This provides an extremely weak form of consistency, while

allowing caching on the client to improve performance

. Clients that need real consistency guarantees must use an

external locking protocol

. There’s something called Network Lock Manager that seems to

have something to do with this

11



• The optional file attributes are the wcc data struct

12



Naming issues

• All name lookups take place one path component at a time

• For example, to look up ‘foo/bar’, two transactions are required:

. look up ‘foo’, ensure it’s a directory

. look up ‘bar’ within ‘foo’

• This avoids all path-encoding issues in the NFS protocol

• Servers may reject particular characters in names at their whim

. For example, UNIX server won’t allow ‘/’

• Unix pathnames only used in MOUNT protocol

13



NFS v2 Server Procedures

• NULL

• GETATTR

• SETATTR

• LOOKUP

• READLINK

• READ

• WRITE

• CREATE

14



• REMOVE

• RENAME

• LINK

• SYMLINK

• MKDIR

• RMDIR

• READDIR

• STATFS

• ROOT – never described/implemented

15



• WRITECACHE – never described/implemented

16



NULL

• Does nothing; available in all RPC services for “server response

testing and timing”.

17



GETATTR — Get file attributes

• Parameters: filehandle

• Returns

. On error, the error code

. On success, the file attributes struct (fattr3); basically, the

same info as would be returned by a stat() call

18



SETATTR – Set file attributes

• Parameters: filehandle, new file attributes, optional guard object

(specifying time of last attribute modification)

• Returns

. On error, the error code and optional file attributes (wcc data)

. On success, optional file attributes (wcc data)

• Not guaranteed atomic

19



LOOKUP — Look up file in directory

• Parameters: directory filehandle, name of file or directory

• Returns:

. On error, error code and optional directory attributes

. On success, the filehandle corresponding to the requested object,

and optionally the pre- and post- operation attributes of the

directory and/or requested object

• Note: server will not allow a lookup to cross a mount point into a

new filesystem

20



READLINK — Read symbolic link data

• Parameters: filehandle

• Returns:

. On error, the error code and optional attributes

. On success, optional file attributes and symlink data

• Symlink data is not interpreted by the server, only by the client

21



READ

• Parameters: filehandle, offset, count, totalcount (unused, removed

in v3)

• Returns:

. On error, the error code and optional attributes

. attributes of file on complete of read

. data: data read from the file

• Note: if the server returns fewer than count bytes of data, the

client assumes the last byte of data is the end of the file.

• v3 adds a more precise indication of the end of file

22



WRITE

• Parameters

. filehandle

. beginoffset (unused; eliminated in v3)

. offset into the file, 0 is the beginning

. totalcount (unused; eliminated in v3)

. opaque data to be written to file

• Returns:

. status: NFS OK if success, else error code

. attributes of the file after the write

• Note: The server must write all the data, or return an error. The

server must also write the data to “stable storage”, though this

definition isn’t exactly clear.

23



CREATE

• Parameters: filehandle, filename, attributes

• Returns:

. NFS OK or else an error

. filehandle of the newly created file

. attributes of the newly created file

• Does not support “exclusive create” semantics

• You create the file if it doesn’t exist; else you get an error

24



REMOVE

• Removes a file, or a directory depending upon the implementation

• One process cannot remove a file from under another process

• This leads to the Last Close Problem for our stateless NFS server:

. A client can open a file, then remove the file by its name

. Now the file has no name, but is still open

. Thus the client can continue to read/write the file

. A stateless server cannot know when to perform the “last close”

of this file and remove it

. To approximate this, a client can keep refcounts of its open files

. If refcount > 1, don’t REMOVE, but rather RENAME the file

. This is where all the .nfsXXXX files that won’t go away come

from

25



. What if another client has the file open? No general solution

given.

26



RENAME

• Renames a file

• Atomic to the client

• Thus, it cannot fail in a way that leaves the directory partially

renamed or otherwise inconsistent

27



MKDIR, RMDIR

• MKDIR, RMDIR make and remove directories

28



READDIR

• Parameters:

. filehandle

. cookie: set to 0 on first read, cookie returned by sever on

subsequent reads

. count: maximum size of results, including XDR overhead

• Returns:

. error code if something went wrong

. entries: List of directory entries, each consisting of:

◦ attribute of the direcotry

◦ name of the directory

◦ cookie: opaque identifier to the next entry for subsequent

READDIR calls

29



• rename and unlinks can invalidate cookies, causing subsequent

READDIRs to miss or repeat entries

• v3 adds a cookie verifier to detect stale cookies

30



STATFS

• Parameter: filehandle

• Returns:

. NFS OK or else an error

. tsize: optimum transfer size the server would like in data portion

of READs and WRITEs

. bsize: blocksize of filesystem

. blocks: total number of bsize blocks on filesystem

. bfree: number of free bsize blocks

. bavail: bsize num of blocks available to non-priviledged users

• Not all servers support all of these attributes.

31



ACCESS — Check access permission

• Parameters: filehandle, set of permissions to check

• Returns:

. On error, the error code and optional file attributes

. On success, optional file attributes, and the set of permissions

granted to client

• Added in NFS v3 to check access permissions prior to performing

an operation

. To more closely emulate Unix semantics on client, where access

permissions are checked when the file is opened

. NFS has no file open, since the server’s state is soft!

• Permissions may be revoked or granted at any time

32



Other cool changes in v3

• READ returns a boolean to detect end of file correctly

• WRITE can now write less data than requested, and can return an

indictor of the level of cache synchronization required by the client

(whatever that means)

• READDIR can now validate cookies

• READDIRPLUS extends functionality of READDIR by returning

filenames and fileids, along with filehandles and attributes.

• more stuff I don’t have time for

33



Outline

• Introduction

• Protocol

• Conclusions

34



Conclusions

• NFS performance is closely tied to RPC performance

• Both perform best on fast LANs, no surprise

35



Sources

• RFC 1813 (NFS version 3), RFC 1057 (RPC), RFC 1014 (XDR)

• Sandberg, et. al., Design and Implementation of the Sun Network

Filesystem, in USENIX Conference Proceedings, Summer 1985.

• Callaghan, Brent, NFS Illustrated. Addison Wesley Professional

Computing Series , 2000.

36


