
Problems to over come, details to deal with
BIOS 

Initially only ~512 *bytes* of an OS are loaded 
disk geometry needs to be known at boot time 
needed for all disk I/O until we can access the actual kernel’s drivers 
Not accessible from protected mode 
Provides a common API for dealing with hardware 

Real Mode 
can only access first 640KB of RAM (address 0xA00000) 
20 bits addressable (1MB), but only with BIOS hacks 

Protected Mode 
needed to access full 4GB (32 bit) address space 
implements protected memory and page management 



Booting from a floppy: simple boot example 
assume compressed system image is <512 (explained later) 
assume *not* using LILO (handled later) 
follow along in ./arch/i386/boot/bootsect.S 
BIOS has just loaded the contents of sector zero (512 bytes) into memory 
CS=0 IP=0x7c00 (line 57) 
currently in real mode 
Intel Syntax assembly 

Step1: move loader out of the way 
lines 57-65 
out of the way: to address 0x90000, near the end of addressable memory 
loader is <256 bytes in size 
’rep’ and ’movsw’ do the work 
reason: clear up mem for large contiguous chunk 

Step 2: load setup and system from disk 
do some guess work to find out geometry of floppy drive (103-125) 
from drive 0, head 0, track 0, sector 2, read the next two sectors into memory at 0x90200
(lines 131-197) 
print "loading" message via BIOS 
load "system" into memory at 0x010000 (64KB) (lines 213-218) 
the first 64KB is used for BIOS memory, so leave it alone 
run setup (line 248) 



Booting from a floppy: setup.S
follow along in ./arch/i386/boot/setup.S 
still in real mode 
CS/IP = 0x90200 
Intel Syntax assembly 
Step 4: load more of setup if need be 

recall only 2 sectors (1KB) of setup was loaded by loader 
look for a 2 word signature at end of setup address 
if it does not exist, load the next 4 sectors off the disk (2KB) 
if signature still not found, assume error, else move on 
reason: this file deals with different types of boot processes, some with different setup
lengths (?) 

Step 5: initialize hardware (via BIOS) 
set keyboard repeat parameters 
initialize video in ./arch/i386/boot/video.S 
check for hd0 and hd1 
initialize power management 
check for Micro Channel Bus (??) 
check for PS/2 mouse (??) 

Step 6: move system into place, and go into protected mode 
all hardware needed for booting already initialized by BIOS 
initialize interrupt controlers 
move kernel to 0x01000 (4KB), first page reserved (475-495) 
the protected mode magic jump happens at line 638 
final act is to jump to 0x01000 for decompression 



Booting from a floppy: decompressing kernel
follow along in ./arch/i386/boot/compressed/head.S 
in protected mode (no more 640KB limit) 
no BIOS 
assuming single CPU (first time we needed this assumption) 
CS=0x0000 IP=0x1000 (4KB) 
changed to AT&T syntax (!?!) 
Note: standard linux kernel has a 1+MB memory requirement 
Step 7:

makes calls to ./arch/i386/boot/compressed/misc.c (gzip library: c code) 
decompresses kernel to 0x0010:0000 (1MB) (88-94) 
jumps to newly decompressed kernel (line 118) 
lands in ./arch/i386/kernel/head.S 



Booting from a floppy: real kernel head.S
follow along in ./arch/i386/kernel/head.S 
protected mode (here to stay) 
CS:IP 0x0010:0000 
Step 8: Initialize Laundry list of kernel things 

setup paging (71-83) 
setup interrupt descriptor table: (106, 283-297) 
save boot parameters from page 0x0000 (119-136) 
get CPU id/vendor info and save it (178-198) 
initialize any co-processors (212, 258-271) 
jump to ./init/main.c: start_kernel (245) 



Booting from a floppy: using a "big" kernel
"big" kernel is one whose compressed image is >512KB 
using BIOS calls, you can move memory into high memory 
Changes in loader

in the loader, when loading the compressed image, jump indirectly to bootsect_helper in
setup.S, and return 
in 64KB chunks copy image to 0x0010:0000 (1MB) 

Changes in setup 
instead of moving compressed kernel from 0x10000 to 0x1000, leave it in place (that is not
where it exists) 
jump into high memory address 0x0010:0000 (lines 643-654) 

Changes in head.S/misc.c 
kernel decompressed to low memory first, then to high memory if needed 
moves copying instructions to low memory 
moves finals uncompressed kernel to 0x0010:0000 (where it is expected) 
jumps to 0x0010:0000 


