Problemsto over come, detailsto deal with

® BIOS
O Initialy only ~512 *bytes* of an OS are loaded
O disk geometry needs to be known at boot time
O needed for all disk I/0O until we can access the actual kernel’s drivers
O Not accessible from protected mode
O Providesacommon API for dealing with hardware
® Real Mode
O can only accessfirst 640KB of RAM (address 0xA00000)
O 20 bits addressable (IMB), but only with BIOS hacks
® Protected Mode
O needed to access full 4GB (32 bit) address space
O implements protected memory and page management



Booting from a floppy: simple boot example

assume compressed system image is <512 (explained later)

assume *not* using LILO (handled later)

follow along in ./arch/i386/boot/bootsect.S

BIOS has just loaded the contents of sector zero (512 bytes) into memory
CS=0 IP=0x7c00 (line 57)

currently in real mode

Intel Syntax assembly

Stepl: move loader out of the way
O lines57-65
O out of the way: to address 0x90000, near the end of addressable memory
O loader is <256 bytesin size
O ’'rep’ and 'movsw’ do the work
O reason: clear up mem for large contiguous chunk
Step 2: load setup and system from disk
O do some guess work to find out geometry of floppy drive (103-125)
O fromdrive 0, head O, track 0, sector 2, read the next two sectorsinto memory at 0x90200
(lines 131-197)
O print "loading" message via BIOS
O load "system" into memory at 0x010000 (64K B) (lines 213-218)
O thefirst 64KB isused for BIOS memory, so leave it done
O run setup (line 248)



Booting from a floppy: setup.S

follow along in ./arch/i386/boot/setup.S
still in real mode
CS/IP = 0x90200
Intel Syntax assembly
Step 4: load more of setup if need be
O recall only 2 sectors (1KB) of setup was loaded by |oader
O look for a2 word signature at end of setup address
O if it does not exist, load the next 4 sectors off the disk (2KB)
O if signature still not found, assume error, else move on
O reason: thisfile deals with different types of boot processes, some with different setup
lengths (?)
Step 5: initialize hardware (viaBIOS)
set keyboard repeat parameters
initialize video in ./arch/i386/boot/video.S
check for hd0 and hd1
initialize power management
check for Micro Channel Bus (?7?)
check for PS/2 mouse (?7?)
Step 6: move system into place, and go into protected mode
O all hardware needed for booting already initialized by BIOS
O initialize interrupt controlers
O move kernel to 0x01000 (4KB), first page reserved (475-495)
O the protected mode magic jump happens at line 638
O final act isto jump to 0x01000 for decompression

O00O0O0O0



Booting from a floppy: decompressing kernel

follow aong in ./arch/i386/boot/compressed/head.S
in protected mode (no more 640K B limit)
no BIOS
assuming single CPU (first time we needed this assumption)
CS=0x0000 1P=0x1000 (4K B)
changed to AT& T syntax (I?)
Note: standard linux kernel has a 1+MB memory requirement
Step 7:
O makes calls to ./arch/i386/boot/compressed/misc.c (gzip library: ¢ code)
O decompresses kernel to 0x0010:0000 (1MB) (88-94)
O jumpsto newly decompressed kernel (line 118)
O landsin ./arch/i386/kernel/head.S



Booting from a floppy: real kernel head.S

® follow along in ./arch/i386/kernel/head.S
® protected mode (hereto stay)
® CS:IP 0x0010:0000
® Step 8: Initialize Laundry list of kernel things
O setup paging (71-83)
O setup interrupt descriptor table: (106, 283-297)
O save boot parameters from page 0x0000 (119-136)
O get CPU id/vendor info and save it (178-198)
O initialize any co-processors (212, 258-271)
O jump to Jinit/main.c: start_kernel (245)



Booting from a floppy: usinga" big" kernel

"big" kernel is one whose compressed image is >512KB
using BIOS calls, you can move memory into high memory
Changesin loader
O in the loader, when loading the compressed image, jump indirectly to bootsect_helper in
setup.S, and return
O in 64KB chunks copy image to 0x0010:0000 (1IMB)
Changesin setup
O instead of moving compressed kernel from 0x10000 to 0x1000, leaveit in place (that is not
where it exists)
O jump into high memory address 0x0010:0000 (lines 643-654)
Changes in head.S/misc.c
O kernel decompressed to low memory first, then to high memory if needed
O moves copying instructions to low memory
O moves finals uncompressed kernel to 0x0010:0000 (where it is expected)
O jumps to 0x0010:0000



