
Feature Definition and Discovery in Probabilistic Relational Models

Eric Altendorf eric@cleverset.com

Bruce D’Ambrosio dambrosi@cleverset.com

CleverSet, Inc., 673 Jackson Avenue, Corvallis OR, 97330

Abstract

Feature expression in relational models can
be viewed as the construction, for a given re-
lational table, of valid path expressions and
transformational operators which navigate
the relational structure of the schema, propo-
sitionalizing native attributes from related
tables via selection and aggregation. We
present a language for expressing such fea-
tures (“synthetic variables”) and a method
for efficiently searching over this language
for definitions of relevant and interesting fea-
tures for a probabilistic relational model.

1. Introduction

Relational and object models frequently make use of
the notion of a path expression. A basic path expres-
sion, such as Product.maker.name , selects data from a
table related to the root table of the original query.
The use of path expressions in the context of proba-
bilistic relational models (PRMs) has been discussed
by Friedman et al. (1999) and Getoor et al. (2001).

Our first contribution has been the development of
a path language with greater expressive power than
those currently proposed. Some syntax and constructs
were inspired by the PathLog language for OODBs de-
veloped by Frohn et al. (1994). However, the appli-
cation to PRMs differs significantly and required both
new features (such as arbitrary function chaining and
data filtering), as well as a library of useful aggregators
and operators. Our second contribution has been the
development of automated tools to allow the modeler
to make effective use of the richness of the language.

To motivate our discussion, consider the following ex-
amples of features we might wish to define (these ex-
amples are taken from a website user behavior model).
Note that the first two are expressible in the language
used in (Friedman et al., 1999; Getoor et al., 2001),
while the rest are not.

• Session.clicks.Count() : For a given session, return
the number of clicks that were in that session.

• Session.clicks.url.Mode() : For a session, return the
most frequently requested URL.

• Click.session.clicks.pagetype.Uniquify().Count() : For a
click, find the number of distinct page types vis-
ited in that session.

• Click.session.clicks.Diff(.time,.prev.time).Mean() : For
a click, find its session and calculate the average
time between clicks in that session.

• Click.Diff(.session.clicks[.GT(.time, $src.time)]

[.Equals(.pagetype,”Checkout”)].sequence no,

$src.sequence no).Min() : For a click, return the
number of subsequent clicks in the session before
the first request for a Checkout page—that is, the
number of clicks until a purchase event.

2. Expression language

2.1. Grammar

Table 1. Synthetic variable abstract grammar

expr : rootelem{elem}+

elem : .field | .function | .this | variable |
selector | constant | universal

rootelem : classname | variable | constant
selector : [expr]
function : funcname({expr}*)
constant : ’[0-9]+{.[0-9]+}?’ | "[^"]+"

variable : $ varname
universal : * classname

The grammar is defined in table 1. The basic construct
in the language is an expression, which is a chain of ele-
ments. The first element is a root element which types
the source datum, and subsequent elements define data
mappings. Some elements contain and make use of
subexpressions. Generally speaking, expressions may
make sense only in specific contexts (for example, as

subexpressions). A synthetic variable is an expression
which is well-defined given no special context other
than the source datum on which it is to be evaluated.

A few minor points bear special mention. In the con-
text of a subexpression, as a syntactic sugar we omit
the classname element since it is implied by its context.
Also, we name two special types of functions: opera-
tors, such as Equals() , Diff() , or GT() (greater than),
which take two arguments, and aggregators, such as
Mean() or Count() , which take no arguments and
perform a many-to-one cardinality mapping (see 2.3).
Finally, the .this element is a special no-op construct
necessary in certain subexpression constructions.

2.2. Semantics

Expressions may be evaluated on an instance of the
class associated with the root element. For exam-
ple, Session.clicks.Count() may be evaluated on in-
stances from the Session table, and Session.clicks[

.Equals(.pagetype,.prev.pagetype)].Count() contains three
subexpressions: (i) .Equals(.pagetype,.prev.pagetype) ,
(ii) .pagetype , and (iii) .prev.pagetype , each of which
may be evaluated on an instance from the Click table.

Evaluation of an expression proceeds left to right, each
element accepting data from the previous element and
producing data for the subsequent element. The value
of the expression is the output of the last element in
the chain.

2.2.1. Fields

The evaluation of a field element outputs the reference
or primitive value(s) contained in the appropriate field
on the incoming data object. If the incoming data is a
singleton and the field is single-valued, the output is a
singleton. Otherwise, the output is multivalued. If the
incoming data is multivalued and the field is multival-
ued, the result will be a flattened set (the bag union
of all field values on all instances from the incoming
data); that is, we do not support nested collections.

2.2.2. Selectors and functions

The evaluation of a selector returns a subset of the
incoming data—specifically, the collection containing
each datum in the incoming data on which the pro-
vided subexpression evaluates to true.

The evaluation of a function returns a value based on
the incoming data (and, if applicable, the values pro-
duced by evaluating the subexpressions on the incom-
ing datum). For example, two-argument boolean op-
erators such as Equals() or GT() take the incoming
datum, evaluate each subexpression on that datum,

and return a boolean value based on a comparison of
those results.

Operators provide an implicit “map” behavior so that
when applied to multivalued incoming data, they ap-
ply themselves to each datum in turn. Thus, one
can construct variables such as Click.session.clicks .Diff(

.timestamp,.prev.timestamp).Mean() .

2.2.3. Intra-expression variables

One seemingly expressive language construct which
has turned out to be less useful than we predicted is
arbitrary variable binding. The only important ap-
plication we have found occurs when subexpressions
refer to the original source datum on which the syn-
thetic variable is being evaluated. We support this
by implicitly binding the source datum to the $src

variable, but (currently) do not offer a mechanism for
arbitrary binding of variables (see 5.3).

2.2.4. Universal selection

In some datasets, we do not have explicit relations.
Consider a spatiotemporal dataset, in which we would
like to aggregate over spatially or temporally proximal
events, but in which we lack fields (such as adjacent)
to navigate the data. In this case, we must select all
instances of a class, and then filter by our temporal or
spatial conditions. We use the universal selection ele-
ment, denoted by *classname , for this. For example, in
the West Nile Virus domain (see 3.3.1), we have events
indicating occurrences of the disease in humans and
birds. To count the number of prior bird cases for a
given human case, we can write: HumanCase*BirdCase[

.GT($src.date,.date)].Count() This functionality gives us
the power to perform two-table joins on arbitrary con-
ditions.

2.3. Typing

To facilitate type-checking, each element defines a re-
quired input and guaranteed output type. These types
will depend on the relational schema, but not the data,
meaning that expressions can be statically typechecked
given the schema.

Datatypes are either reference (one type per table in
the schema, with polymorphic subtyping allowed) or
primitive1. Types also specify the cardinality of the
data: singleton or multivalued (0 to n).

For an expression to be correctly typed, each element

1Currently string, numeric, or boolean, though we be-
lieve a type system based on measurement types such as
nominal, ordinal, and ratio, might be more useful.

must accept the type of data produced by the preced-
ing element. For example, field elements require input
of the reference type (or subtype) on which that field is
defined, aggregators require (possibly) multivalued in-
puts, single-input functions require singleton incoming
data, and numeric aggregators like Mean() or Sum()

require numeric input.

We require expressions to produce singleton data. This
guarantees that synthetic variables can be evaluated to
a single value, and that selectors and operators may
evaluate their subexpressions to a single value.

2.4. Domain specific extensions

We have also built special purpose extensions within
the grammar for particular problem domains. This ca-
pability is essential for doing useful applied modeling.
Space constraints prohibit discussion, but some exam-
ples from spatiotemporal domains include: (i) func-
tions for reifying and operating on temporal data, (ii)
specialized selectors which allow rapid parameter ad-
justments for exploring scale effects, and (iii) density
aggregators which normalize spatial data counts by the
area of the sampled region.

3. Search

With a definition of the syntax and semantics of the
language we can automatically enumerate synthetic
variables. We view this problem as a search (for use-
ful variables) in a very large search space (the space
of all grammatically correct variables). An equivalent
view is as a search over the space of possible database
queries (Popescul & Ungar, 2003).

Our basic search is breadth-first, using a variant of
the traditional cost ranking of path expressions by
their path length (the number of field traversals they
define).2 Specifically, classname elements, which are
in some sense artifacts of our grammar, cost nothing,
and selectors and functions cost only what their their
subexpressions cost.

3.1. Problem description

The space of possible synthetic variables without
subexpressions is exponential in its length. (The base
of the exponent is of course dependent on the relational
schema and the aggregators enabled in the search.)
Subexpressions introduce exponential branching—for
instance, the number of selectors that may be ap-
plied at a given point will be exponential in the allow-
able size of subexpressions—and we therefore generally

2We do offer other queue prioritizations—see 5.1.

have superexponential overall growth.

As a very rough guide, in a simple schema, using no
search optimizations or heuristics, search up to com-
plexity (depth) 4 or 5 is generally reasonably tractable,
but many interesting variables occur at complexities
ranging from 8 to 12. In recent work with a major
e-retailer, we have found valuable variables at com-
plexities of 20 to 22. It is clear that such variables
cannot be found by brute breadth-first enumeration,
and so we introduce heuristics, synthetic variable fil-
tering rules, and an interactive search process.

3.2. Synthetic variable filters

Besides restricting synthetic variables for grammati-
cal and type correctness, we implement a number of
filtering rules to prune the search space.

Field loop suppression: Traversals of one-to-many
fields followed by their many-to-one inverse are
generally useless, and so we suppress their gener-
ation. For example, while Product.maker.products

makes sense (return all products produced by
the same maker), Product.maker.products.maker is
identical (up to repetition of data) as Product

.maker . Loops of this nature may also span subex-
pression boundaries.

Repeated fields: The modeler may wish to limit
chains of repeats of a transitive field, such as Click

.prev , which could be arbitrarily extended to Click

.prev.prev.prev. . . . The modeler can limit such rep-
etitions on a per-field basis.

Field costs: The modeler may also wish to include
certain fields more often or less often than others
(due to an interest in a certain relationship, or to
artifacts of the data’s relational encoding). We
allow the modeler to override the default cost of 1
on a per-field basis, to any positive value. Values
greater than 1.0 shrink the search space, while
values less than 1.0 increase it (but simultaneously
cause variables including that field to appear at
lesser search depths).

Field filtering: In some of our models data are re-
lated both spatially and temporally. However, our
grammar, which is primarily navigational, does
not provide a mechanism for multi-column joins.
Therefore, we use a field traversal in combination
with a filter, e.g.: Posbirds.geocell.posMosqPool

[.Equals(.month,$src.month)] . By requiring that,
say, temporal fields like .month are only used
within selectors, we can generate expressions like
the one above yet rule out ones like Posbirds.geocell

.posMosqPool.month.posBirds . Although this may
be a suboptimal solution, it has worked quite well
in practice thus far.

Operator arguments: Arguments to a binary oper-
ator such as Equals() or GT() must be of the
same type, but this does not prevent semanti-
cally meaningless combinations—product weight
and maker’s annual sales may both be numeric,
but we shouldn’t compare the two. We adopt the
conservative rule that, for primitive types, com-
parisons are formed only between values from the
same field on the same table.

Aggregator selection: It is very easy for the search
routine to create vast numbers of variables merely
by appending aggregators on the end of expres-
sions, most of which are uninteresting. Therefore,
we require that the modeler specifically enable ag-
gregators in the search on a per-field basis.

Trivial domains: Although we focused on non-data-
driven feature selection so we could operate in
data-limited situations, we do implement a ba-
sic filtering rule for variables with trivial domains
(i.e., constant). Variables may be constant be-
cause they aggregate large amounts of missing
or constant data, or they may be provably ax-
iomatic. While such variables may (occasionally)
reveal something interesting about the domain or
the data, they are not useful as random variables
in a probabilistic model.

3.3. Empirical evaluation

The general quality of our results is encouraging. Re-
call (the proportion of desired variables which were
found) appears to be quite good, and precision (pro-
portion of variables returned which are interesting)
is acceptable. For instance, at depth 9 in our West
Nile Virus schema (see 3.3.1), we generate approxi-
mately 100 synthetic variables for the PosBirds table,
compared to roughly 100,000 possible grammatically
correct variables. The generated set includes all vari-
ables we had previously determined as essential to the
model, and roughly 25% of the variables generated ap-
pear relevant to the model being constructed. Finally,
the search is tractable; it takes between 30 seconds and
several minutes on a desktop workstation.

We here present more detailed results of experiments
we conducted to evaluate our pruning heuristics. Note
that designing such experiments is difficult, because
performance numbers and results vary highly. A slight
change in the branching factor of the schema or the set
of enabled aggregators could easily change the results

for a given search by an order of magnitude. Addi-
tionally, there are a large number of free parameters,
including (i) schema and set of enabled aggregators,
(ii) amount of data populating the schema, (iii) depth
of search, (iv) depth of subexpression search, and (v)
filters applied.

3.3.1. Schemas used

We use two schemas, a weblog click-stream schema
from an online retailer, and a geospatial epidemiologi-
cal schema with data on the West Nile Virus in Mary-
land. In tables 2 and 3 we summarize the database ta-
bles, the number of instances (rows) in each, the num-
bers of each type of column, and the total number of
aggregators enabled on various columns therein. Mul-
tivalued (“∗-val”) reference columns are constructed
as implicit inverses.

Table 2. Clickstream schema
of Prim. Ref. cols # of

Table rows cols 1-val ∗-val agg.
Click 3789 7 4 0 0
Page 4823 8 0 0 0
Session 802 4 1 1 1
Visitor 563 8 0 0 0

Table 3. West Nile Virus schema
of Prim. Ref. cols # of

Table rows cols 1-val ∗-val agg.

PosBirds 77 1 2 0 0
GeoCell 1248 0 0 7 1
Adjacent 9388 0 2 0 0
Month 13 1 1 4 0
PosMosqPl 10 1 2 0 1
NegMosqTr 73 1 2 0 1
Horse 5 1 2 0 1
Human 3 1 2 0 1
License 2116 1 1 0 0

3.3.2. Effectiveness of heuristics

Given a fixed schema, dataset, aggregator selection,
and maximum subexpression complexity, we begin by
searching with no heuristics, then enable them, one by
one, and measure for each search depth: (i) the elapsed
time, and (ii) the number of variables generated. The
results are shown in figures 1, 2, 3, and 4. Missing data
points indicate that that particular search either ran
out of memory or time.3 Almost all searches ran out
of time or memory at depth 10. Space was generally a
problem when operating with fewer heuristics, as the

3The memory limit was a 512MB Java heap size limit,
and the time limit was 30 minutes. This of course is a re-
search prototype, and much more efficient implementations
are possible.

search created too many variables, while time was a
problem when operating with more heuristics, as the
search spent too long filtering (particularly in evaluat-
ing and removing variables with trivial domains).

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

V
ar

ia
bl

es
 c

re
at

ed

Search depth

None
Suppress field loops

Exclude from TLE
Exclude repeated
Override field cost

Operator arg match
Aggregator selection

Trivial domains

Figure 1. Number of variables created, clickstream schema

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9

S
ec

on
ds

 ta
ke

n

Search depth

None
Suppress field loops

Exclude from TLE
Exclude repeated
Override field cost

Operator arg match
Aggregator selection

Trivial domains

Figure 2. Time taken, clickstream schema

4. Interactive search process

Even by eliminating large regions of the search space
the number of variables generated through the fully
automatic search is generally too large for a PRM. We
therefore designed the system with various features to
make the feature selection process interactive.

4.1. Search results review

First, we separated feature search from model build-
ing. The modeler may perform an explicit synthetic
variable search, and then review the results. Each syn-
thetic variable in the results list may be evaluated on
the loaded instance data, to produce either raw data
or histograms, and can be deleted from the search re-

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

V
ar

ia
bl

es
 c

re
at

ed

Search depth

None
Suppress field loops

Exclude from TLE
Exclude repeated
Override field cost

Operator arg match
Aggregator selection

Trivial domains

Figure 3. Number of variables created, WNV schema

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

 ta
ke

n

Search depth

None
Suppress field loops

Exclude from TLE
Exclude repeated
Override field cost

Operator arg match
Aggregator selection

Trivial domains

Figure 4. Time taken, WNV schema

sults list or added to the PRM (for inclusion in later
structure discovery).

4.2. Partial expressions

Second, we allow the creation of partial expressions.
Partial expressions can be extended in a manual depth-
first search, where possible next elements are automat-
ically found and presented to the modeler for selection,
or provided as a “seed” to the search algorithm, to au-
tomatically search for possible completions. In this
way, with assistance from the modeler, the search al-
gorithm can be used at arbitrary depths.

4.3. Complete manual specification

We also provide a parser which allows the modeler
to input free-form synthetic variable definitions. We
have found a number of interesting variables in a few
domains which can only be created with the parser.

5. Future work

5.1. Search queue prioritizations

We search by producing continuations of partial ex-
pressions in a priority queue, normally prioritized by
lowest expression complexity (as discussed). We also
have two other scoring options, based on metrics cal-
culated from complete expressions:4

Expression entropy: This lets us prioritize high-
entropy variables and deprioritize nearly-constant
variables. It is a generalization of the trivial do-
main filtering rule, which immediately removes
from the search queue variables with zero entropy.

Log-likelihood: We prioritize by predictive power of
the variable, measured by the log-likelihood of the
data for modeler-selected “target” variables, given
a model including the variable in question.

These techniques have not been empirically tested for
performance, however, and deserve further study.

5.2. Extending the search space

There are many potentially interesting spaces over
which we cannot automatically search, such as lengthy
subexpressions, and values of constants passed as ar-
guments to operators.

One approach is to develop new heuristics and search
strategies. Another is to improve expression evalu-
ation efficiency, since trivial domain testing (which
requires evaluation of candidate synthetic variables)
consumes the majority of time during search when the
underlying dataset is large. Future research should ad-
dress scalability issues, streamline evaluation, and/or
develop statistically sound sampling techniques.

5.3. Intra-expression variables

Our original design called for general intra-expression
variables which could be bound within an expression
and used in other parts of the expression. We also
considered allowing a variable bound multiple times to
define an implicit join condition on the data, as it does
in PathLog. Further research is needed to determine
what, if any, expressive power such variables would
add to the language (as we have not yet found a need
for them).

4Partial expressions cannot be evaluated or scored on
their own, so we prioritize them by an average of the scores
of known complete expressions, weighted by a syntactic
similarity metric.

5.4. Latent synthetic variables

One simplifying assumption we make in much of our
work is that we do not need to do inference over data
missing from a path expression. That is, we assume
that the evaluation of a path expression is determinis-
tic, or that path expressions are never latent variables
of the model. Relaxing this assumption of course re-
quires more advanced unrolling techniques to imple-
ment language elements as Bayes net fragments.

6. Conclusion

We have presented an expressive and efficiently evalu-
able language for defining derived attributes in rela-
tional models. Our experience has shown this language
sufficiently expressive for a very wide range of real-
world models. We have presented a set of heuristics for
constraining searches over the space of possible expres-
sions, and validated these heuristics empirically with
performance tests, showing that they make the search
space significantly more tractable. We have also dis-
cussed an interactive search process for going beyond
the limits of fully automatic search. Finally, we dis-
cussed several important directions for valuable future
research.

Note: parts of the described language and search capa-
bilities are patent-pending.

References

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A.
(1999). Learning probabilistic relational models.
Proceedings of the 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99-Vol2) (pp.
1300–1309). S.F.: Morgan Kaufmann Publishers.

Frohn, J., Lausen, G., & Uphoff, H. (1994). Access to
objects by path expressions and rules. VLDB’94,
Proceedings of 20th International Conference on
Very Large Data Bases, Sep. 12-15, 1994, Santiago
de Chile, Chile (pp. 273–284). Morgan Kaufmann.

Getoor, L., Friedman, N., Koller, D., & Taskar, B.
(2001). Learning probabilistic models of relational
structure. Proceedings of the 18th International
Conference on Machine Learning (pp. 170–177).
Morgan Kaufmann, San Francisco, CA.

Popescul, A., & Ungar, L. H. (2003). Statistical re-
lational learning for link prediction. Proceedings of
the IJCAI 2003 Workshop on Learning Statistical
Models from Relational Data.

