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Abstract. The problems of gossiping and broadcasting have been widely studied. The basic
gossip problem is defined as follows: there are n individuals, with each individual having an
item of gossip. The goal is to communicate each item of gossip to every other individual.
Communication typically proceeds in rounds, with the objective of minimizing the number
of rounds. One popular model, called the telephone call model, allows for communication to
take place on any chosen matching between the individuals in each round. Each individual
may send (receive) a single item of gossip in a round to (from) another individual. In the
broadcasting problem, one individual wishes to broadcast an item of gossip to everyone else.
In this paper, we study generalizations of gossiping and broadcasting. The basic extensions
are: (a) each item of gossip needs to be broadcast to a specified subset of individuals and (b)
several items of gossip may be known to a single individual. We study several problems in this
framework that generalize gossiping and broadcasting. Our study of these generalizations was
motivated by the problem of managing data on storage devices, typically a set of parallel
disks. For initial data distribution, or for creating an initial data layout we may need to
distribute data from a single server or from a collection of sources.

1 Introduction

The problems of Gossiping and Broadcasting have been the subject of extensive study [21, 15, 17,
3, 4, 18]. These play an important role in the design of communication protocols in various kinds
of networks. The gossip problem is defined as follows: there are n individuals. Each individual has
an item of gossip that they wish to communicate to everyone else. Communication is typically
done in rounds, where in each round an individual may communicate with at most one other
individual (also called the telephone model). There are different models that allow for the full
exchange of all items of gossip known to each individual in a single round, or allow the sending
of only one item of gossip from one to the other (half-duplex) or allow each individual to send
an item to the individual they are communicating with in this round (full-duplex). In addition,
there may be a communication graph whose edges indicate which pairs of individuals are allowed to
communicate in each round. (In the classic gossip problem, communication may take place between
any pair of individuals; in other words, the communication graph is the complete graph.) In the
broadcast problem, one individual needs to convey an item of gossip to every other individual.
The two parameters typically used to evaluate the algorithms for this problem are: the number of
communication rounds, and the total number of telephone calls placed.

The problems we study are generalizations of the above mentioned gossiping and broadcasting
problems. The basic generalizations we are interested in are of two kinds (a) each item of gossip
needs to be communicated to only a subset of individuals, and (b) several items of gossip may be
known to one individual. Similar generalizations have been considered before [23, 25]. (In Section
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1.2 we discuss in more detail the relationships between our problem and the ones considered in
those papers.)

There are four basic problems that we are interested in. Before we define the problems formally,
we discuss their applications to the problem of creating data layouts in parallel disk systems. The
communication model we use is the half-duplex telephone model, where only one item of gossip may
be communicated between two communicating individuals during a single round. Each individual
may communicate (either send or receive an item of data) with at most one other individual in a
round. This model best captures the connection of parallel storage devices that are connected on
a network and is most appropriate for our application.

We now briefly discuss applications for these problems, as well as prior related work on data
migration. To deal with high demand, data is usually stored on a parallel disk system. Data objects
are often replicated within the disk system, both for fault tolerance as well as to cope with demand
for popular data [29, 5]. Disks typically have constraints on storage as well as the number of clients
that can simultaneously access data from it. Approximation algorithms have been developed [26, 27,
12, 19] to map known demand for data to a specific data layout pattern to maximize utilization1.
In the layout, we not only compute how many copies of each item we need, but also a layout
pattern that specifies the precise subset of items on each disk. The problem is NP -hard, but there
is a polynomial time approximation scheme [12]. Hence given the relative demand for data, the
algorithm computes an almost optimal layout. For example, we may wish to create this layout by
copying data from a single source that has all the data initially. Or the data may be stored at
different locations initially—these considerations lead to the different problems that we consider.

In our situation, each individual models a disk in the system. Each item of gossip is a data
item that needs to be transferred to a set of disks. If each disk had exactly one data item, and
needs to copy this data item to every other disk, then it is exactly the problem of gossiping.

Different communication models can be considered based on how the disks are connected. We
use the same model as in the work by [13, 1] where the disks may communicate on any matching; in
other words, the underlying communication graph is complete. For example, Storage Area Networks
support a communication pattern that allows for devices to communicate on a specified matching.

Suppose we have N disks and ∆ data items. The problems we are interested in are:

1. Single-source broadcast. There are ∆ data items stored on a single disk (the source). We
need to broadcast all items to all N − 1 remaining disks.

2. Single-source multicast. There are ∆ data items stored on a single disk (the source). We
need to send data item i to a specified subset Di of disks. Figure 1 gives an example when ∆
is 4.

3. Multi-source broadcast. There are ∆ data items, each stored separately at a single disk.
These need to be broadcast to all disks. We assume that data item i is stored on disk i, for
i = 1 . . .∆.

4. Multi-source multicast. There are ∆ data items, each stored separately at a single disk.
Data item i needs to be sent to a specified subset Di of disks. We assume that data item i is
stored on disk i, for i = 1 . . .∆.

We do not discuss the first problem in any detail since this was solved by [8, 10]. For the multi-
source problems, there is a sub-case of interest, namely when the source disks are not in any subset
Di. For this case we can develop better bounds.

1 Utilization refers to the total number of clients that can be assigned to a disk that contains the data
they want.
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Fig. 1. An initial and target layouts, and their corresponding Di’s of a single-source multicast instance.

1.1 Contributions

In Section 2 we define the basic model of communication and the notation used in the paper. Let
N be the number of disks and ∆ be the number of items. The main results that we show in this
paper are:

Theorem 1.1. For the single-source multicast problem we design a polynomial time algorithm that
outputs a solution where the number of rounds is at most OPT + ∆.

Theorem 1.2. For the multi-source broadcast problem we design a polynomial time algorithm that
outputs a solution where the number of rounds is at most OPT + 3.

Theorem 1.3. For the multi-source multicast problem we design a polynomial time algorithm that
outputs a solution where the number of rounds is at most 4OPT + 2. Moreover, we show that this
problem is NP -hard.

Theorem 1.4. For the multi-source multicast problem we also design a polynomial time algorithm
that outputs a solution where the number of rounds is at most (3 + o(1))OPT .

For all the above algorithms, we move data only to disks that need the data. Thus we use no
bypass (intermediate) nodes as holding points for the data. If bypass nodes are allowed, we have
the following result:

Theorem 1.5. For the multi-source multicast problem allowing bypass nodes we design a polyno-
mial time algorithm that outputs a solution where the number of rounds is at most 3OPT + 6.

1.2 Related Work

One general problem of interest is the data migration problem when data item i resides in a
specified (source) subset Si of disks, and needs to be moved to a (destination) subset Di. This
problem is more general than the Multi-source multicast problem where we assumed that |Si| =
1 and that all the Si’s are disjoint. For the data migration problem we have developed a 9.5-
approximation algorithm [20]. While this problem is a generalization of all the problems we study
in this paper (and clearly also NP -hard since even the special case of multi-source multicast is
NP -hard), the bounds in [20] are not as good. The methods used for single-source multicast and
multi-source broadcast are completely different from the algorithm in [20]. Using the methods in
[20] one cannot obtain additive bounds from the optimal solution. The algorithm for multi-source
multicast presented here is a simplification of the algorithm developed in [20], and we also obtain
a much better approximation factor of 4. In addition, by allowing bypass nodes we can improve
the bounds further.
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Many generalizations of gossiping and broadcasting have been studied before. For example,
the paper by Liben-Nowell [23] considers a problem very similar to multi-source multicast with
∆ = N . However, the model that he uses is different than the one that we use. In his model, in each
telephone call, a pair of users can exchange all the items of gossip that they know. The objective
is to simply minimize the total number of phone calls required to convey item i of gossip to set
Di of users. In our case, since each item of gossip is a data item that might take considerable time
to transfer between two disks, we cannot assume that an arbitrary number of data items can be
exchanged in a single round. Several other papers use the same telephone call model [2, 7, 14, 18,
30]. Liben-Nowell [23] gives an exponential time exact algorithm for the problem.

Other related problems that have been studied are the set-to-set gossiping problem [22, 25]
where we are given two possibly intersecting sets A and B of gossipers and the goal is to minimize
the number of calls required to inform all gossipers in A of all the gossip known to members in B.
The work by [22] considers minimizing both the number of rounds as well as the total number of
calls placed. The main difference is that in a single round, an arbitrary number of items may be
exchanged. For a complete communication graph they provide an exact algorithm for the minimum
number of calls required. For a tree communication graph they minimize the number of calls or
number of rounds required. Liben-Nowell [23] generalizes this work by defining for each gossiper
i the set of relevant gossip that they need to learn. This is just like our multi-source multicast
problem with ∆ = N , except that the communication model is different, as well as the objective
function. The work by [9] also studies a set to set broadcast type problem, but the cost is measured
as the total cost of the broadcast trees (each edge has a cost). The goal is not to minimize the
number of rounds, but the total cost of the broadcast trees. In [11] they also define a problem
called scattering which involves one node broadcasting distinct messages to all the other nodes
(very much like our single source multicast, where the multicast groups all have size one and are
disjoint).

As mentioned earlier, the single source broadcast problem using the same communication model
as in our paper was solved by [8, 10].

2 Models and Definitions

We have N disks and ∆ data items. Note that after a disk receives item i, it can be a source of item
i for other disks that have not received the item as yet. Our goal is to find a schedule using the
minimum number of rounds, that is, to minimize the total amount of time to finish the schedule.
We assume that the underlying network is connected and the data items are all the same size, in
other words, it takes the same amount of time to migrate an item from one disk to another. The
crucial constraint is that each disk can participate in the transfer of only one item—either as a
sender or receiver. Moreover, as we do not use any bypass nodes, all data is only sent to disks that
desire it.

Our algorithms make use of a known result on edge coloring of multi-graphs. Given a graph G
with max degree ∆G and multiplicity µ the following result is known (see [6] for example). Let χ′

be the edge chromatic number of G.

Theorem 2.1. (Vizing [31]) If G has no self-loops then χ′ ≤ ∆G + µ.

3 Single-Source Multicasting

In this section, we consider the case where there is one source disk s that has all ∆ items and others
do not have any item in the beginning. For the case of broadcasting all items, it is known that there

is a schedule which needs 2∆ − 1 + blog Nc rounds for odd N and d∆(N−1)−2blog2 Nc+1
bN/2c e + blog Nc
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rounds for even N [8, 10] and this is optimal. We develop an algorithm that can be applied when
Di is an arbitrary subset of disks. The number of rounds required by our algorithm is at most
∆+OPT where OPT is the minimum number of rounds required for this problem. Our algorithm
is obviously a 2-approximation for the problem, since ∆ is a lower bound on the number of rounds
required by the optimal solution.

3.1 Outline of the Algorithm

Without loss of generality, we assume that |D1| ≥ |D2| ≥ · · · ≥ |D∆| (otherwise renumber the

items). Let |Di| = 2d1
i + 2d2

i + · · ·+ 2d
mi
i where dj

i (j = 1, 2, . . . , mi) are integers and dj
i > dj+1

i . (In
other words, we consider the bit representation of each |Di| value.)

Our algorithm consists of two phases.
Phase I. In the first phase, we want to make exactly b|Di|/2c copies for all items i. At the t-th

round, we do the following:

1. If t ≤ ∆, copy item t from source s to a disk in Dt.
2. For items j (j < t), double the number of copies unless the number of copies reaches b|Dj |/2c.

In other words, every disk having an item j makes another copy of it if the number of copies of

item j is no greater than 2d1
j−2, and when it becomes 2d1

j−1, then only b|Dj |/2c − 2d1
j−1 disks

make copies, and thus the number of copies of item i becomes b|Di|/2c.

Phase II. At t-th round, we finish the migration of item t. Each item j has b|Dj |/2c copies.
We finish migrating item t by copying from the current copies to the remaining b|Dt|/2c disks in
Dt which did not receive item t as yet, and we use the source disk if |Dt| is odd.

Figure 2 and Figure 3 show an example of data transfers taken in Phase 1 and Phase 2,
respectively, where |D1|, |D2| and |D3| are 16, 12 and 8, respectively. It is easy to see that Phase II
can be scheduled without conflicts because we deal with only one item each round. But in Phase I,
migration of several items happen at the same time and Di’s can overlap. Therefore, we may not
be able to satisfy the requirement of each round if we arbitrarily choose the disks to receive items.
We show that we can finish Phase I successfully without conflicts by choosing disks carefully.

3.2 Details of Phase I

Let Dp
i be the disks in Di that participate in either sending or receiving item i at the (i + p)-th

round. D0
i is the first disk receiving i from the source s and

|Dp
i | =

{

2p if p ≤ d1
i − 1

2b |Di|
2 c − 2d1

i if p = d1
i

At (i+p)-th round, disks in Di+p−j
j (i+p−d1

j ≤ j ≤ min(i+p, ∆)) either send or receive item j at
the same time. To avoid conflicts, we decide which disks belong to Dp

i before starting migration. If
we choose disks from Di

⋂

Dj for Dp
i (j > i), it may interfere with the migration of Dj . Therefore,

when we build Dp
i , we consider Dp′

j where j > i and p′ ≤ p. Also note that since each disk receiving
an item should have its corresponding sender; half of Dp

i should have item i as senders and another
half should not have item i as receivers.

We build Dp
∆ first. Choose 2b|D∆|/2c−2d1

∆ disks for D
d1

∆

∆ and 2d1
∆−1 disks for D

d1
∆−1

∆ from D∆.

When we choose D
d1

∆−1
∆ , we should include the half of D

d1
∆

∆ (that will be senders at (∆ + d1
∆)-th

round) and exclude the remaining half of D
d1

∆

∆ (that will be receivers at (∆ + d1
∆)-th round). And

then build Dp
∆(p < d1

∆ − 1) by taking any subset of Dp+1
∆ .
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Fig. 2. An example of Phase I when all |Di| are even

Round 1 Round 2 Round 3 Done

D2 D3
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D2 D3

D1
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D1

D2 D3

D1

Fig. 3. An example of Phase II when all |Di| are even

Now given Dp′

j (i < j ≤ ∆), we decide Dp
i as follows: Define D′

i to be disks in Di which do not

have any item j(> i) after (i+d1
i )-th round. In the same way, define D′′

i to be disks in Di which do

not have any item j(> i) after (i+d1
i −1)-th round. Formally, since all disks in

⋃p′

p=0 Dp
j have item

j after (j + p′)-th rounds, D′
i = Di −

⋃∆
j=i+1(

⋃i+d1
i −j

p=0 Dp
j ) and D′′

i = Di −
⋃∆

j=i+1(
⋃i+d1

i −1−j
p=0 Dp

j ).

As shown in Figure 4, we choose D
d1

i

i from D′
i and also D

d1
i−1

i from D′′
i , by which we can avoid

conflicts. Also, half of D
d1

i

i should be included in D
d1

i−1
i (to be senders) and the remaining half

should be excluded from D
d1

i−1
i (to be receivers). We make Dp

i (p < d1
i − 1) by choosing any subset

of disks from Dp+1
i .

Lemma 3.1. We can find a migration schedule by which we perform every round in phase I without
conflicts.
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Proof. First we show that there are enough disks to build Dp
i as described above. Because

|⋃p′

p=0 Dp
j | ≤ 2p′

,

|D′′
i | = |Di −

∆
⋃

j=i+1

(

i+d1
i −1−j
⋃

p=0

Dp
j )|

≥ |Di| −
∆

∑

j=i+1

2i+d1
i−1−j

≥ |Di| −
d1

i−2
∑

m=0

2m > |Di| − 2d1
i−1

Therefore, even after excluding b|Di|/2c − 2d1
i−1 disks in D′

i from D′′
i , we have at least |Di|/2 =

2d1
i−1 +2d2

i−1 + · · ·+2d
mi
i

−1 disks, from which we can take 2d1
i−1 disks for D

d1
i

i . Also we know that

|D′
i| = |Di −

∆
⋃

j=i+1

(

i+d1
i−j

⋃

p=0

Dp
j )| > |Di| − 2d1

i .

Because we only need 2b|Di|/2c − 2d1
i disks for D

d1
i−1

i , we have enough disks to choose.
Now we argue that there is no conflict in performing migration if we do migration according to

Dp
i . Since D

d1
i

i ⊂ D′
i and D′

i

⋂

D
i+d1

i−j
j = ∅ (j > i), there is no conflict between i and j at (i+d1

i )-th

round. For p ≤ d1
i − 1, since Dp

i ⊂ D′′
i and D′′

i

⋂

Di+p−j
j = ∅ (j > i), there is no conflict between i

and j at (i + p)-th round. Therefore, we can perform migration in Phase I without conflicts. ut

3.3 Analysis

We prove that our algorithm uses at most ∆ more rounds than the optimal solution for single-source
multicasting. Let us denote the optimal makespan of an migration instance I as C(I).

Theorem 3.2. For any migration instance I, C(I) ≥ max1≤i≤∆(i + blog |Di|c).

Proof. Consider the instance where there is no overlap among Di’s. After a disk in Di receives i
from s for the first time, we need at least blog |Di|c more rounds to make all disks in Di receive i even
if s copies item i several times after the first copy. Therefore, C(I) ≥ max1≤i≤∆(f(i) + blog |Di|c)
where f(i) is the round when Di receives the first copy from s. Because s can be involved in
copying only one item at a time, f(i) 6= f(j) if i 6= j. Also copying the same item from s more
than once during the first ∆ rounds will only increase f(i) of some sets. Therefore, f(i) should be
a permutation of 1, . . . , ∆ to minimize the value. Now we show that max1≤i≤∆(f(i)+blog |Di|c) ≥
max1≤i≤∆(i + blog |Di|c) for any permutation f(i). Suppose there is a set Di that f(i) 6= i when
max1≤i≤∆(f(i) + blog |Di|c) is minimum. Let Di be the set which have the smallest f(i) among
such sets. Then f(i) < i and there should be a Dj such that j = f(i) and f(j) > j. Even if we
exchange the order of two sets, the value does not increase because

max(f(i) + blog |Di|c, f(j) + blog |Dj |c) = f(j) + blog |Dj |c
≥ max(j + blog |Dj |c, f(j) + blog |Di|c).

Thus when f(i) = i for all i, max1≤i≤∆(f(i) + blog |Di|c) is minimized. ut
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Lemma 3.3. The total makespan of our algorithm is at most max1≤i≤∆(i + blog |Di|c) + ∆.

Proof. In the phase I, Di receives i from s at i-th round for the first time. Because the number
of copies is doubled after then until it reaches b|Di|/2c, the number of copies of item i reaches
b|Di|/2c in i + blog |Di|c rounds. Phase II takes at most ∆ rounds because we finish one item at a
round. Therefore, the lemma follows. ut
Corollary 3.4. The total makespan of our algorithm is at most the optimal makespan plus ∆.

Proof. Follows from Lemma 3.2 and Lemma 3.3. ut
Theorem 3.5. We have a 2-approximation algorithm for the single-source multicasting problem.

Proof. Because ∆ ≤ max1≤i≤∆(i + blog |Di|c), the algorithm is 2-approximation. ut

4 Multi-Source Broadcasting

We assume that we have N disks. Disk i, 1 ≤ i ≤ ∆, has an item numbered i. The goal is to send
each item i to all N disks, for all i. We present an algorithm which performs no more than 3 extra
rounds than the optimal solution.

4.1 Algorithm Multi-Source Broadcast

1. We divide N disks into ∆ disjoint sets Gi such that disk i ∈ Gi, for all i = 1 . . .∆. Let q be
bN

∆ c and r be N − q∆. |Gi| = q + 1 for i = 1 . . . r, and |Gi| = q for i = r + 1 . . .∆. Every disk
in Gi can receive item i using dlog |Gi|e rounds by doubling the items in each round.

2. We divide all N disks into q − 1 groups of size ∆ by picking one disk from each Gi, and one
group of size ∆ + r which consists of all remaining disks.

3. Consider the first q − 1 gossiping groups; each group consists of ∆ disks, with each having
a distinct item. Using the gossiping algorithm in [4], every disk in the first q − 1 groups can
receive all ∆ items in 2∆ rounds2.

4. Consider the last gossiping group, there are exactly two disks having items 1, . . . , r, while there
is exactly one disk having item r + 1, . . . , ∆. If r is zero, we can finishes all transfers in 2∆
rounds using algorithm in [4]. For non-zero r, we claim that all disks in this gossiping group
can receive all items in 2∆ rounds.
We divide the disks in this gossiping group into 2 groups, GX and GY of size ∆ − b∆−r

2 c and

r + b∆−r
2 c respectively. Note that |GY | + 1 ≥ |GX | ≥ |GY |. Exactly one disk having items

1, . . . , r appear in each group, disks having item r + 1, . . . , ∆ − b∆−r
2 c appear in GX , and the

remaining disks (having items ∆− b∆−r
2 c + 1, . . . , ∆) appear in GY . Note that the size of the

two groups differ by at most 1. The general idea of the algorithm is as follows (The details of
these step are non-trivial and covered in the proof of Lemma 4.1):
(a) Algorithm in [4] is applied to each group in parallel. After this step, each disk has all items

belong to its group.
(b) In each round, disks in GY send item i to disks in GX , where i is ∆ − b∆−r

2 c + 1, . . . , ∆.
Note that only disks in GY have these items, but not the disks in GX . Since the group
sizes differ by at most 1, the number of rounds required is about the same as the number
of items transferred.

(c) The step is similar to the above step but in different direction. Item i, where i is r +
1, . . . , ∆ − b∆−r

2 c, are copied to GY .

Thus, our algorithm takes dlog N
∆ e + 2∆ rounds.

2 The number of rounds required is 2∆ if ∆ is odd, otherwise it is 2(∆ − 1)
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4.2 Analysis

Lemma 4.1. For a group of disks of size ∆ + r, where 1 ≤ r < ∆, if every disk has one item,
exactly 2 disks have item 1, . . . r, and exactly 1 disk has item r + 1, . . . , ∆, all disks can receive all
∆ items in 2∆ rounds.

Proof. We have three cases.
Case I: If ∆+r is even: No matter |GX | and |GY | is odd or not, Step 4a can be done in 2(∆− ∆−r

2 )

rounds because ∆− ∆−r
2 is the group size. In Step 4b and 4c, we can finish one item in one round

since the size of the two groups is the same. All disks can participate in transferring data without
any conflict. There are (∆−r

2 ) + (∆ − r − ∆−r
2 ) items to be sent in these 2 steps. Thus, the total

rounds needed is (2(∆ − ∆−r
2 )) + (∆−r

2 ) + (∆ − r − ∆−r
2 ) = 2∆.

Case II: If ∆+ r is odd and |GX | = ∆− ∆−r−1
2 is even: Step 4a can be done in 2(∆− ∆−r−1

2 − 1)

rounds. In Step 4b, ∆−r−1
2 has to be copied to GX but |GY | is smaller than |GX | by one. Instead

of keeping one disk idle all the time, we shift the disk not receiving any item in each round. After
this step finishes, only ∆−r−1

2 disks in GX miss 1 item, while other disks in GX receive all ∆−r−1
2

items. Using one more round, all disks in GX can receive all items needed from GY . In Step 4c,
∆ − r − ∆−r−1

2 items have to be copied to GY , and we have enough source disks in GX . Thus, it

requires (2(∆ − ∆−r−1
2 − 1)) + (∆−r−1

2 + 1) + (∆ − r − ∆−r−1
2 ) = 2∆ rounds.

Case III: If ∆ + r is odd and |GX | = ∆ − ∆−r−1
2 is odd: Since |GX | is odd, Step 4a takes

2(∆ − ∆−r−1
2 ) rounds. We claim that in this step, in addition to receiving items from its group,

all disks in GX , except the disk has item 1 originally, have item ∆, and all disks in GY have item
∆− ∆−r−1

2 (i.e., the largest numbered item in GX). We use the algorithm in [4] to form a schedule
for GX with the constraint that (i) the disk has item 1 originally should be idle at the first two
rounds, and (ii) the disk which received item ∆− ∆−r−1

2 , except the disk having item 1 originally,
should be idle in the next two rounds. It is not difficult to check that such a schedule exists, and
this enforces the disk has item ∆ − ∆−r−1

2 originally would be idle at the last 2 rounds. We sort

disks in GX according to the item number it has, and label the disks as disk 1, 2, . . . , ∆− ∆−r−1
2 .

We also sort disks in GY , but label the disks as 2, 3, . . . , ∆− ∆−r−1
2 . Disk 1 in GY is an imaginary

disk which does not exist. Whenever disk x and y in GX exchange data in the gossiping schedule
of GX , disk x and y in GY also exchange data in the same round. Moreover, starting at round
3, the idle disk in GX , which should have item ∆ − ∆−r−1

2 , will exchange data with the idle disk
in GY , which should have item ∆. If a disk in GY is supposed to exchange data with disk 1 in
GY (i.e., the imaginary disk), the disk would actually be idle in that round. An example can be
found in Figure 5. Note that we just exploit the idle cycles in the gossiping schedule. The number
of rounds required is still 2(∆ − ∆−r−1

2 ). One disk in GX always exchanges data with one disk in
GY except in the first 2 rounds. All disks in GX and GY , except disk 1 in GX , receive one extra
item from other group.

In Step 4b and 4c, the analysis is similar to that in Case II except that we save one round
in each step because each disk has already received one item from another group in Step 4a. The
disk in GX , which does not have item ∆, can receive it in the last round of Step 4b because
∆−r−1

2 + 1 ≤ |GY |.
Thus, the total number of rounds is (2(∆− ∆−r−1

2 ))+(∆−r−1
2 )+(∆−r− ∆−r−1

2 −1) = 2∆. ut

To show our algorithm is close to optimal, we will show a lower bound of any algorithm for the
problem.

Theorem 4.2. The makespan time of any migration instance of multi-source broadcasting is at
least blog N

∆ c + 2(∆ − 1).
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Proof. Consider a transfer graph of the optimal solution, where vertices are disks and edge i to j
represents one item is copied from disk i to disk j at certain time. For each of the ∆ source disks,
it needs ∆− 1 items. For each of the remaining N −∆ disks, it needs all ∆ items. Therefore, there
should be ∆(∆ − 1) + (N − ∆)∆ = ∆(N − 1) edges.

In the initial blog N
∆c rounds, some disks have to be idle because of the limited number of

sources. For example, if there are x non-empty disks at a certain round, one can perform at most
x transfers. If all the transfers send data to other empty disks, one can perform 2x transfers in
the next round, while other schemes cannot support 2x transfers in the next round. Therefore, the
best scheme is to keep on doubling all items in each round until all disks have at least one item.
This takes blog N

∆ c rounds. Now, at most N − ∆ transfers are done.

Total degree of the transfer graph after removing the edges corresponding to the first blog N
∆c

rounds is at least 2(∆(N − 1) − (N − ∆)) = 2N(∆ − 1). Note that each disk can receive or send
only 1 item in 1 round. All N disks can reduce the graph by N degrees in 1 round. The total time

is at least blog N
∆ c + 2N(∆−1)

N = blog N
∆ c + 2(∆ − 1). ut

Thus, our solution takes no more than 3 rounds than the optimal.

5 Multi-Source Multicasting

We assume that we have N disks. Disk i, 1 ≤ i ≤ ∆ ≤ N , has data item i. The goal is to copy item
i to a subset Di of disks that do not have item i. (Hence i /∈ Di). In Appendix A we show that
finding a schedule with the minimum number of rounds is NP -hard. In this section we present
a polynomial time approximation algorithm for this problem. The approximation factor of this
algorithm is 4. We also present an improvement that allows the use of bypass nodes.

We define β as maxj=1...N |{i|j ∈ Di}|. In other words, β is an upper bound on the number
of different sets Di to which a disk j may belong. Note that β is a lower bound on the optimal
number of rounds, since the disk that attains the maximum, needs at least β rounds to receive all
the items i such that j ∈ Di, since it can receive at most one item in each round.

The algorithm will first create a small number of copies of each data item i (the exact number
of copies will be dependent on |Di|). We then assign each newly created copy to a set of disks in Di,
such that it will be responsible for providing item i to those disks. This will be used to construct
a transfer graph, where each directed edge labeled i from v to w indicates that disk v must send
item i to disk w. We will then use an edge-coloring of this graph to obtain a valid schedule [6].
The main difficulty here is that a disk containing an item is its source, is also the destination for
several other data items.

Algorithm Multi-Source Multicast

1. We first compute a disjoint collection of subsets Gi, i = 1 . . .∆. Moreover, Gi ⊆ Di and

|Gi| = b |Di|
β c. (In Lemma 5.1, we will show how such Gi’s can be obtained.)

2. Since the Gi’s are disjoint, we have the source for item i (namely disk i) send the data to the
set Gi using dlog |Di|e + 1 rounds as shown in Lemma 5.2. Note that disk i may itself belong
to some set Gj . Let G′

i = {i} ∪ Gi. In other words, G′
i is the set of disks that have item i at

the end of this step.

3. We now create a transfer graph as follows. Each disk is a node in the graph. We add directed
edges from each disk in G′

i to disks in Di \ Gi such that the out-degree of each node in G′
i is

at most β − 1 and the in-degree of each node in Di \Gi is 1. (In Lemma 5.3 we show how that
this can be done.) This ensures that each disk in Di receives item i, and that each disk in G′

i

does not send out item i to more than β − 1 disks.
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4. We now find an edge coloring of the transfer graph (which is actually a multigraph) and the
number of colors used is an upper bound on the number of rounds required to ensure that each
disk in Dj gets item j. (In Lemma 5.4 we derive an upper bound on the degree of each vertex
in this graph.)

Lemma 5.1. (Step 1) There is a way to choose disjoint sets Gi for each i = 1 . . .∆, such that

|Gi| = b |Di|
β c and Gi ⊆ Di.

The proof was shown in Lemma 3.2 in [20]. We include it in Appendix B for completeness.

Lemma 5.2. Step 2 can be done in maxidlog |Di|e + 1 rounds.

Proof. First we assume that maxi |Di| > 2 and β ≥ 2 since otherwise the problem becomes trivial.
We arbitrarily choose a new source disk s′i in each Gi and send item i from disk i to s′i. Because

a disk i may send item i to s′i and receive item j if i = s′j , this initial transfer can take 2 rounds
unless the transfer does not make odd cycles (we will consider the case of odd cycles later).

Because sets Gi are disjoint, it then takes dlog |Gi|e rounds to send item i from s′i to all disks in

Gi. The result follows from considering the non-trivial case where β ≥ 2, dlog |Gi|e ≤ dlog |Di|
β e ≤

dlog |Di| − 1e.
Now let us consider the case of odd cycles. If any of Gi in the odd cycle is of size at least 2, then

we can break the cycle by selecting other disk in Gi as s′i. Otherwise if the size of all Gi are one,
then this step can be done only in 3 rounds (no broadcasting is needed inside Gi) and therefore
the lemma is true. ut

Lemma 5.3. We can construct a transfer graph as described in Step 3, such that the in-degree of
each node in Di \ Gi from Gi is 1 and the out-degree of each node in Gi is at most β − 1.

Proof. We divide each Di \Gi into disjoint sets Di1, . . . , Dimi
where mi = d |Di|

β e such that |Dij | =

β − 1 for j = 1, . . . , mi − 1 and |Dimi
| = |Di \Gi| − (β − 1)(mi − 1). For each set Dij , we choose a

different disk from G′
i and add a directed edge from the disk to all disks in Dij . Because |Dij | < β

and each disk in Di \Gi will have an incoming edge from one disk in G′
i, we have a transfer graph

as described in Step 3. ut

Lemma 5.4. The in-degree of any disk in the transfer graph is at most β. The out-degree of any
disk in the transfer graph is at most 2β − 2. Moreover, the multiplicity of the graph is at most 4.

Proof. Note that each disk i may belong to at most β sets Dj . Due to its membership in set Dj it
may have one incoming edge from some disk in G′

j .
The out-degree of disk i is β − 1 due to membership in the set G′

i. These are the β − 1 edges
added in Step 3. In addition, i may be in some set Gk (and thus in G′

k); this may cause an extra
out-degree of β − 1. This gives a total out-degree of at most 2β − 2.

Each disk can be a source for two items because it can be the original source of an item i and
also belongs to Gk (k 6= i). Since the subgraph with edges for only one item is a simple graph, for
any pair of disks p, q, there can be two edges from p to q and two more edges in another direction.
Therefore, the multiplicity of the transfer graph is at most 4. ut

Theorem 5.5. The total number of rounds required for the multi-source multicast is
maxidlog |Di|e + 3β + 3.

Proof. Because of Lemma 5.4, we can find an edge coloring of the graph using at most 3β + 2
colors (see Theorem 2.1). Combining with Lemma 5.2, we can finish the multi-source multicast in
maxidlog |Di|e + 3β + 3 rounds. ut
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Theorem 5.6. The total number of rounds required for the multi-source multicast problem is at
most 4OPT + 2.

Proof. Let βj be |{i|j ∈ Di}|, i.e., the number of different sets Di, that disk j belongs to. Thus,
the in-degree of disk j in any solutions (not using bypass nodes) is βj . Consider any source disk si

in the transfer graph as described in Step 3, its total degree is therefore βsi
+ (β − 1) + (β − 1).

In the optimal solution, the out-degree of any disk si must be at least one, since si must send its
item to some other disk. Thus, OPT ≥ maxi(βsi

+ 1). The maximum degree of any source disk si

in the transfer graph is maxi βsi
+(β − 1) + (β − 1) ≤ OPT + 2β − 3. Consider any disk j which is

not the source, its total degree is βj +(β−1). Note that OPT ≥ maxj βj and β ≥ 2, the maximum
degree of any non-source disk is maxj 6=si

βj +(β−1) = OPT +(β−1) ≤ OPT +2β−3. Therefore,
the maximum degree of the transfer graph is at most OPT + 2β − 3. We have an algorithm that
takes at most (maxidlog |Di|e+ 1) + (OPT + 2β − 3) + 4 rounds. As maxidlog |Di|e and β are also
the lower bounds on the optimal number of rounds, the total number of rounds required is at most
4OPT + 2. ut

For the special case in which the source disks are not in any subset Di, we can develop better
bounds.

Corollary 5.7. When the source disks are not in any subset Di, the total number of rounds required
for the multi-source multicast is maxidlog |Di|e + 2β + 1.

Proof. Step 2 can be done in maxidlog |Di|e rounds since we can save one round to send item i to
s′i. Also as the original sources do not belong to any Gi, the transfer graph in Step 4 has out-degree
at most β − 1 and multiplicity at most 2. Therefore, the corollary follows. ut

Thus we have 3-approximation for this special case.

5.1 3 + o(1)-approximation Algorithm

In this section we present a polynomial-time 3+o(1)-approximation algorithm for the Multi-Source
Multicast problem.

In the previous algorithm, each disk only belongs to at most one Gi set. When the size of Di

is small, say 2β − 1, the size of Gi is 1, and the sole disk in Gi is responsible for sending data to
β − 1 disks, while si is responsible for sending data to the remaining β − 1 disks. By allowing a
disk to belong to multiple Gi sets, we can decrease the number of disks to which si is responsible
for sending items. The out-degree of a disk in the transfer graph is reduced, and we can obtain a
better bound.

Suppose a disk can now belong to upto p (≤ β) different Gi sets. In other words, imagine that

there are p slots in each disk, and each Gi will occupy exactly bp |Di|
β c slots. If Gi occupies a slot

in a disk, the disk will be responsible for sending the item to either b β
p c − 1 or dβ

p e − 1 disks in

Di \ Gi.
Changes to the algorithm

– In Step 1, we create a modified flow network to compute a (not necessarily disjoint) collection

of subsets Gi, where |Gi| is bp |Di|
β c. In addition, each disk belongs to at most p Gi sets. We

show in Lemma 5.8 how such Gi’s can be obtained.
– In Step 2, although the Gi’s are not disjoint, sending items from si to Gi is actually another

smaller multi-source multicast problem, where β′, the upper bound on the number of different
destination sets (Gi) to which a disk j in some Gi may belong, is p. Lemma 5.9 describes the
details.
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– In Step 3, if Gi occupies a slot in a disk j, we would like the disk to satisfy either b β
p c − 1 or

dβ
p e − 1 disks in Di \ Gi. Moreover, we would like to keep the total out-degree of disk j to be

at most β − p, while disks in Gi together have to satisfy bbp |Di|
β c(β

p − 1)c disks in Di \Gi. We
show in Lemma 5.10 how this can be achieved by a network flow computation. We also show
the source si is responsible for at most dβ

p e disks.

Lemma 5.8. In Step 1, there is a way to choose sets Gi for each i = 1 . . .∆, such that Gi occupies

exactly one slot in each of bp |Di|
β c disks, and Gi ⊆ Di. Moreover, each disk has p slots.

Proof. The basic idea of the proof is similar to that in Lemma 3.2 in Appendix B. First note that
we have enough slots for Gi (we have N disks and each disk has p slots).

∑

i

bp |Di|
β

c ≤ p

β

∑

i

|Di| ≤
p

β
(βN) = pN.

Now we show how to assign Gi to the slots using network flows. We create a flow network with a
source s and a sink t. We also have two sets of vertices U and W . The first set U has ∆ nodes,
each corresponding to an item. The set W has N nodes, each corresponding to a disk. We add

directed edges from s to each node i in U with capacity λi = bp |Di|
β c. We add unit capacity edges

from node i ∈ U to j ∈ W if j ∈ Di. We also add edges with capacity p from nodes in W to t. We
find a max-flow from s to t in this network. We can find a fractional flow of this value as follows:
saturate all the outgoing edges from s. From each node i there are |Di| edges to nodes in W . Send
λi

1
|Di|

units of flow along each of the |Di| outgoing edges from i. Note that since λi
1

|Di|
≤ p

β ≤ 1

this can be done. Observe that the total incoming flow to a vertex in W is at most p since there
are at most β incoming edges, each carrying at most λi

1
|Di|

≤ p
β units of flow. The min-cut in this

network is obtained by simply selecting the outgoing edges from s. An integral max flow in this
network will correspond to |Gi| units of flow going from s to i, and from i to a subset of vertices
in Di before reaching t. The vertices to which i has non-zero flow will form the set Gi. The unit
capacity edges between U and W ensures that Gi only occupies one slot in each disk, and thus

|Gi| is exactly bp |Di|
β c. ut

Lemma 5.9. Step 2 can be done in maxi logbp |Di|
β c + 3p + 4 steps.

Proof. Observe that sending items from si to Gi is just another smaller multi-source multicast
problem. The upper bound on the number of different destination sets (Gi) to which a disk j in
some Gi may belong is p. Therefore, using the 4-approximation algorithm described in the previous

section, we can send items to all disks in Gi in (maxi logbp |Di|
β c+2)+(p+((p−1)+(p−1)))+4 =

maxi logbp |Di|
β c + 3p + 4 rounds. ut

Lemma 5.10. In Step 3, we can find a transfer graph to satisfy all requests in Di \ Gi, where
the in-degree is at most β, the out-degree is at most (β − p) + d β

p e, and the multiplicity is at most

2(p + 1).

Proof. To find out how many disks (in Di \ Gi) a disk j in Gi should send item i to, while also
satisfying the constraints stated in the description of Changes to the algorithm, we create a
flow network with a source s and a sink t. We also have two sets of vertices U and W . The first
set U has ∆ nodes, each corresponding to an item. The set W has N nodes, each corresponding

to a disk. We add directed edges from s to each node i in U with capacity γi = bbp |Di|
β c(β

p − 1)c.
We add edges from node i ∈ U to j ∈ W if j ∈ Gi with capacity dβ

p e − 1. We also add edges with
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capacity β − p from nodes in W to t. We find a max-flow from s to t in this network. The min-cut
in this network is obtained by simply selecting the outgoing edges from s. We can find a fractional
flow of this value as follows: saturate all the outgoing edges from s. From each node i there are

|Gi| edges to nodes in W . Send γi/bp |Di|
β c units of flow along each of the |Gi| outgoing edges from

i. It is easy to see that γi/bp |Di|
β c ≤ β

p −1, and therefore we do not violate the capacity constraints
on edges from U to W . Observe that the total incoming flow to a vertex in W is at most β − p
since there are at most p incoming edges, each carrying at most β

p − 1 units of flow. An integral
max flow in this network will correspond to γi units of flow going from s to i, and from i to all
vertices in Gi before reaching t. If f units of flow fare sent from node i ∈ U to node j ∈ W means
that disk j will send item i to f disks in Di \ Gi.

Construct a transfer graph, similar to the method stated in Lemma 5.3, to satisfy all disks in
Di \ Gi. As in Lemma 5.4, the in-degree of this transfer graph is at most β. For each disk which

belongs to some Gi, its out-degree is at most β−p. Among all disks in Di, bp |Di|
β c disks are satisfied

in Step 2 since they belong to Gi, and Gi can satisfy bbp |Di|
β c(β

p − 1)c disks in Step 3. The number
of disks that still need item i are:

|Di| − bp |Di|
β

c − bbp |Di|
β

c(β

p
− 1)c = |Di| − bbp |Di|

β
cβ

p
c ≤ |Di| − b|Di| − dβ

p
ec = dβ

p
e.

Source si is responsible for all these disks. Therefore the out-degree of si is at most dβ
p e, and the

total out-degree of a node is at most (β − p) + d β
p e.

Similar to Lemma 5.4, each disk can be a source for up to p + 1 items, because it can be the
original source of item i, and it also belongs to p different Gk (k 6= i) sets. Thus there are upto
p + 1 directed edges in each direction. ut

Theorem 5.11. The total number of rounds is maxi logbp |Di|
β c + 2β + dβ

p e + 4p + 6. When p is

Θ(
√

β), the total number of rounds is minimized, and is equal to maxi log |Di| + 2β + O(
√

β).

Proof. The number of rounds taken in Step 3 is 2β+d β
p e+p+2 from Lemma 5.10 and Theorem 2.1.

Combined with Lemma 5.9, the first result can be easily obtained. The second result is obtained
by substituting p with Θ(

√
β). ut

As maxi log |Di| and β are lower bounds of the problem, from Theorem 5.11, we have a polynomial-
time 3 + o(1)-approximation algorithm.

5.2 Allowing Bypass Nodes

The main idea is that without bypass nodes, only a small fraction of N disks is included in Gi for
some i, if one disk requests many items while, on average, each disk requests few items. If we allow
bypass nodes and hence Gi is not necessarily a subset of Di, we can make Gi very big so that each
of almost all N disks belongs to some Gi. Bigger Gi reduces the out-degree of the transfer graphs
and thus reduces the total number of rounds.
Algorithm Multi-Source Multicast Allowing Bypass Nodes

1. We define β as 1
N

∑

i=1...N |{j|i ∈ Dj}|. In other words, β is the number of items a disk
could receive, averaging over all disks. We arbitrarily choose a disjoint collection of subsets Gi,

i = 1 . . .∆ with a constraint that |Gi| = b |Di|

dβe
c. By allowing bypass nodes, Gi is not necessarily

a subset of Di.
2. This is the same as Step 2 in the Multi-Source Multicast Algorithm, except that the source for

item i (namely disk i) may belong to Gj for some j.
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3. This step is similar to Step 3 in the Multi-Source Multicast Algorithm. We add dβe edges from

each disk in Gi to satisfy dβe · b |Di|

dβe
c disks in Di, and add at most another dβe − 1 edges from

disk i to satisfy the remaining disks in Di.
4. This is the same as Step 4 in the Multi-Source Multicast Algorithm.

Theorem 5.12. The total number of rounds required for the multi-source multicast algorithm, by
allowing bypass nodes, is maxidlog |Di|e + β + d2βe + 6.

Proof. The analysis is very similar to the case without bypass nodes and here we only highlight
the differences. Note that the total size of the sets Gi is at most N .

∑

i

|Gi| ≤
∑

i

|Di|
dβe

≤ 1

β

∑

i

|Di|.

Note that
∑

i |Di| is βN by the definition of β. This proves the upper bound of N on the total
size of all the sets Gi. Step 2 takes maxidlog |Di|e+2 rounds. Note that this is 1 round larger than
the bound in Lemma 5.2 as dβe can be 1. The in-degree of any disk in the transfer graph is still
at most β, while the out-degree of any disk in the transfer graph is at most dβe + (dβe − 1). The
multiplicity of the graph is still at most 4. Thus, the total number of rounds is (maxidlog |Di|e +
2) + β + dβe + (dβe − 1) + 4 ≤ maxidlog |Di|e + β + d2βe + 6. ut

We now argue that d2βe is a lower bound on the optimal number of rounds. Intuitively, on
average, every disk has to spend β rounds to send data, and another β rounds to receive data. As
a result, the total number of rounds cannot be smaller than d2βe. This can be seen by simply com-
puting the total number of required transfers, and dividing by the number of transfers that can take
place in each round. Allowing bypass node does not change the fact that max(maxidlog |Di|e, β) is
the other lower bound. Therefore, we have a 3-approximation algorithm.
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Appendices

A NP-hardness

We will prove the multi-source multicasting problem is NP-hard by showing a reduction from a
restricted version of 3SAT. Papadimitriou [24] showed that 3SAT remains NP-complete even for
expressions in which each variable is restricted to appear at most three times, and each literal at
most twice. We denote this problem as 3SAT(3).

We assume that each literal appear at least once in the given instance. If not, we can always
simplify it such that all literal appear at least once (or the instance is always true).

Given a 3SAT(3) instance, we create a multi-source multicast instance such that the 3SAT(3)
instance is satisfied if and only if the corresponding multi-source multicast instance can transfer
all items in 3 rounds.

Part I. For each variable xi, we create (i) a source disk having item xi, (ii) a set of destination
disks Xi of size 3 which need item xi, (iii) a source disk having item xi, (iv) a set of destination
disks Xi of size 3 which need item xi, (v) a source disk having item si, (vi) a disk wi (we call it a
switch disk) which wants to receive items xi, xi and si, and (vii) 6 disks which need item si.
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Part II. For each clause j, we create (i) a source disk having item cj , and (ii) a set of destination
disks Cj of size 2 which need item cj . Moreover, for each literal in the clause j, arbitrarily pick
one disk in the set of destination disks corresponding to the literal, and that disk, which originally
only need the item corresponding to the literal, will also need item cj . For example, if clause j is
xp ∨ xq ∨ xr, then one disk d in Xp, one disk in Xq and one disk in Xr, need item cj . If there is
another clause j′ contains literal xp, we pick one disk in Xp \ {d} and that disk now needs item j ′.

Lemma A.1. If the 3SAT(3) instance is satisfiable, there exists a valid schedule to finish all data
transfers in 3 rounds.

Proof. It is easy to see that all seven disks demanding item si can be scheduled in three rounds.
In particular, we schedule switch disk wi to receive si in round 3 for all i. If variable xi is true,
we schedule switch disk wi to receive xi and xi in round 1 and 2 respectively. xi can be sent to
a disk in Xi in round 1, making Xi receive items faster than Xi. After round 2, 2 disks in Xi

received item xi, while only 1 disk in X i received item xi. In round 3, the source disk of xi can
satisfy the last disk in Xi which has not received xi. Note that the remaining 2 disks in Xi are
idle and they can receive item cj from other disks. On the other hand, the remaining 2 disks in
Xi can be satisfied in round 3 by the source and one disk in X i. Note that all disks in Xi and the
source of xi are busy in this round. Thus, all requested items appeared in Part I are satisfied. If
the variable is false, we schedule the switch disk to receive xi in round 1, then xi in round 2. As
a result, 2 disks in Xi are idle in round 3, while all disks in Xi are busy in round 3.

We claim that all 2 disks in Cj , for all j, can be satisfied too. For example, if clause j is
xp ∨ xq ∨ xr, and suppose xp is true while xq and xr are false in a satisfactory assignment. From
the argument above, there exists a schedule such that the disk in Xp, which needs xp and cj in
Xp, is idle in round 3. However, the disk in Xq , which needs xq and cj , and the disk in Xr, which
needs xr and cj , are busy in round 3. A valid schedule can send item cj from the source to one disk
in Cj in round 1. In round 2, we now have 2 copies of cj to satisfy disks in Xq and Xr. In round
3, without the help of disks in Xq and Xr, we can satisfy 2 more disks, which are the second disk
in Cj and the disk in Xp. Thus, all requested items appeared in Part II are satisfied too. ut

Lemma A.2. If there is a valid schedule to finish all data transfers in 3 rounds, then the 3SAT(3)
instance is satisfiable.

Proof. Since there are 7 disks need item si, if we have to finish all transfers in 3 rounds, once a
disk receives si, it will become busy until round 3. Note that all switch disks have to receive si,
xi and xi. All switch disk have to receive item xi and xi in the first two rounds, and si in the
round 3. If switch disk i receives item xi in round 1, we set literal xi to be true. Otherwise, we
set literal xi to be true. Consider the former case, disks in Xi receive item xi starting at round
2, meaning that all disks in Xi should be busy in round 3 to send or receive xi. Suppose literal xi

appears in clause j and k. 2 disks in Xi have to receive item cj and ck in the first 2 rounds. Thus,
our construction restricts that if a literal xi is set to false, disks in Xi cannot receive item cj in
round 3.

Consider a clause j, for instance, xp ∨xq ∨xr , a disk in Xp, a disk in Xq , a disk in Xr, and all 2
disks in Cj need item cj . If all three literals are false, it is possible to satisfy the first three disks in
the first 2 rounds. However, since all these three disks are busy in round 3, the source of cj cannot
satisfy both disks in Cj , which is a contradiction. Therefore, the clause j should be satisfied. ut

Theorem A.3. The multi-source multicasting problem is NP-hard

Proof. It is easy to see that the reduction is polynomial, together with Lemma A.1 and Lemma A.2,
the problem is NP-hard. ut
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B Proof of Lemma 3.2 in [20]

We include the proof here for completeness purposes.

Lemma 3.2. (Step 1) There is a way to choose disjoint sets Gi for each i = 1 . . .∆, such that

|Gi| = b |Di|
β c and Gi ⊆ Di.

Proof. First note that the total size of the sets Gi is at most N .

∑

i

|Gi| ≤
∑

i

|Di|
β

=
1

β

∑

i

|Di|.

Note that
∑

i |Di| is at most βN by definition of β. This proves the upper bound of N on the total
size of all the sets Gi.

We now show how to find the sets Gi. We create a flow network with a source s and a sink t. In
addition we have two sets of vertices U and W . The first set U has ∆ nodes, each corresponding
to a disk that is the source of an item. The set W has N nodes, each corresponding to a disk in
the system. We add directed edges from s to each node in U , such that the edge (s, i) has capacity

b |Di|
β c. We also add directed edges with infinite capacity from node i ∈ U to j ∈ W if j ∈ Di. We

add unit capacity edges from nodes in W to t. We find a max-flow from s to t in this network. The
min-cut in this network is obtained by simply selecting the outgoing edges from s. We can find a
fractional flow of this value as follows: saturate all the outgoing edges from s. From each node i

there are |Di| edges to nodes in W . Suppose λi = b |Di|
β c. Send 1

β units of flow along λiβ outgoing

edges from i. Note that since λiβ ≤ |Di| this can be done. Observe that the total incoming flow to
a vertex in W is at most 1 since there are at most β incoming edges, each carrying at most 1

β units

of flow. An integral max flow in this network will correspond to |Gi| units of flow going from s to
i, and from i to a subset of vertices in Di before reaching t. The vertices to which i has non-zero
flow will form the set Gi. ut
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Fig. 4. The figure shows how disks in Di behave in Phase I where |Di| = 24 + 22 + 21
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Fig. 5. An example of Case III in Multi-Source Broadcasting section with ∆ = 6 and r = 3. Recently
received items are in bold
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