Chapter 48
Scheduling Unrelated Machines with Costs

David B. Shmoys*

Abstract

We consider the problem of scheduling unrelated parallel
machines with costs. Each job is to be processed by exactly
one machine; processing job j on machine i requires time
pi; and incurs a cost of c¢;;. There are two optimization
criteria: minimizing the makespan of the schedule, i.e., the
maximum job completion time; and minimizing the total
cost. Qur main result is as follows. There is a polynomial-
time algorithm that, given values C and T, finds a schedule
of cost at most C and makespan at most 27, if there exists
a schedule of cost C and makespan 7. We also extend
this result to a variant of the problem where, instead of
a fixed processing time pij, there is a range of possible
processing times for each machine-job pair, and the cost
linearly increases as the processing time decreases. Finally,
we show that these results imply a polynomial-time 2-
approximation algorithm to minimize a weighted sum of the
cost and the makespan.

1 Introduction

Consider the following scheduling problem: each of n
independent jobs is to be processed by exactly one of m
unrelated parallel machines; job j takes p;; time units
when processed by machine ¢, and incurs a cost c;;,
i=1,...,m, j = 1,...,n For notational simplicity,
we shall assume that n > m. We are interested in
two optimization criteria: minimizing the makespan
of the schedule, i.e., the maximum job completion
time; and minimizing the total cost. Lenstra, Shmoys,
and Tardos [4] give a polynomial-time 2-approximation
algorithm for the single criterion problem of minimizing

*School of Operations Research & Industrial Engineering,
Cornell University; research partially supported by an NSF PYI
award CCR-89-96272 with matching support from UPS, and
Sun Microsystems, and by the National Science Foundation, the
Air Force Office of Scientific Research, and the Office of Naval
Research, through NSF grant DMS-8920550.

1School of Operations Research & Industrial Engineering,
Comnell University; research partially supported by a Packard
Fellowship, a Sloan Fellowship, an NSF PYI award, and by the
National Science Foundation, the Air Force Office of Scientific
Research, and the Office of Naval Research, through NSF grant
DMS-8920550.

Eva Tardos'

the makespan, where a p-approzimation algorithmis one
that is guaranteed to produce a solution with objective
function value at most p times the optimum. In this
paper, we generalize that result to the bicriteria problem
mentioned above. :

Trick [8,9] and Lin & Vitter (5] consider vari-
ants of this bicriteria problem. Lin and Vitter [5)
give a polynomial-time algorithm that, given cost C,
makespan T, and ¢ > 0, finds a solution of cost at most
(1 + €)C and makespan at most (2 + 1/€)T, if there
exists a schedule of cost at most C and makespan at
most T. In the variant considered by Trick [8,9], there
is an interval of possible processing times, rather than
a fixed time p;j, and the cost of processing job j on
machine 7 linearly increases as the processing time de-
creases. Trick [9] focuses on the single criterion prob-
lem of minimizing a linear objective function that is a
weighted sum of the cost and the makespan, and gives
a polynomial-time 2.618-approximation algorithm.

The main result of our paper is as follows. We
present a polynomial-time algorithm that, given val-
uves C and T, finds a schedule of cost at most C and
makespan at most 27", if a schedule of cost C' and
makespan T exists. As a corollary, we give a polynomial-
time 2-approximation algorithm for the variant consid-
ered by Trick.

All of the above algorithms are based on solving
linear relaxations of a particular integer programming
formulation, and then rounding the fractional solution
to a nearby integer solution. Whereas the results of
Trick [8,9] and Lin & Vitter [5] invoke the rounding
theorem of Lenstra, Shmoys & Tardos [4], the main
contribution of this paper is the introduction of a new
rounding technique. The technique used in [4] requires
that the solution to be rounded must be a vertex of
the linear relaxation. One interesting aspect of the new
technique is that it does not have this restriction.

The most time-consuming part of our approxima-
tion algorithms is the solution of the linear relaxations.
For our results that separately treat the two criteria, we
observe that these linear programs fall into the class of
fractional packing problems considered in [7], and there-
fore a slightly further relaxed schedule can be found by

448

SCHEDULING UNRELATED MACHINES WITH COSTS

a randomized algorithm in O(n%logn) expected time,
or deterministically, in O(mn?logn) time.

Approximation algorithms for special cases of the
scheduling problems considered in this paper have been
studied over the last twenty-five years, and for a survey
of this literature, the reader is referred to [3]. Finally,
we note that it is likely that our results cannot be too
substantially improved upon, since Lenstra, Shmoys &
Tardos [4] have shown the following result for the single
criterion problem of minimizing the makespan: for any
¢ < 1/2, no polynomial-time (1 + ¢)-approximation
algorithm exists, unless P= NP,

i3l TARLSS CS5

2 The main result

We first consider the simplest version of our scheduling
problem, when there is a fixed processing time p;; and a
cost ¢;; associated with each machinei=1,...,m, and
each job j = 1,...,n. For any t > T, integer solutions
to the following linear program, LP(t), are in one-to-
one correspondence with schedules of cost at most C
and makespan at most T

m n
}: Z cijzij <

C,
i=1j=1
m
Zz.-j =1, forj=1, ,n,
i=1
n
pijzi; < T, fori=1,...,m,
jz=; L7 Aag)) 1 LP(t)
zi; =2 0, fori=1,...,m,
i=1,...,n,
z; = 0, ifp,'j>i, C
i=1,...,m,
j=1... n

THEOREM 2.1. If LP(t) has a feasible solution,
then there ezists a schedule that has makespan at most
T+t and cost al most C.

We will prove the theorem by providing an algo-
rithm that converts a feasible solution.z of LP(t) to the
required schedule. We will construct a bipartite graph
B(z) = (V,W,E) and a value z'(v,w) for each edge
(v,w) € E. One side of the bipartite graph consists of
job nodes

W={wj:j=1,...,n}.

The other side consists of machine nodes

vk},

V=A{v,+i=1,...,m,s=1,...

ki = rZ zi;1;

where

449

the k; nodes {v;; : s = 1,..., k;} correspond to machine
i,i=1,...,m.

Edges of the graph B(z) will correspond to
machine—job pairs (i, ;) such that z;; > 0. For each
positive coordinate of z, there will be one or two cor-
responding edges in B(z). The vector z' defined on
the edges of B(z) will have the property that, for each
i=1,....m j=1,...,n,

2

s:(vi,,w;)EE

zi; = z' (vis, w5)-

The cost of each edge (vis, w;) € E is ¢;5.

The graph B(z) and the vector z’ are constructed
in the following way. To construct the edges incident to
the nodes corresponding to machine %, sort the jobs in
order of nonincreasing processing time p;;; for simplicity
of notation, assume for the moment that

Pit 2 Pi2 2 - 2 Pin-

if Z:j z;j < 1, then there is only one node v;; € V
corresponding to machine i: in this case, for each
zi; > 0, include (vi1, w;) € E, and set

z'(vu y wj) = &gy

_ Otherwise, find the minimum index j; such that
Z;l.—.l z;; > 1. Let E contain those edges (vi1,w;),
j=1,...,51 — 1, for which z;; > 0, and for each of
these set

x’(v;l,w,-) =Ty
Furthermore, add edge (vi1,wj,) to E and set

Jri—1
z'(viy,wj,) i =1— Z z'(viy, wj).
i=1

This ensures that the sum of the components of 2’ for
edges incident to v is exactly 1. If 371, z;; > 1, then
a fraction of the value z;;, is still unassigned, and so
create an edge (vi2,wj,), and set

]
z’(v;z,wj,)v = Xy, — :c'(v,-],wjl) = (Z I,'j) -1
i=t

We then proceed with jobs j > jj, i.e., those with
smaller processing times on machine 7, and assign edges
to 15, until a total of exactly one job is assigned to it,
and so forth. More precisely, for each s = 2,...,k; — 1,
find the minimum index j, such that 3_j, z;; > s. Let
E contain those edges (vis, wj), j = jo-1+1,...,4s— 1,
for which z;; > 0, and for each of these set

z'(vig, W5) 1= @i

450

v32 V33
!
!
1 1
] |
Ws Wwe Wy

For solid edges, z'(vir, w;) = 2/3

For dashed edges, z'(vig, w;) = 1/3

Figure 1: Constructing B(z).

Furthermore, add edge (vi,, w;,) to E and set

Ja—1
z'(vis, wj,) =1 — E ' (vis, wj).

j=js—at1

If E?’:] z;; > s, then also put edge (v;s41,w;,) € E,
and set
j’
(Vi a1, w5,) 1= Taj, — 2 (vis, w5,) = (O zi5) — s.
i=1

Let j' be the last job assigned in this way; that is,
J' = Jri—1. For each j > j’ for which z;; > 0, create an
edge (vir;, w;) and set

x'(v,—k‘., w,-) = Zij.

For each machine node v;,, let pf1** denote the maxi-
mum of the processing times p;; corresponding to edges
(vis, w;) € E; let plin denote the analogous minimum.

We shall use the following instance to give an
example of this construction: m=3;n=m(m—1)+1;
pa=mi=1..mp;=1¢t=1...,m j =
2,...m¢;=0,¢=1,....m j=1,...,n; C = 0;
T = m. Figure 1 gives a feasible solution X = (z;;) to
LP(T), and the corresponding graph B(z).

A non-negative vector z on the edges of a graph is
a fractional matching if, for each node v, the sum of the
components of z corresponding to the edges incident to
v is at most 1. The fractional matching eractly matches
a node u if the corresponding sum is exactly 1. A
fractional matching z is a matching if each component
of z is 0 or 1. The following lemma summarizes some
simple properties of the above construction.

Ly

SHMOYS AND TARDOS

LEMMA 2.1. The vector =’ is a fractional malching
in B(z) of cost at most C. Il ezactly matches each

node wj, j = 1,...,n, and each node v, for each
i=1,...,m,s=1,... ki — 1. Finally, pi" > p"s,
foreachi=1,."m,s=1,...k;—1.0

The algorithrﬁ to construct a schedule from a feasible
solution z of LP(t) is as follows.

The algorithm

1. Form the bipartite graph B(z) with costs on its
edges.

2. Find a minimum-cost (integer) matching M that
exactly matches all job nodes in B(z).

3. For each edge (v, w;) € M, schedule job j on
machine 1.

Proof of Theorem 2.1. We shall prove that the
schedule produced by the algorithm satisfies the require-
ments of the theorem. By Lemma 2.1, 2’ is a fractional
matching in B(z) of cost at most C, which matches
all job nodes exactly. This implies there exists an (inte-
gral) matching M in B(z) of cost at most C that exactly
matches all job nodes (see, for example, [6]). Therefore,
the matching required in Step 2 exists and has cost at
most C. The cost of the matching is the same as the
cost of the schedule constructed. Therefore, the cost of
the schedule constructed is at most C. ,

Next we show that the makespan of the schedule
constructed is at most T + ¢. Consider the time
required by machine 7, ¢ = 1,...,m. There are &;
nodes corresponding to machine i in B(z), and for
each of these, there will be at most one job scheduled
on machine i corresponding to some incident edge.
Therefore, the length of the time required by machine
i is at most ZL, pi2*. Clearly, pfi** < t. Lemma 2.1
implies that the sum of the remaining terms,

ki ki—1)
o < Yy opEn
=2 a=1
ki—1
<Y pE (v, w)
s=1 ji(vis,w;)EE '
ki
< Y Y pi (v, w)
s=1j:(vi,,w;)EE
n
= Srm
j=1
< T

which proves the theorem. O

SCHEDULING UNRELATED MACHINES WITH CoOSTS

Observe that the algorithm ensures that if z;; = 1, then
job j is assigned to be scheduled on machine ¢, since
each edge incident to w; in B(z) is of the form (vi,, w;)
for some s. Also note that the obvious m-machine
generalization of the example given in Figure 1 shows
that the analysis of this algorithm is asymptotically
tight.

CoOROLLARY 2.1. In the problem with fized process-
ing limes p;j, i =1,...,m, j=1,...,n, for any given
cost C and makespan T, we can find, in polynomial
time, e schedule of cost C and makespan at most 2T, if
one of cost C and makespan T exisis.

Proof. If there exists a schedule of cost at most
C and makespan at most T, then LP(T) must have
a feasible solution. We can use any polynomial-time
linear programming algorithm to find a feasible solution
to this linear program. The algorithm used to prove
Theorem 2.1 can be implemented to run in polynomial
time, which implies the claim. O

COROLLARY 2.2. In the problem with fized process-
ing limes p;j, ¢ = 1,...,m, j = 1,...,n, and non-
negative costs, for any given cost C and makespan T,
and for any fized ¢ > 0, we can find a schedule of cost at
most (1 + ¢)C and makespan at most (2 + ¢)T, using a
randomized algorithm that runs in ezpected O(n?logn)
time.

Proof. Plotkin, Shmoys and Tardos [7] developed
an algorithm that efficiently finds approximate solutions
to a wide class of linear programming problems, known
as fractional packing problems. If the costs in LP(T)
are nonnegative, then this linear program is a fractional
packing problem of the form considered in [7]. The
techniques of [7] can be used to determine that LP(T)
is infeasible, or else produce a solution that is nearly
feasible, in the sense that it is feasible if the right-hand
sides of the cost constraint and machine load constraints
are relaxed by a factor of (14¢). Thus, if this algorithm
produces such a fractional solution, we can then use
Theorem 2.1 to find the claimed schedule.

To view the linear program LP(T’) as a fractional
packing problem, we partition the constraints into two
categories: the m machine load constraints and the cost
constraint are the packing constraints, and the remain-
ing constraints are the job assignment constraints. The
algorithms of 7] work by maintaining a solution that
satisfies the latter, and iteratively moving towards a so-
lution that also satisfies the former.

An important parameter of a fractional packing
problem is its width, which is the maximum ratio of
the right-hand side to the left-hand side of any packing
constraint for any solution z that satisfies the remaining
constraints. The width of the above formulation can be

451

as high as 3 . max;¢;;/C. This can be improved as
follows: add constraints that set z;; = 0 if ¢;; > C.
As a consequence, the width is reduced to at most n.
If there exists a schedule of makespan at most T and
cost at most C then this modified linear program has a
feasible solution. Furthermore, we can use the algorithm
of Theorem 2.1 to round a feasible solution to this linear
program to a schedule.

Since the width is at most n and there are m + 1
packing constraints, the packing algorithm of [7] finds
an approximate solution in O(nlogn) iterations (see
Theorem 2.7 of [7]). In each iteration, the algorithm
first computes a dual variable corresponding to each
packing constraint, which is completely determined by
the current primal solution; let y denote the dual
variable corresponding to the cost constraint, and let
#; correspond to the load constraint for machine ¢,
t = 1,...,m. The algorithm then selects a job j
uniformly at random, and finds the machine 7 on which
job j may be scheduled (i.e., p;j < t and ¢;; < C)
for which yci; + yipi; is minimum. A small fraction of
job j is rescheduled on this machine. Each iteration
takes O(m) time. Therefore, the packing algorithm
terminates in O(mn logn) expected time.

The resulting vector z has O(nlogn) nonzero co-
ordinates. Therefore, the graph B(z) has at most
2n 4+ m = O(n) nodes and O(nlogn) edges. The
minimum-cost matching that exactly matches the n job
nodes can be found via n shortest path computations;
using the Fredman-Tarjan implementation of Dijkstra’s
algorithm, the algorithm runs in O(n?logn) time. O

There is also a deterministic version of the algorithm of
[7] that yields a running time of O(mn? logn).

Next consider the version of the problem where job
J can be processed by machine ¢ in ¢;; time units, where
lij € ti; < u;j and the cost linearly increases as the
processing time decreases. In this model, we are given
the minimum cost cf; and the maximum cost c}; of
assigning job j to machme i, for each i = 1,...,m,
J =1,...,n. The cost associated with processing job j
on machine i in time ¢;; is pcﬁj +(1—p)cy; if the time can
be written as £;; = uli; + (1 — p)u;;, where 0 < p < 1.

In the linear programming relaxation L Pyp.cq(T) of
this problem there are two variables z{J and z}; asso-
ciated with each machine-job pair (i,5), i = 1,...,m,
J=1,...,n. A feasible solution to the linea.r program
directly corresponds to a feasible schedule if :c i+
integral for each machine—job pair (i, 7), ¢ = 1
J=1,...,n. Job jis assigned to machine i if =} +a:
1, where the assxgned time is t;; = =}, Ui + z I., at. a

]
cost of cfyzi; + c,lz,_,'

Sm)

oy

452

In the linear program LP(t), we forced the variable
Tij to zero if p;; > ¢. Analogously, we want to make
sure that no job is processed on a machine at a speed on
which it would require more than ¢ time units to process
the whole job. To do this, we revise the upper bound of
the processing times to 45 = min{t, u;;}. The revised
cost ¢ associated with the revised upper bound is the
cost of processing Jjob j on machine i in time G, le., if
Ui = pug; +(1 —t){;; then we set €5 = peli+(1 —p)c,!j.
The resulting linear program LPy,..q(t) is as follows.

m n
22 (e +ealy) <

i=1 j=1

m
d(h+al) = 1, forj=1,...n,
n i=]
Z(ﬁijz}}+1«'jx5j) < T, fori=1,...,m,
j=1
gzl > 0, fori=1,...,m,
Jj=1,...,n,
3:’3 = -‘B:-]- = 0, ifl,'j)l,
i=1,...,m,
J=1...,n.

THEOREM 2.2. If the linear program LPp,.4(t) has
a feasible solution, then there ezists q schedule with
makespan at most T+t and cost al most C.

Proof. We will prove this theorem by constructing a
feasible solution to a related linear program LP(t) and
then applying Theorem 2.1. Consider a feasible solution
z! and z* to LP,peca(t). Define the corresponding
feasible solution z, scheduling times p, and costs ¢ as
follows. Let

zij =zl + zlj;
that is, z;; is the fraction of Jjob j that is scheduled on
machine i. For any machine-job pair (3, 5) such that
zij > 0, define its processing time as

Pij = (285 + zi;l;) /zij;
that is, p;; is the time it would take to process all of

Jjob j on machine 7 at the speed used in the fractional
schedule; the corresponding cost is defined to be
Cij = (z:‘,é.“, + z,'-1~c,'~j)/z,~j.

For machine-job pairs (4,7) such that z;; = 0, set
Pij = 400 (where any value greater than T + ¢ wil]
suffice) and ci; = 0.

Observe that zij > 0 implies that p;; < ¢, li; <
Pij < u;j, and ¢;; is the cost of assigning job j to
machine 7 for time pij. Notice that z is a solution to the
linear program LP(t) defined by T, C, and p;; and Cij
fori=1,...,m, j = 1,...,n. Therefore, Theorem 2.1
implies that the claimed schedule exists. O

1

SHMOYS AND TARDOS

Notice that the algorithm ensures that integral assign-
ments (i.e., pairs (i, J) with :L',’-J- + z;; integral) are used
in the schedule constructed.

COROLLARY 2.3. In the problem with variable pro-
cessing times, for any given cost C and makespan T, we
can find, in polynomial time, a schedule of cost C and
makespan at most 2T, if one of cost C and makespan T
ezists.

Proof. H there exists a schedule of cost at most C
and makespan at most T, then LP;peed(T) must have
a feasible solution. We can use any polynomial-time
linear programming algorithm to find a feasible solution
to this linear program. By applying Theorem 2.2, we
obtain the corollary. O

COROLLARY 2.4. In the problem with variable pro-
cessing times p;;, i = Lo..,om, j=1,...,n, and non-
negative costs, for any given cost C and makespan T,
and for any fized € > 0, we can find a schedule of cost at
most (1 + €)C and makespan at most (2+ €)T, using a
randomized algorithm that runs in ezpected O(n? log n)
time.

Proof. This proof of this result relies on techniques
from 7] in a way analogous to the proof of Corollary 2.2,
To make the width of the corresponding packing prob-
lem small, we must further restrict the allowed speeds
for the assignments. We increase the lower bounds ; to
a modified lower bound iij, if necessary, to ensure.that
the corresponding cost éi-j is at most C. O

3 Minimizing a combined objective function

In thic cantion wg oopaido, ot probiemn of minimizing

the objective function consisting of a weighted sum of
the makespan and the operating cost,

HuT + Z(c:{jz:j +ei2i;),
ij

for some parameter ; > 0, where the desired makespan
is no longer a part of the input. We assume that the
operating costs

céjEOand i >0, fori=1,....m, j= 1,... n.

We shall also assume that the lower and upper bounds
on the processing times, lij and u,;, respectively, are
integral, for each machine-job pair (i, 7). Let P denote
the maximum of the upper bounds on the processing
times. Trick [9] gave a p-approximation algorithm for
this problem, where p is roughly 2.618. Here we use
Theorem 2.2 to give a 2-approximation algorithm.

For each value t > 0, consider the following linear

program L P,,(t), where ¢, as in the previous section,

SCHEDULING UNRELATED MACHINES WiTH COSTS

is the cost of scheduling job j on machine 7 so that it is
processed in 4;; = min{t, u;;} time units.

f(t) = min pT + Z E(éu Y + ci;zi;)

i=]1 j=1

subject to

m
Z(z:"l"*'x:'i) = 1, forj=1,...,n,
i=1 .
n
Z(ﬁijwf'j+l.~j:t£j) < T, fori=1,...,m,
i=1
gh,xl; > 0, fori=1,...,m,
i=1,...,n,
x:; = .’L‘éj = 0, lfl,J >,
i=1,...,m,
i=1,...,n.

LPope(2)

To find a schedule with objective function value at
most twice optimal, we will perform a bisection search
on the range of possible makespan values, and maintain
the following invariant: all schedules with objective
function value less than half the objective function value
of the best schedule found thus far must have makespan
within the current range. The number of iterations
of this bisection search can be bounded by using the
following lemma of Trick [9], which follows from a simple
perturbation argument.

LEMMA 3.1. Among all schedules with minimum
objective function value, constder one with minimum
makespan; the makespan of this schedule is integral. O

Since the makespan of any plausible schedule is at
most nP, it follows that we can initialize the search by
setting the interval to [0, n P]. The core of the bisection
search is given by the following lemma.

LEMMA 3.2. For each value t > 0, one can, in
polynomial time, find a schedule with objective funclion
value f, and conclude that one of the following holds:
(1) each schedule with objeclive function value less than
f/2 has makespan less than t, or (ii) each schedule
with objective function value less than f/2 has makespan
greater than t.

Proof. The algorithm works as follows. First find
an optimal solution z to LPyp(t) and compute f(t).
Let C and T denote the cost and makespan of this
fractional solution; that is, f(t) = C + uT. Since z
is a feasible solution to LP,p..q4(t) for these values C
and T, we can apply Theorem 2.2 to obtain a schedule.
The objective function value of this schedule is at most
CH+u(T+1)=f()+ ut.

We consider two cases: f(t) < ut or f(t) > ut.
Suppose that f(t) < ut. The schedule obtained has

453

objective function value f < f(t) + pt < 2ut. Any
schedule with objective function value less than f/2 <
put must clearly have makespan below t. Hence, we can
conclude that alternative (i) holds. Suppose instead
that f(t) > pt. We will show that each schedule with
makespan at most ¢t has objective function value at least
f/2. The schedule constructed has objective function
value f < f(t) + ut < 2f(t). Since f(t) is the optimal
value of L P, (t), each integral schedule with makespan
at most ¢ must have objective function value at least
f(t) > f/2. Hence, we can conclude that alternative
(i) applies. O

Observe that if f(t) = ut, then the algorithm can
halt, since (i) and (ii) together imply that there does
not exist a schedule with objective function value less
than f/2. By combining Lemma 3.1 and Lemma 3.2,
we obtain the following theorem.

THEOREM 3.1. For the problem of minimizing a
weighied sum of the cost and the makespan in scheduling
with variable speeds, there exists a 2-approzimation
algorithm, which needs to solve the linear program
LP,pi(t) at most lognP times. O

4 TFurther extensions

The rounding technique used to obtain Theorem 2.1
can also be used for integer programs of a slightly
more general form. In particular, in the generalized
assignment problem, we wish to find a solution z to
minimize the cost

m n
E E Cij Zij

=1 j=1
subject to
m
Ez,-j = n;, forj=1,...,n,
i=1

n
ZP-'J'I-':’ < pbi, fori=1,...,m,
i=1
z;; > 0, integer, fori=1,...,m,
i=1...,n

When p = 1, this problem can be viewed as extend-
ing the problem of scheduling unrelated machines by
allowing n; jobs of type j, 7 = 1,...,n, and by hav-
ing machine i available for processing for only b; time
units, 7 = 1,...,m. The natural extension of the proof
of Theorem 2.1 shows that if C* denotes the minimum
cost with p = 1, then a solution that is feasible with
= 2 and of cost at most C* can be found in polyno-
mial time.
Theorem 2.1 can also be applied to another bicri-
teria scheduling problem. In addition to the makespan

\

. ;oﬁ*;
=

#

454

of the schedule, another important objective is to min-
imize the average completion time of the jobs. Let
C4.x denote the optimal value of the makespan, and
let C},. denote the optimal value of the average com-
pletion time. Horn [2] and Bruno, Coffmann, and Sethi
[1] showed that an optimal solution for the latter ob-
jective can be found by reducing the problem to the
minimum-cost bipartite matching problem. The bipar-
tite graph formed by the reduction is quite similar to the
one used in our approximation algorithm. There are n
nodes corresponding to each machine ¢, =1,...,m; a
job matched to the kth node corresponding to machine
i is thought of as scheduled kth-to-last on that machine.
If job j is the kth-to-last job on machine i, then it con-
tributes p;; to the completion time of k jobs; hence, the
cost of the edge (vix, w;) is kpi;.

Observe that in an optimal schedule, the jobs pro-
cessed on each machine ¢, i = 1,..., m, are sequenced
in order of nondecreasing processing time. Thus, in the
construction used in the approximation algorithm, we
can similarly view v;; as the kth-to-last position on ma-
chine i. Among all schedules with average completion
time CJ,., let Cnax denote the makespan of the schedule
with minimum makespan. By applying Theorem 2.1, we
can efficiently find a schedule with average completion
time at most C=%,, and makespan at most 2Cmax.

A much stronger result would state that it is possi-
ble to find a schedule with average completion time at
most C3,. and makespan at most 2C},,,. This result is

"known for the special case when the machines are iden-
' tical: an optimal average completion time schedule can

be found by sequencing the jobs in nondecreasing pro-

. cessing time order, and iteratively scheduling the next

job on the machine on which it would finish earliest; the
same algorithm is known to be a 2-approximation algo-
rithm for the minimum makespan problem. We leave
the following question as an interesting open problem:
is the makespan of any optimal average completion time
schedule at most 2C7, .., or, equivalently, is this true for
any schedule produced by minimum-cost matching al-
gorithm as described above?

Acknowledgments

We would like to thank Leslie Hall for prompting this
research. Her discovery of an error in our earlier, trivial,
but fallacious proof of Corollary 2.1 led us to find this
more interesting, correct solution.

References

[1] J. L. Bruno, E. G. Coftmann, Jr. and R. Sethi. Schednl-
ing independent tasks to reduce mean finishing time.
Communications of the ACM, 17:382-387, 1974.

{2 W. A. Horn. Minimizing average flow time with

(3]

[4]

(5]

(6}

(7]

(8

(9]

SHMOYS AND TARDOS

parallel machines. Operations Research, 21:846-847,
1973.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
and D. B. Shmoys. Segquencing and Scheduling: Al-
gorithms and Complezity. Designing Decision Support
Systems Notes NFI 11.89/03, Eindhoven University of
Technology, 1989.

J. K. Lenstra, D. B. Shimoys, and E. Tardos. Approx-
imation algorithms for scheduling unrelated parallel
machines. Mathematical Programming A, 46:259-271,
1990.

J.-H. Lin and J. S. Vitter. c¢-approximations with
minimum packing constraint violation. In Proceedings
of the 24th Annual ACM Symposium on the Theory of
Computing, pages 771-782, 1992.

L. Lovisz and M. Plummer. Matching Theory.
Akademiai Kiado, Budapest and North-Holland, Ams-
terdam, 1986. R :
S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast ap-
prozimation algorithms_for fractional packing and cov-
ering problems. Technical Report 999, School of Op-
erations Research and Industrial Engineering, Cornell
University, Ithaca, 1992.

M. A. Trick. Scheduling multiple variable-speed ma-
chines. In Proceedings of the 1st Conference on Integer
Programming and Combinatorial Optimization, pages
485-494, 1990.

M. A. Trick. Scheduling multiple variable-speed ma-
chines. Unpublished manuscript, 1991.

