
Algorithms for Data Migration with Cloning

Samir Khuller
∗

University of Maryland
College Park, MD 20770

samir@cs.umd.edu

Yoo-Ah Kim
†

University of Maryland
College Park, MD 20770

ykim@cs.umd.edu

Yung-Chun (Justin) Wan
†

University of Maryland
College Park, MD 20770

ycwan@cs.umd.edu

ABSTRACT
Our work is motivated by the problem of managing data
on storage devices, typically a set of disks. Such high de-
mand storage servers are used as web servers, or multimedia
servers for handling high demand for data. As the system
is running, it needs to dynamically respond to changes in
demand for different data items. In this work we study
the data migration problem, which arises when we need to
quickly change one storage configuration into another. We
show that this problem is NP-hard. In addition, we develop
polynomial-time approximation algorithms for this problem
and prove a worst case bound of 9.5 on the approximation
factor achieved by our algorithm. We also compare the al-
gorithm to several heuristics for this problem.

1. INTRODUCTION
To handle high demand, especially for multimedia data,

a common approach is to replicate data objects within the
storage system. Typically, a large storage server consists of
several disks connected using a dedicated network, called a
Storage Area Network. Disks typically have constraints on
storage as well as the number of clients that can access data
from a single disk simultaneously. With the recent interest in
autonomic computing1, a relevant goal is to have the system
automatically respond to changes in demand patterns and
to recompute data layouts.

Approximation algorithms have been developed [23, 24,
9, 16] to map known demand for data to a specific data
layout pattern to maximize utilization2. In the layout, we
compute not only how many copies of each item we need,
but also a layout pattern that specifies the precise subset of

∗Department of Computer Science and Institute for Ad-
vanced Computer Studies
†Department of Computer Science
1http://www.research.ibm.com/autonomic/
2Utilization refers to the total number of clients that can be
assigned to a disk that contains the data they want.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00.

items on each disk. The problem is NP -hard, but there are
polynomial-time approximation schemes [9, 24, 16]. Given
the relative demand for data, the algorithm computes an
almost optimal layout.

Over time as the demand for data changes, the system
needs to create new data layouts. The problem we are in-
terested in is the problem of computing a data migration
plan for the set of disks to convert an initial layout to a
target layout. We assume that data objects have the same
size (these could be data blocks, or files) and that it takes
the same amount of time to migrate any data item from
one disk to another disk. The crucial constraint is that each
disk can participate in the transfer of only one item – either
as a sender or as a receiver. Our goal is to find a migra-
tion schedule to minimize the time taken to complete the
migration (makespan).

A special case of this was studied by Hall et al.[10]—they
compute a movement schedule, but this does not allow the
creation of new copies of any data object. It addresses only
the data movement problem. (So for example, one cannot
create extra copies of any data item, but can just change
which disks they are stored on.) The problem they stud-
ied is formally defined as follows: given a set of disks, with
each storing a subset of items and a specified set of move
operations (each move operation specifies which data ob-
ject needs to be moved from one disk to another), how do
we schedule these move operations? If there are no storage
constraints, then this is exactly the problem of edge-coloring
the following multi-graph. Create a graph that has a node
corresponding to each disk, and a directed edge correspond-
ing to each move operation that is specified. Algorithms
for edge-coloring multigraphs can now be applied to pro-
duce a migration schedule since each color class represents
a matching in the graph that can be scheduled simultane-
ously. Computing a solution with the minimum number
of rounds is NP-hard, but several good approximation al-
gorithms are available for edge coloring. With space con-
straints on the disk, the problem becomes challenging. Hall
et al.[10] showed that with the assumption that each disk
has one spare unit of storage, very good constant factor ap-
proximations can be developed. The algorithms use at most
4d∆/4e colors with at most n/3 bypass nodes, or at most
6d∆/4e colors without bypass nodes3.

On the other hand, to handle high demand for popular
objects, new copies will have to be dynamically created and

3A bypass node is a node that is not the target of a move
operation, but used as an intermediate holding point for a
data item.

2 4 1 2 1 3

1 3 4 1 3 1 2 4

Target Layout

Initial Layout
S1={2,3} D1={1}

S2={1,2} D2={3}

S3={3} D3={1,2}

S4={1} D4={3}

disk 1 disk 2 disk 3

Figure 1: An initial and target layout, and their
corresponding Si’s and Di’s

stored on different disks. This means that we crucially need
the ability to have a “copy” operation in addition to “move”
operations. In fact, one of the crucial lower bounds used in
the work on data migration [10] is based on a degree property
of the multi-graph. For example, if the degree of a node is ∆,
then this is a lower bound on the number of rounds that are
required, since in each round at most one transfer operation
involving this node may be done. For copying operations,
clearly this lower bound is not valid. For example, suppose
we have a single copy of a data item on a disk. Suppose
we wish to create ∆ copies of this data item on ∆ distinct
disks. Using the transfer graph approach, we could specify a
“copy” operation from the source disk to each of the ∆ disks.
Notice that this would take at least ∆ rounds. However,
by using newly created copies as additional sources we can
create ∆ copies in dlog(∆ + 1)e rounds, as in the classic
problem of broadcasting by using newly created copies as
sources for the data object. (Essentially each copy spawns
a new copy in each round.)

The most general problem of interest is the data migra-
tion problem with cloning when data item i resides in a
specified (source) subset Si of disks, and needs to be moved
to a (destination) subset Di. In other words, each data item
that initially belongs to a subset of disks, needs to be moved
to another subset of disks. (We might need to create new
copies of this data item and store it on an additional set of
disks.) See Figure 1 for an example. If each disk had exactly
one data item, and needs to copy this data item to every
other disk, then it is exactly the problem of gossiping. We
show that this problem is NP-hard by reduction from edge
coloring and develop a polynomial-time 9.5-approximation
algorithm for it. The algorithm has been implemented by
Svetlana Shargorodskaya [26] and we are comparing its per-
formance to several other heuristics for the problem. For all
our algorithms, we move data only to disks that need the
data. Thus we use no bypass nodes. The total number of
data transfers performed is thus the minimum possible.

Different communication models can be considered based
on how the disks are connected. We use the same model
as in the work by Hall et al.[10, 1] where the disks may
communicate on any matching; in other words, the underly-
ing communication graph allows for communication between
any pair of devices via a matching (a switched storage net-
work with unbounded backplane bandwidth). Later we will
also discuss a restricted model where the devices may com-
municate on a matching, but the size of the matching is
constrained (we call this the bounded-matching model).

One interesting generalization would be for the situation
when clusters of disks are connected in a wide area network.

The time required to transfer one unit of data between a pair
of disks in different clusters may be an order of magnitude
higher than the time required to transfer data between a
pair of disks in the same cluster. We can model this by a
communication graph model where the number of rounds
required to transfer one unit of data between a pair of disks
in different clusters is a certain number of rounds, and one
round is required to transfer one unit of data between a pair
of disks in the same cluster.

1.1 Relationship to Gossiping and Broadcast-
ing

The problems of Gossiping and Broadcasting have been
the subject of extensive study [18, 12, 14, 3, 4, 15, 7, 8].
These play an important role in the design of communication
protocols in various kinds of networks. The gossip problem is
defined as follows: there are n individuals. Each individual
has an item of gossip that they wish to communicate to
everyone else. Communication is typically done in rounds,
where in each round an individual may communicate with
at most one other individual. Some communication models
that allow for the full exchange of all items of gossip known
to each individual in a single round. Other models allow
the sending of only one item of gossip from one to the other
(half-duplex) or allow each individual to send an item to the
individual they are communicating with in this round (full-
duplex). In addition, there may be a communication graph
whose edges indicate which pairs of individuals are allowed
to communicate directly in each round. (In the classic gossip
problem, also called the telephone model, communication
may take place between any pair of individuals; in other
words, the communication graph is the complete graph.)
In the broadcast problem, one individual needs to convey an
item of gossip to every other individual. The two parameters
typically used to evaluate the algorithms for this problem
are: the number of communication rounds, and the total
number of telephone calls placed.

The problems we study are generalizations of the above
mentioned gossiping and broadcasting problems. The basic
generalizations we are interested in are of two kinds (a) each
item of gossip needs to be communicated to only a subset of
individuals, and (b) several items of gossip may be known
to an individual.

The communication model we use is the half-duplex
model, where only one item of gossip may be communi-
cated between two communicating individuals during a sin-
gle round. Each individual may communicate (either send
or receive an item of data) with at most one other individ-
ual in a round. This model best captures the connection of
parallel storage devices that are connected on a network and
is most appropriate for our application. This model is one
of the most widely used in all the work related to gossiping
and broadcasting.

1.2 Other Communication Models
To model the limited switching capacity of the network

connecting the disks, one could allow for choosing any
matching of bounded size as the set of transfers that can be
done in each round. We call this as bounded-size matching
model. Using the constant factor approximation algorithm
for the full matching model, we can also develop a constant
factor approximation algorithm for the bounded-size match-
ing model.

1.3 Contributions and Outline of Paper
In Section 2 we define the basic model of communication

and the notation used in the paper.
This is the first work that relates broadcasting and gos-

siping with the data migration problem. In Section 3 we
develop a 9.5 approximation algorithm for the general data
migration problem. This is the first approximation algo-
rithm for this problem. While two of the lower bounds used
are quite simple, we develop a new lower bound using net-
work flows, and use this in the algorithm. (Without this
lower bound, the best bound we can obtain is a O(log n)
factor.) We show the data migration problem is NP-hard at
the end of Section 3.

In Section 4 we give description of other heuristics and
briefly compare their performance.

In Section 5 we develop a constant factor approximation
algorithm for the bounded-size matching model.

1.4 Related Work
The paper by Liben-Nowell [20] considers a problem very

similar to multi-source multicast which is exactly the data
migration problem with restrictions that each disk contains
at most one source item and each item has at most one
source. However, the model that he uses is different than
the one that we use. In his model, in each telephone call, a
pair of users can exchange all the items of gossip that they
know. The objective is to simply minimize the total number
of phone calls required to convey item i of gossip to set Di

of users. In our case, since each item of gossip is a data item
that might take considerable time to transfer between two
disks, we cannot assume that an arbitrary number of data
items can be exchanged in a single round. Several other
papers use the same telephone call model [2, 6, 11, 15, 28].

Other related problems that have been studied are the
set-to-set gossiping problem [19, 22] where we are given two
possibly intersecting sets A and B of gossipers and the goal
is to minimize the number of calls required to inform all
gossipers in A of all the gossip known to members in B.
Liben-Nowell [20] generalizes this work by defining for each
gossiper i the set of relevant gossip that they need to learn.
This is just like our multi-source multicast problem when
the number of items is equal to the number of disks, except
that the communication model is different, as well as the
objective function.

We have also studied several special cases of the data mi-
gration problem with cloning, where each data item has only
one copy initially, and developed algorithms with better per-
formance guarantees [17]. One special case we studied is the
Multi-source multicast problem, when ∆ data items, each
having only one copy, are stored in ∆ different disks, and
data item i needs to be sent to a specified subset Di of disks.
We showed this problem is NP-hard by a reduction from a
restricted version of 3SAT, and gave a polynomial-time al-
gorithm with approximation ratio of 4 using a simplified
version of the algorithm developed in this paper. Allowing
bypass nodes, we improved the approximation ratio to 3.
Another special case is the Multi-source broadcast problem,
which is the same as the Multi-source multicast problem
except that all disks demand all items, i.e., Di is all the
disks minus its source. We developed a polynomial-time
algorithm using at most 3 more rounds that the optimal.
The last special case we studied is the Single-source mul-
ticast problem, when ∆ data items, each having only one

copy, are all stored on the same disk, and data item i needs
to be sent to a specified subset Di of disks. We developed
a polynomial-time algorithm using at most ∆ more rounds
that the optimal.

2. MODELS AND DEFINITIONS
In the data migration problem, we have N disks and ∆

data items. For each item i, there is a subset of disks Si

and Di. Initially only the disks in Si have item i, and all
disks in Di want to receive i. Note that after a disk in Di

receives item i, it can be a source of item i for other disks
in Di that have not received the item as yet. Our goal is
to find a migration schedule using the minimum number of
rounds, that is, to minimize the total amount of time to
finish the schedule. We assume that the underlying network
is fully connected and the data items are all the same size,
in other words, it takes the same amount of time to migrate
an item from one disk to another. The crucial constraint
is that each disk can participate in the transfer of only one
item - either as a sender or receiver. Moreover, as we do
not use any bypass nodes, all data is only sent to disks that
desire it.

Our algorithms make use of known results on edge col-
oring of multi-graphs. Given a graph G with max degree
∆G and multiplicity µ the following results are known (see
Bondy-Murty [5] for example). Let χ′ be the edge chromatic
number of G.

Theorem 2.1. (Vizing [29]) If G has no self-loops then
χ′ ≤ ∆G + µ.

Theorem 2.2. (Shannon [25]) If G has no self-loops then
χ′ ≤ b 3

2
∆Gc.

3. THE DATA MIGRATION ALGORITHM
Define βj as |{i|j ∈ Di}|, i.e., the number of different

sets Di, that a disk j belongs to. We then define β as
maxj=1...N βj . In other words, β is an upper bound on the
number of items a disk may need. Note that β is a lower
bound on the optimal number of rounds, since the disk i
that attains the maximum, needs at least β rounds to re-
ceive all the items j such that i ∈ Dj , since it can receive at
most one item in each round.

Moreover, we may assume that Di 6= ∅ and Di ∩ Si = ∅.
(We simply define the destination set Di as the set of disks
that need item i and do not currently have it.)

Since the algorithm is somewhat complex, we first give a
high level description of the algorithm and then discuss the
various steps in the following lemmas. Dealing with multiple
data items sharing common disks causes some difficulty.
Algorithm Data Migration.

1. For an item i decide a unique source si ∈ Si so that
α = maxj=1,...,N (|{i|j = si}| + βj) is minimized. In
other words, α is the maximum number of items that
a disk may be a source (si) or destination for. Note
that α is also a lower bound on the optimal number of
rounds. In Lemma 3.1 we will show how we can find a
source for each item.

2. Find a transfer graph for items that have |Di| ≥ β as
follows.

D6

D1

D4

D5

D2

D3

D6

D1

D4

D5

(a) (b)

Gi

Di

D3

D2

Figure 2: (a) An example of choosing Gi in Step 2(a) where ∆ = 6 and β = 3.
(b) transfer graph constructed in Step 2(c). Disks marked as black do not receive some data items and will
be taken care of in Step 3.

(a) We first compute a disjoint collection of subsets
Gi, i = 1 . . . ∆. Moreover, Gi ⊆ Di and |Gi| =

b |Di|
β

c. Figure 2(a) shows an example of choosing

Gi. (In Lemma 3.2, we will show how such Gi’s
can be obtained.)

(b) We have each item i sent to the set Gi as shown
in Lemma 3.5.

(c) We create a transfer graph as follows. Each disk is
a node in the graph. We add directed edges from

disks in Gi to (β − 1)b |Di|
β

c disks in Di \Gi such
that the out-degree of each node in Gi is at most
β − 1 and the in-degree of each node in Di \ Gi

from Gi is 1. Figure 2(b) shows an example of
the transfer graph constructed in this step. We

redefine Di as the set of |Di \Gi| − (β − 1)b |Di|
β

c
disks which do not receive item i so that they can
be taken care of in Step 3. Note that the redefined
set Di has size < β.

3. Find a transfer graph for items such that |Di| < β as
follows.

(a) For each item i, find a new source s′i in Di. A
disk j can be a source s′i for several items as long
as

∑
i∈Ij

|Di| ≤ 2β − 1 where Ij is a set of items

for which j is a new source. See Lemma 3.7 for
the details of this step.

(b) Send each item i from si to s′i.

(c) Create a transfer graph. We add a directed edge
from the new source of item i to all disks in Di \
{s′i}. Lemma 3.9 will show that the out-degree of
a disk does not exceed 2β − 4.

4. We now find an edge coloring of the transfer graph
obtained by merging two transfer graphs in Step 2(c)
and 3(c). The number of colors used is an upper bound
on the number of rounds required to ensure that each
disk in Dj gets item j. In Lemma 3.10 we derive an
upper bound on the number of required colors.

Lemma 3.1. We can find a source si ∈ Si for each item
i so that maxj=1,...,N (|{i|j = si}| + βj) is minimized, using
a flow network.

Items Disks

1

1

α − βj

Figure 3: Flow network to find α

Proof. We create a flow network with a source s and
a sink t as shown in Figure 3. We have two set of nodes
corresponding to disks and items. Add directed edges from
s to nodes for items and also directed edges from item i to
disk j if j ∈ Si. The capacities of all those edges are one.
Finally we add an edge from the node corresponding to disk
j to t with capacity α−βj . We want to find the minimum α
so that the maximum flow of the network is ∆. We can do
this by checking if there is a flow of ∆ with α starting from
max βj and increasing by one until it is satisfied. If there is
outgoing flow from item i to disk j, then we set j as si. ut

Lemma 3.2. There is a way to choose disjoint sets Gi for

each i = 1 . . . ∆, such that |Gi| = b |Di|
β

c and Gi ⊆ Di.

Proof. First note that the total size of the sets Gi is at
most N .

∑

i

|Gi| ≤
∑

i

|Di|
β

=
1

β

∑

i

|Di|.

Note that
∑

i |Di| is at most βN by definition of β. This
proves the upper bound of N on the total size of all the sets
Gi.

We now show how to find the sets Gi. As shown in Figure
4, we create a flow network with a source s and sink t. In
addition we have two sets of vertices U and W . The first set
U has ∆ nodes, each corresponding to an item. The set W

1

U Disks WItems

b|Di|/βc

Figure 4: Flow network to find Gi

has N nodes, each corresponding to a disk in the system. We
add directed edges from s to each node in U , such that the

edge (s, i) has capacity b |Di|
β

c. We also add directed edges
with infinite capacity from node i ∈ U to j ∈ W if j ∈ Di.
We add unit capacity edges from nodes in W to t. We find
a max-flow from s to t in this network. The min-cut in this
network is obtained by simply selecting the outgoing edges
from s. We can find a fractional flow of this value as follows:
saturate all the outgoing edges from s. From each node i

there are |Di| edges to nodes in W . Suppose λi = b |Di|
β

c.
Send 1

β
units of flow along λiβ outgoing edges from i. Note

that since λiβ ≤ |Di| this can be done. Observe that the
total incoming flow to a vertex in W is at most 1 since there
are at most β incoming edges, each carrying at most 1

β
units

of flow. An integral max flow in this network will correspond
to |Gi| units of flow going from s to i, and from i to a subset
of vertices in Di before reaching t. The vertices to which i
has non-zero flow will form the set Gi. ut

For Step 2(b), the simple solution would be to broadcast
the data to each group Gi from the chosen source, since the
groups are disjoint. The only thing we have to be careful of
is that the sources for many data items are shared. However,
this broadcast takes at least maxi log |Gi| rounds. Unfortu-
nately, we cannot argue that this is a valid lower bound
since even though Di is large, if Si is large, then there could
be a solution using O(1) rounds. This would give us an
O(log N) approximation guarantee. The method described
below, develops stronger lower bounds for this situation.

Let M be the number of steps required to send all items
i to all disks in Gi in an optimal schedule of Step 2(b). To
find a lower bound for M , we construct the following flow
network Fm (parameterized by an integer m) as shown in
Figure 5. We have a source s and two sets of nodes U and
V . U has N · m nodes xjk(j = 1 . . . N, k = 1 . . . m). V has
∆ nodes yi(i = 1 . . . ∆) and yi has demand |Gi|. There is
an edge eijk from xjk to yi and its capacity cijk is 2m−k if a
disk j has item i initially. There are edges from s to nodes
xjk in U with capacity 2m−k.

Lemma 3.3. If m′ be the smallest number such that we
can construct a solution of Fm′ that satisfies all demands
|Gi|, then M ≥ m′.

Proof. Suppose that M < m′. Given an optimal sched-
ule of Step 2(b), we can construct a solution of the flow
network FM as follows. If a disk j sends item i to a disk
in Gi at round t ≤ M , which makes f copies in Gi sub-
sequently, we send a flow f from xjt to yi. Note that f

cannot be more than 2M−t and therefore, it does not vio-
late the capacity constraint. Since all disks in Gi receive
item i after M rounds with this schedule, the corresponding
flow satisfies all demands |Gi|. This is a contradiction to
the assumption that m′ is the smallest number to satisfy all
demands |Gi|. ut

In the solution of the flow network Fm′ , a node xjk may
send flow to several nodes. But since in our schedule, a disk
can copy only one item to a disk at a round, the solution of
the flow in Fm′ may not correspond to a valid schedule.

Lemma 3.4. Given a solution of Fm′ , we can convert it
to a solution satisfying the following properties.

• node xjk sends flow to at most one node in V .

• the solution satisfies at least |Gi|− 2m′−1 demands for
each item i.

Proof. First, we define a variable zijk for an edge from
xjk to yi and set zijk = fijk/cijk where fijk is the flow
through eijk in solution Fm′ . We substitute nodes yil(l =
1 . . . b∑j,k zijkc) for each node yi in V . We distribute edges
having nonzero flow to yi as follows. Sort edges in non-
increasing order of their capacities. Assign edges to yi1 until
the sum of z values of assigned edges is greater than or equal
to one. If the sum is greater than one, we split the last edge
(denote as eij′k′) into eij′k′

1
and eij′k′

2
. Assign eij′k′

1
to

yi1 and define zij′k′
1

so that the sum of z values of edges
assigned to yi1 is exactly one. Set zij′k′

2
= zij′k′ − zij′k′

1
.

We repeat this so that for all nodes yil, the sums of z values
of the assigned edges are one. Let Eil be the set of edges
assigned to yil and cmax

il (cmin
il) be the maximum (minimum)

capacity of the edges in Eil. In addition, we denote the
edges not assigned to yil(l = 1 . . . b∑j,k zijkc) as Eil′ and

the maximum capacity of edges in Eil′ as cmax
il′ where l′ is

b∑j,k zijkc + 1.

In the resulting bipartite graph with U and V ′ = {yil},
z makes a fractional matching which matches all vertices in
V ′, but not necessarily all vertices in U . Therefore, we can
find an integral matching that matches all vertices in V ′ and
the matching satisfies the first property in the lemma.

Now we merge nodes yil into yi. Then each yi matches ex-
actly b∑j,k zijkc edges. We prove that the sum of capacities

of edges matched to yi is at least |Gi| − cmax where cmax is
the maximum capacity of edges, using an analysis similar to
that in Shmoys-Tardos [27]. The sum of capacities of edges
matched to yi is at least

b∑
j,k zijkc∑

l=1

cmin
il ≥

b∑
j,k zijkc+1∑

l=2

cmax
il

≥
b∑

j,k zijkc+1∑

l=1

cmax
il − cmax

i1

≥
b∑

j,k zijkc+1∑

l=1

∑

eijk∈Eil

cijkzijk − cmax
i1

≥
b∑

j,k zijkc+1∑

l=1

∑

eijk∈Eil

fijk − cmax
i1

≥ |Gi| − cmax.

V = {yi}U = {xjk}
ItemsDisks

|G5|

|G4|
|G3|

|G1|

|G6|

|G2|

21

21

20

20

20

2m−1

20

2m−1

20

2m−1

2m−1
2m−1

21

2m−1

20

Figure 5: An example of constructing Fm where ∆ = 6

Since cmax ≤ 2m′−1, the second property can be satisfied by
setting flow through eijk as cijk if eijk is matched. ut

Lemma 3.5. Step 2(b) can be done in α+2m′+1 rounds.

Proof. We can do this with the following schedule. First
we choose min(b∑j,k zijkc + 1, |Gi|) disks in Gi and denote
those disks as Hi. Disk j sends item i to a disk in Hi if edge
eijk is matched for some k. If |Hi| > b∑j,k zijkc, there is
one disk in Hi which cannot receive item i. The disk receives
item i from si. Then the maximum degree of a disk is at
most m′ + α and the multiplicity is 2 since the out-degree
of disk j is at most m′ +α−βj and the in-degree is at most
min(βj , 1). Therefore, it can be done in m′ + α + 2 rounds.

Now |Hi| nodes in Gi have item i. Since |Gi|/|Hi| ≤
2m′−1, we can make all disks in Gi have item i in additional
m′ − 1 rounds. ut

Lemma 3.7 will show how Step 3(a) works. The lemma
uses the following result from Shmoys-Tardos [27].

Theorem 3.6. (Shmoys-Tardos [27]) We are given a col-
lection of jobs J , each of which is to be assigned to exactly
one machine among the set M; if job j ∈ J is assigned to
machine i ∈ M, then it requires pij units of processing time,
and incurs a cost cij. Suppose that there exists a fractional
solution (that is, a job can be assigned fractionally to ma-
chines) with makespan P and total cost C. Then in polyno-
mial time we can find a schedule with makespan P +max pij

and total cost C.

Lemma 3.7. For each item i we wish to choose a source
disk s′i from Di. Let Ij be the set of items for which disk j
is chosen as a source. There is a way to choose the sources
such that the following properties hold

• If i ∈ Ij then j ∈ Di.

• ∑
i∈Ij

|Di| ≤ 2β − 1.

Proof. We use Theorem 3.6 for this step. For example,
we can create an instance of the problem of scheduling ma-
chines with costs. Items correspond to jobs and disks corre-
spond to machines. For each item i we define a cost function

as follows. C(i, j) = 1 if and only if j ∈ Di, otherwise it is
a large constant. Processing time of job i (corresponding to
item i) is |Di| (uniform processing time on all machines).
Using Theorem 3.6 [27], the scheduling algorithm finds a
schedule that assigns each job (item) to a machine (disk) to
minimize the makespan. They show that the makespan is
at most the makespan in a fractional solution plus the pro-
cessing time of the largest job. Moreover, the cost of their
solution is at most the cost of the optimal solution, namely
the number of items. We cannot assign an item (job) to a
disk (machine) if the disk is not in the destination set for
the item.

In our case, it is easy to see that the maximum processing
time of any job is β − 1. We will argue that there is a
fractional solution with makespan β. It thus follows that
by defining Ij to be the set of items (jobs) assigned to disk
(machine) j, the result follows. The fractional solution is
obtained by assigning each job fractionally to each machine
by setting the assignment variable for job i on machine j to

1
|Di| if j ∈ Di then the job is fully assigned fractionally and

the fractional load on each machine is at most β. This also
gives us a way of finding a fractional solution efficiently. ut

Lemma 3.8. Step 3(b) can be done in b 3
2
αc rounds.

Proof. Since disk j can be s′i in Step 3(a) only if j ∈ Di,
|Ij | ≤ βj . Therefore, a disk j may need to send α−βj items,
and receive βj items. That means the maximum degree
is α and this transfer can make a multi-graph. Given a
multi-graph with maximum degree ∆G, we can find an edge
coloring using b 3

2
∆Gc colors (see Theorem 2.2 [25]) and the

lemma follows. ut

Lemma 3.9. The maximum out-degree of a disk in the
transfer graph in Step 3(c) is at most 2β − 4.

Proof. If disk j is a new source for k items (in other
words, |Ij | = k), then the out-degree of disk j is

∑
i∈Ij

|Di \
{s′i}| =

∑
i∈Ij

|Di| − k.

It is easy to see that the lemma is true for k ≥ 3 since∑
i∈Ij

|Di| ≤ 2β−1. For k = 1, the lemma is also true since

S’1

D7
D5

D6

D4

D3

D2

D1

S’3

D5

D7

S’4 − S’6

S’7S’7

S’2

S’4 − S’6

S7

S5

(b)(a)

D6

D3

D4

D2

D1

S’2

S’1 S’3

S6

S1−S4

Figure 6: An example of Step 3 where α = 4 and
β = 4. (a) migration from si to s′i (b) migration from
s′i to Di \ {s′i}.

∑
i∈Ij

|Di| ≤ β − 1 and β ≥ 2 (otherwise, these is no set

with size less than β). For k = 2,
∑

i∈Ij
|Di| ≤ 2β − 2 and

therefore, we have the lemma. ut

Figure 6 shows an example of migrations in Step 3.

Lemma 3.10. The number of colors we need for the final
transfer graph in Step 4 is (4β − 5) + (β + 2).

Proof. The out-degree of a disk j can be at most 3β − 5
(β − 1 in Step 2 and 2β − 4 in Step 3). The in-degree is at
most β by definition. We claim that the multiplicity of the
final transfer graph is β +2. Consider all the edges added in
Step 2, we will show the multiplicity induced by these edges
is 2. Since all Gi’s are disjoint and each disk in Gi sends
only item i to disks in Di \ Gi, for any pair of disks j1 and
j2, there can be at most one edge in each direction. Now
consider all the edges added in Step 3, if there is an edge
between disk j1 and disk j2, no matter which disk is the
sender, both disks belong to Di for some i. Thus, there are
at most β edges between j1 and j2 since a disk can belongs
to at most β different Di’s. Therefore, the result follows by
Theorem 2.1. ut

Theorem 3.11. The total number of rounds required for
the data migration is at most α + 2m′ + b 3

2
αc + 5β − 2.

Proof. We need α + 2m′ + 1 rounds for Step 2(b) by
Lemma 3.5 and b 3

2
αc rounds for Step 3(b) by Lemma 3.8.

Migration according to the coloring of the final transfer
graph needs (4β − 5) + (β + 2) by Lemma 3.10. There-
fore, we have the theorem. ut

Corollary 3.12. Our algorithm is 9.5-approximation
for the data migration problem.

Proof. Since α, β, m′ are lower bounds for the problem,
the corollary follows. ut

Theorem 3.13. The Data Migration Problem (with copy
operation) is NP -hard.

Proof. We give a simple reduction from the problem of
edge coloring a simple graph with the smallest number of
colors (which is known to be NP -hard [13]). Given a graph
G = (V, E), we create an instance of a data migration prob-
lem with V as disks. For each edge ei = (u, v) in the graph,

we create a new item i, where Si is {u} and Di is {v}. It
is not difficult to see that the minimum number of colors
required in the edge coloring instance is the same as the
minimum number of rounds in the corresponding data mi-
gration instance. ut
3.1 A Bad Example

Here we give an example when our data migration algo-
rithm does not perform very well. Consider the problem
where there are ∆ source disks, each disk having a separate
item; in addition, there are ∆ − 1 destination disks, each
disk requests all ∆ items. Thus N is equal to 2∆ − 1, ∆ is
equal to β, and |Di|, the number of disks requesting item i,
is equal to β − 1 for all i. In Step 3 of our data migration
algorithm, we need to find ∆ new sources s′i but we have
only ∆ − 1 destination disks. At least one disk d has to
be a new source for two items. Therefore step 3(b) takes
at least 2 rounds. In disk d, each item in d has to be sent
to the remaining ∆ − 2 destination disks. The out-degree
is exactly 2∆ − 4. The in-degree is ∆ − 2. So, we have a
node of degree 3∆ − 6 in the transfer graph, and the total
number of rounds is at least 3∆ − 4. The optimal strategy
is to have ∆− 1 of ∆ source disks sending items to destina-
tion disks in a round-robin fashion. This method only takes
∆ rounds. Therefore, our algorithm cannot perform better
than (3 − ε)-approximation.

4. HEURISTICS

4.1 Edge-Coloring on a Transfer Graph
We can find a transfer schedule using edge coloring on

a transfer graph. Since a disk can get the same item from
different source disks, we want to find a good way of selecting
source disks. We build a flow network with a source s and a
sink t. In addition we have two sets of nodes corresponding
to items and source disks. We add edges from s to node i
with capacity |Di| for all items i, and edges from a source
disk j to t with capacity c− βj . Finally, we add edges from
item i to source disk j if j ∈ Si.

Suppose c′ is the minimum c such that, for all i, the
amount of flow from s to i is the same as the capacity of
the (s, i) edge. Such c′ can be obtained by binary search
and solving a network flow problem in each iteration. Let
f∗(i, j) be the flow value from item i to source disk j when
c′ is obtained. We build a transfer graph as follows. Each
disk is a node in the graph. For each source disk j having
item i initially, we put f∗(i, j) directed edges from disk j
to f∗(i, j) different disks in Di, meaning that source disk j
would send item i to f∗(i, j) disks in Di. From the flow net-
work, we know that

∑
j∈Si

f∗(i, j) = |Di| for all i. Thus, all
destination disks are served. Moreover, each source disk j
serves at most c′−βj disks, and receives βj items from other
disks. The total degree of each source disk in the transfer
graph is at most c′.

Now we find an edge coloring of the transfer graph (which
may be a multigraph) to obtain a valid schedule [5], and
the number of colors used is an upper bound on the total
number of rounds.

Consider the problem single source broadcast, where all
∆ items are initially stored in a single disk s, and Di is all
the disks except the source disk s for all i. We claim that

the approximation ratio of this method is Ω(∆(N−1)
blog Nc+2∆−1

).

As there is only one source, the out-degree of the source

disk equals to the total demand, which is ∆(N − 1), in the
transfer graph. Thus, the heuristic takes at least ∆(N −
1) rounds. The optimal strategy [7, 8] uses pipelining and
doubles the number of items in every two steps. This would
take blog Nc + 2∆ − 1 rounds4.

4.2 Broadcasting Items One by One
In this algorithm, we deal with one item at a time. We

process each item i sequentially, and satisfy the demand by
doubling the number of copies of an item in each round,

which takes dlog(|Di|
|Si| + 1)e. The total number of rounds is

∑
idlog(|Di|

|Si| + 1)e.
Consider the case where |Si| is 1 and |Di| is 3 for all i, and

all Si and Di are disjoint. We claim that the approximation
ratio of this method is Ω(∆). The algorithm takes 2 rounds
for each item, and the total is 2∆. The optimal strategy is
to double all items in parallel, which takes 2 rounds.

4.3 Heuristics Using Matching
The algorithm is as follows.

1. Let the cost c(i, v, w) of sending item i from disk

v ∈ Si to disk w ∈ Di be log |Di|
|Si| . Build a weighted

undirected simple graph as follows. Each disk is a
vertex in the graph. Intuitively, if disk v and w
are matched, we would like to send the item with
greatest cost, and either v or w can be the sender.
Thus, we add an edge between v and w with weight
max(maxi c(i, v, w), maxi c(i, w, v)).

2. Find a maximum-weight matching on this graph. For
each matched v and w, suppose c(i, v, w) corresponds
to the weight between v and w, send item i from v to
w. This takes one round to send items in the matched
pairs. We then update the Si’s and Di’s.

3. If we have not satisfied all demands (there are some
non-empty Di’s), go to Step 1.

This heuristic can perform badly if we do not choose a
matching carefully. We consider the problem where b N

∆+1
c

disks have all the items and all the remaining disks are par-
titioned into ∆ groups of equal size, and disks in each group
i request item i. Thus, |Si| = |Di| ≈ N

∆+1
for all i and the

cost of all transfers are the same. Since all Si’s are over-
lapped initially, any matching of size b N

∆+1
c is a maximum-

weight matching. The heuristic may take ∆ rounds to fin-
ish, because it may satisfy all demands of item 1 in round
1, then satisfy all demands of item 2 in round 2, and so
on. However, the optimal strategy should be to partition
the source disks into ∆ groups and pair each group with a
different Di. Now we have ∆ independent problems which
can be done in parallel. Each small problem handles only 1
item, with b N

∆+1
c/∆ source disks and around N

∆+1
destina-

tion disks. Therefore, the optimal strategy only takes log ∆
rounds, which is much better than ∆ rounds.

4.4 Preliminary Performance Results
It is intuitive to see that the edge-coloring heuristic, which

does not exploit the fact that all newly spawned copies can
be sources, and broadcasting one-by-one heuristic, which

4The bound is for odd N . For even N , the bound is

d∆(N−1)−2blog2 Nc+1
blog Nc+bN/2c e rounds.

does not exploit parallel transfer of different items, perform
much worse than the other heuristics. The data migration
algorithm uses O(log ∆) rounds on the bad example men-
tioned in Section 4.3 because Gi is as large as Di and we
use doubling to satisfy all disks in Gi’s. However, under
the case where |Si| and |Di| each follows Zipf distribution,
matching heuristic usually takes β to 2β rounds while data
migration algorithm takes almost 3β rounds. One reason is
that in Step 4 of our algorithm does not treat newly spawned
copies as sources, and there may be better ways to do Step
2(b) and 3(b) by using methods that do better in practice,
but do not give good worst case bounds.

5. BOUNDED-SIZE MATCHING MODEL
The following algorithm gives a constant factor approxi-

mation when at most C transfers are allowed in each round.
Let Ei be the transfers in i-th round in the algorithm for the
full matching model. Then we split each Ei into d|Ei|/Ce
sets of size at most C and perform each set in a round.

Theorem 5.1. Given ρ-approximation algorithm for the
full matching model, we have 1 + ρ(1− 1/C)-approximation
algorithm for the bounded-size matching model where C is
the maximum number of transfers allowed in a round.

Proof. Let us denote the number of rounds required
in an optimal solution for the full matching model and
bounded-size matching model as OPT and OPT ′, respec-
tively. Also denote the number of rounds in our algorithm
as t and t′.

Note that since we move data only to disks that need the
data, the total number of data transfers performed in the al-
gorithm is the minimum possible. Thus OPT ′ ≥ ∑

i |Ei|/C.
Also as t ≤ ρOPT and OPT ≤ OPT ′, we have t ≤ ρOPT ′.

Therefore,

t′ =
t∑

i=1

d |Ei|
C

e

≤
t∑

i=1

(
|Ei| − 1

C
+ 1)

=
1

C

t∑

i=0

|Ei| + t(1 − 1

C
)

≤ OPT ′ + ρOPT ′(1 − 1

C
)

= (1 + ρ(1 − 1

C
))OPT ′

ut

Corollary 5.2. We have a 1 + 9.5(1 − 1/C)-
approximation algorithm for the bounded-size matching
model.

When we consider only move operations, we can obtain
better bounds for the bounded-size matching model. With-
out space constraints, the problem can be reduced to edge-
coloring multi-graphs, which has a 1.1-approximation algo-
rithm with an 0.8 additive term [21].

Corollary 5.3. When we allow only move operations,
we have a 1+1.1(1−1/C)-approximation algorithm with an
0.8 additive term for the bounded-size matching model.

With space constraints, the algorithm by Hall et al.[10]

gives 3
∆G

d∆G
2
e-approximation.

Corollary 5.4. When we allow only move operations
and there are space constraints, we have a 1+ 3

∆G
d∆G

2
e(1−

1
C

)-approximation algorithm for the bounded-size matching
model.

Using at most n/3 bypass nodes, Hall et al.[10] ob-

tained algorithms which give 2
∆G

d∆G
2
e-approximation with-

out space constraints and 4
∆G

d∆G
4
e-approximation with

space constraints. The algorithms add one transfer for every
odd cycle. Thus we have 4OPT ′/3 ≥ ∑ |Ei|/C.

Theorem 5.5. When we allow only move operations and
use at most n/3 bypass nodes, there is a 4

3
+ 2

∆G
d∆G

2
e(1 −

1
C

)-approximation algorithm without space constraints and
4
3

+ 4
∆G

d∆G
4
e(1 − 1

C
)-approximation algorithm with space

constraints.

Proof. We use the same notations as in Theorem 5.1.
Since 4OPT ′/3 ≥ ∑ |Ei|/C, we have

t′ =
t∑

i=1

d |Ei|
C

e

≤
t∑

i=1

(
|Ei| − 1

C
+ 1)

=
1

C

t∑

i=0

|Ei| + t(1 − 1

C
)

≤ 4

3
OPT ′ + ρOPT ′(1 − 1

C
)

= (
4

3
+ ρ(1 − 1

C
))OPT ′

ut

6. ACKNOWLEDGMENTS
We would like to thank Sudarshan Chawathe, Leana Gol-

ubchik, Liviu Iftode and John Kubiatowicz for useful discus-
sions. This research was supported by NSF Awards CCR-
9820965 and CCR-0113192.

7. REFERENCES
[1] E. Anderson, J. Hall, J. Hartline, M. Hobbes, A.

Karlin, J. Saia, R. Swaminathan and J. Wilkes. An
Experimental Study of Data Migration Algorithms.
Workshop on Algorithm Engineering, pages
145–158, 2001.

[2] B. Baker and R. Shostak. Gossips and Telephones.
Discrete Mathematics, 2:191–193, 1972.

[3] J. Bermond, L. Gargano and S. Perennes. Optimal
Sequential Gossiping by Short Messages. DAMATH:
Discrete Applied Mathematics and Combinatorial
Operations Research and Computer Science,
86:145–155, 1998.

[4] J. Bermond, L. Gargano, A. A. Rescigno and
U. Vaccaro. Fast gossiping by short messages.
International Colloquium on Automata, Languages
and Programming, pages 135–146, 1995.

[5] J. A. Bondy and U. S. R. Murty. Graph Theory with
applications. American Elsevier, New York, 1977.

[6] R. T. Bumby. A Problem with Telephones. SIAM
Journal on Algebraic and Discrete Methods,
2(1):13–18, March 1981.

[7] E. J. Cockayne, A. G. Thomason. Optimal
Multi-message Broadcasting in Complete Graphs.
Utilitas Mathematica, 18:181–199, 1980.

[8] A. M. Farley. Broadcast Time in Communication
Networks. SIAM Journal on Applied Mathematics,
39(2):385–390, 1980.

[9] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella
and A. Zhu. Approximation Algorithms for Data
Placement on Parallel Disks. Proc. of ACM-SIAM
SODA, pages 223–232, 2000.

[10] J. Hall, J. Hartline, A. Karlin, J. Saia and J.
Wilkes. On Algorithms for Efficient Data Migration.
Proc. of ACM-SIAM SODA, pages 620–629, 2001.

[11] A. Hajnal, E. C. Milner and E. Szemeredi. A Cure
for the Telephone Disease. Canadian Mathematical
Bulletin, 15(3):447–450, 1972.

[12] S. M. Hedetniemi, S. T. Hedetniemi and
A. Liestman. A Survey of Gossiping and
Broadcasting in Communication Networks.
Networks, 18:129–134, 1988.

[13] I. Holyer. The NP-Completeness of Edge-Coloring.
SIAM J. on Computing, 10(4):718–720, 1981.

[14] J. Hromkovic and R. Klasing and B. Monien and
R. Peine. Dissemination of Information in
Interconnection Networks (Broadcasting and
Gossiping). Combinatorial Network Theory, pages
125–212, D.-Z. Du and D.F. Hsu (Eds.), Kluwer
Academic Publishers, Netherlands, 1996.

[15] C. A. J. Hurkens. Spreading Gossip Efficiently.
Nieuw Archief voor Wiskunde, 5(1):208–210, 2000.

[16] S. Kashyap and S. Khuller. Algorithms for
Non-Uniform Size Data Placement on Parallel
Disks. Technical Report CS-TR-4463, University of
Maryland, March 2003.

[17] S. Khuller and Y. A. Kim and Y. C. Wan. On
Generalized Gossiping and Broadcasting.
Manuscript, 2003. http://www.cs.umd.edu/
projects/smart/papers/multicast.pdf

[18] W. Knodel. New gossips and telephones. Discrete
Mathematics, 13:95, 1975.

[19] H. M. Lee and G. J. Chang. Set to Set Broadcasting
in Communication Networks. Discrete Applied
Mathematics, 40:411–421, 1992.

[20] D. Liben-Nowell. Gossip is Synteny: Incomplete
Gossip and an Exact Algorithm for Syntenic
Distance. Proc. of ACM-SIAM SODA, pages
177–185, 2001.

[21] T. Nishizeki and K. Kashiwagi. On the 1.1
edge-coloring of multigraphs. SIAM J. on Discrete
Math., 3:391–410, 1990.

[22] D. Richards and A. L. Liestman. Generalizations of
Broadcasting and Gossiping. Networks, 18:125–138,
1988.

[23] H. Shachnai and T. Tamir. On two class-constrained
versions of the multiple knapsack problem.
Algorithmica, 29:442–467, 2001.

[24] H. Shachnai and T. Tamir. Polynomial time
approximation schemes for class-constrained

packing problems. Proc. of Workshop on
Approximation Algorithms, pages 238–249, 2000.

[25] C.E. Shannon. A theorem on colouring lines of a
network. J. Math. Phys., 28:148–151, 1949.

[26] S. Shargorodskaya. Implementation of Data
Migration Algorithms. http://www.cs.umd.edu/
projects/smart/data-migration/

[27] D.B. Shmoys and E. Tardos. An approximation
algorithm for the generalized assignment problem
Mathematical Programming, A 62, pages 461–474,
1993.

[28] R. Tijdeman. On a Telephone Problem. Nieuw
Archief voor Wiskunde, 19(3):188–192, 1971.

[29] V. G. Vizing. On an estimate of the chromatic class
of a p-graph (Russian). Diskret. Analiz. 3:25–30,
1964.

