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ABSTRACT

For a simple graph of maximum degree A, it is always possible to color the
edges with A + 1 colors (Vizing); furthermore, if the set of vertices of
maximum degree is independent, A colors suffice (Fournier). In this article,
we give a short constructive proof of an extension of these results to multi-
graphs. Instead of considering several color interchanges along alternat-
ing chains (Vizing, Gupta), using counting arguments (Ehrenfeucht, Faber,
Kierstead), or improving nonvalid colorings with Fourniers Lemma, the
method of proof consists of using one single easy transformation, called
“sequential recoloring”, to augment a partial k-coloring of the edges.

Let G be a loopless multigraph of multiplicity p = 1 (that is: no more than
p parallel edges can join a pair of vertices). The degree of a vertex x is
denoted dg(x). Let mg(x,y) denote the number of parallel edges joining x
and y; put

mg(x) = max mg(x, ).

We shall prove the following result:

Theorem 1. Let G be a multigraph of maximum degree A < D and of
multiplicity p < ¢. If the set

S = {x/x € V(G); dg(x) = D; mg(x) =t}

is independent (“stable”) or empty, then the edges of G can be colored with
D+t — 1 colors.
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Clearly, with D = A + 1, we obtain immediately the classical Vizing$ Cas
theorem, and with D = A, a theorem of Fournier (in fact, the main part cordir
of it, because in [3], it is possible to assume only that S induces an acyclic
subgraph). § Cor

Proof.  Assume that the result is valid for all graphs having less edges
than G. If § # &, consider a vertex x, € S (otherwise, take for Xo any ver- -
tex of maximum degree). Color with D + ¢ — 1 colors all the edges of G |\ [n the
but one edge ey = [xo, yo] incident to x, (this is possible by the induction

nectec

hypothesis). For a vertex y, let C, be the set of colors of the edges inci oS an |
dent to y. We shall define a sequence of distinct edges ey = [xo, yo, & = to xo 1
[x0, y1], - . . s €k = [X0, yx-1], all incident to x,, together with a function f 4 a;; in
that associates to each edge e; of the sequence a color a;,;, = f{(e;), accord- B ¢ C
ing to the following iterative procedure. By v
Con

(I) Let a; = f(eo) be a color that & C,,; such a color does exist because the co
ICyl <A <D +¢—1. Ifz
_ B f(ea,0

(D) If a; € Cy, and if @; # f(e;) for allj < i — 1, consider the edgee; = If z
[x0, y:] incident to x, that is colored with a; let a;;; = f(e;) be a color satis- 1§ (ej-1,
fying the two conditions: E Ifz
(1) ai+] $ Cy“ i ln%: fl'(
(2) @i # fle;) for all j < i withy; = y,. g -
Such a color «;,; does exist, because the number g of colors excluded by Coroll
(1) and (2) is at most |C,| + [mq(xo, y;) — 1]; since y; ¢ S (becausexo €5), £ and of
we have ~ dent, t
q < |Cy| + ma(xo, ) < da(yi) + mo(xo,y:) < D + 1 — 1. -:-;_ Thi

(II) If ax & Cy,, or if ax = f(e;) for an index j < k — 1, we stop, and Coroll
the sequence ey, e, . .., e, is achieved. - plicity
colore:

Clearly, because of (III), the es are all distinct, and an achieved se- =
quence will be obtained.

- In tl

For every edge €;,,0 < i < k — 1, and every color y ¢ C,,, a sequential the ver

frecoloring from (e;, ) consists in changing the color of ¢; to v, the color of 1 cause

e;-1 to f(e;-1), the color of e;_, to f(e;_»), etc., and by coloring the uncolored colores

edge eq with f(eo) = ;. Since the conditions (1) and (2) are satisfied, we an edg
see that if y & C,, and y & C,, this produces a valid edge coloring. !

1 Remar

Casel. a; & C,,.Since ay & C,,_, by (1) withi = k — 1, and since a & for the

C,, the sequential f-recoloring from (ex-;, ax) produces a valid edge color- color f

ing of G with D + t — 1 colors. remain
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Case Il. a; = «; for an index j < k — 1. Since a; has been chosen ac-

cording to the rule (2) with i = k — 1, we note that y,_, # y; ;.

Consider a color B & C,,, which does exist because
ICil < d(x0) =A< D+t —1.

In the partial graph generated by the edges with colors B8 or ay, the con-
nected component containing y, ; is a bicolor chain ufyx 1, z] having y,
as an endpoint (because a; & C,, | by (1)). The only possible edge incident

to x that could belong to u[yx-1,z] is the edge ¢; = [xo, y;] of color a; =
a;; in this case, the other endpoint z of the chain is the vertex x, (because

B & C.,) and the chain ply-,, z] does not contain the vertex y;_, (otherwise
¥-1 would be a third endpoint of this chain, a contradiction).

Consider a new edge coloring C' of G — e, obtained by interchanging
the colors B and a; in the bicolor chain [y i, z].

Ifz = xo, then ax & C/,, ax & C,,_,, and the sequential f-recoloring from
(-1, o) produces a valid edge coloring of G.

Ifz =y, then B & C;_,, B & Ci,, and the sequential f-recoloring from
(¢j-1, B) produces a valid edge coloring of G.

Ifz # xo,z # y;-1, then B & Cy,, B & C,_,, and the sequential f-recolor-

ing from (e, -, B) produces a valid edge coloring of G.
In each case, we get an edge coloring of G with D + ¢t — 1 colors. QED.

Corollary 1 (Fournier [2]). Let G be a multigraph of maximum degree A
and of multiplicity p. If the set of vertices of maximum degree is indepen-
dent, then A + p — 1 colors suffice to color the edge-set of G.

This follows from Theorem 1 with D = A.

Corollary 2. Let G be a multigraph of maximum degree A and of multi-
plicity p, and let M be a maximal matching of G. The edges of G can be
colored with A + p colors so that all the edges in M get the same color.

In the multigraph G — M obtained from G by removing the edges of M,
the vertices of degree A constitute an independent set (or an empty set), be-
cause of the maximality of M. By Corollary 1, the edges of G — M can be
colored with A + p — 1 colors, and with one extra color for M, we obtain

an edge coloring with A + p colors.

Remark. The proof of this theorem provides a fast (and simple) algorithm
for the edge-coloring with only A + p colors. It suffices to use the first
color for the edges of some maximal matching M, and to assign one of the
remaining A + p — 1 colors to each edge of G — M as long as it does not
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violate the validity law of an edge-coloring. If an edge e, cannot be colored;
we achieve the sequence ey, €, . ...,e-1, and one interchange followed
the sequential recoloring provides a better edge-coloring. If the number

edges of G is m, the number of elementary operations involved for ¢ = f?_-
[x, y] is at most O(dg(x)) + O(m). For all the edges incident to a vertexr,

the number of operations is at most
do(x)]O0[ds(x)] + O(m)} = Olds(x)'] + d(x)O(m).

For all the edges of G, the number of operations is at most

> Oldo(x)"] + {ch(x) IIO(m) 4 O[E dc(x)z] + 2mO(m)

(the sum is over all the vertices x of G).

Since Sdg(x)* < [Ede(x)] = 4m’, we have O[= de(x)’] = O(m?); there =
fore the total number of operations is at most O(m?) + o(m?) = O(m). ©
Thus, the algorithm is polynomial (but it does not necessarily give an opti- =

mal coloring if the graph is of class 1).
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