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Abstract

Recently, a number of methods have been pro-
posed for semi-supervised clustering that employ
supervision in the form of pairwise constraints.
We describe a probabilistic model for semi-
supervised clustering based on Hidden Markov
Random Fields (HMRFs) that incorporates rela-
tional supervision. The model leads to an EM-
style clustering algorithm, the E-step of which re-
quires collective assignment of instances to clus-
ter centroids under the constraints. We evalu-
ate three known techniques for such collective
assignment: belief propagation, linear program-
ming relaxation, and iterated conditional modes
(ICM). The first two methods attempt to globally
approximate the optimal assignment, while ICM
is a greedy method. Experimental results indi-
cate that global methods outperform the greedy
approach when relational supervision is limited,
while their benefits diminish as more pairwise
constraints are provided.

1. Introduction

There has been significant recent interest in semi-
supervised clustering, where the goal is to improve the per-
formance of unsupervised clustering algorithms with lim-
ited amounts of supervision in the form of labels or pair-
wise constraints on the data points (Wagstaff et al., 2001;
Klein et al., 2002; Xing et al., 2003; Bilenko et al., 2004).
In this paper, we present a probabilistic model for semi-
supervised clustering with pairwise relations and compare
the performance of several inference methods for cluster
assignment in the context of an EM-based algorithm.

Existing methods for semi-supervised clustering fall into
two general categories that we call constraint-based and
distance-based. Constraint-based methods rely on user-
provided labels or relational constraints to guide the
algorithm towards a more appropriate data partition-
ing (Wagstaff et al., 2001). In distance-based approaches,
an existing clustering algorithm that uses a particular clus-
tering distortion measure is employed, but the measure is
trained to satisfy the labels or constraints in the given su-

pervised data (Klein et al., 2002; Xing et al., 2003; Cohn
et al., 2003; Bar-Hillel et al., 2003). In Bilenko et al.
(2004), we have proposed an integrated framework for
semi-supervised clustering that combines the constraint-
based and distance-based approaches in a unified proba-
bilistic model.

We have recently shown that this semi-supervised clus-
tering framework has an underlying probabilistic model
– a Hidden Markov Random Field (HMRF) (Basu et al.,
2004). Then, minimizing the integrated clustering ob-
jective function becomes equivalent to finding the maxi-
mum a posteriori probability (MAP) configuration of the
HMRF (Zhang et al., 2001). It can be shown that the
HMRF clustering model is able to incorporate any Breg-
man divergence (Banerjee et al., 2004) as the clustering
distortion measure, which allows using the framework with
such common distortion measures as KL-divergence, I-
divergence, and parameterized squared Mahalanobis dis-
tance. Additionally, cosine similarity can also be used as
the clustering distortion measure in the framework, which
makes it useful for directional datasets.

The HMRF semi-supervised clustering model suggests an
EM-based algorithm that minimizes the integrated cluster-
ing objective function to obtain a partitioning of the dataset.
The E-step of the algorithm can be mapped to an inference
step of a probabilistic relational model. In prior work, we
used a fast greedy iterated conditional modes (ICM) infer-
ence technique in the E-step (Bilenko et al., 2004; Basu
et al., 2004). Here, we compare ICM to two global ap-
proximate inference techniques for relational models: be-
lief propagation and linear programming (LP) relaxation.
Our experiments reveal that, when provided with sufficient
relational supervision, ICM produces results comparable
to belief propagation and LP relaxation on the constraint-
based semi-supervised clustering task at a fraction of com-
putational cost.

2. Background

2.1. The HMRF Clustering Framework

Given a set of data points X , sets of pairwise must-link con-
straints M and cannot-link constraints C with sets of asso-
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Figure 1. A Hidden Markov Random Field

ciated violation costs W and W , and a distortion measure
D between the points, the semi-supervised clustering task
is to optimally partition X into K clusters.1 An optimal
partitioning is that which minimizes the total distortion be-
tween the points and their cluster representatives according
to D, while keeping constraint violations to a minimum.

This problem can be formalized as the task of label assign-
ment in a Hidden Markov Random Field (HMRF) (Basu
et al., 2004). The HMRF model consists of (1) a hidden
field L = {li}

N
i=1 of random variables that encode cluster

assignments of data points; and (2) an observable set X =
{xi}N

i=1 of random variables that correspond to observed
data points. Every data point xi is assumed to be generated
from a conditional probability distribution Pr(xi|li) deter-
mined by the value of the corresponding hidden variable li.
Random variables X are conditionally independent given
the hidden variables L, i.e., Pr(X|L) =

∏
xi∈X Pr(xi|li).

Note that a relational model similar to HMRFs has been
proposed by Segal et al. (2003) for semi-supervised clus-
tering with constraints, except that it only utilized must-
link constraints and did not incorporate learnable distortion
measures.

Fig. 1 shows a simple example of an HMRF. The observed
dataset X consists of six points {x1 . . .x6} with corre-
sponding cluster label variables {l1 . . . l6}. Two must-link
constraints are provided between (l1,l3) and (l1,l4), and one
cannot-link constraint is provided between (l3,l6). The task
is to partition the six points into three clusters. One clus-
tering configuration is shown in Fig. 1, where the must-
linked points x1,x3 and x4 are put in cluster 1; the point
x6, which is cannot-linked to x3, is assigned to cluster 2;
x2 and x5, which are not involved in any constraints, are
put in clusters 1 and 3 respectively.

1Must-link and cannot-link constraints specify pairs of points
that should be in same and different clusters respectively.

Every hidden random variable li has an associated set of
neighbors Ni. The must-link constraints M and cannot-
link constraints C define the neighborhood over each hid-
den variable to be all the points that are must-linked or
cannot-linked to the corresponding data point. A Markov
Random Field is then defined over the hidden variables.

Let us consider a particular cluster label configuration L
to be the joint event L = {li}

N
i=1, which corresponds

to a specific assignment of data points to clusters. By
the Hammersley-Clifford theorem, the probability of a la-
bel configuration in the Markov Random Field can be ex-
pressed as a Gibbs distribution (Geman & Geman, 1984):

Pr(L) =
1

Z
e
−V (L) =

1

Z
e
−

P

Ni∈N VNi
(L) (1)

where N is the set of all neighborhoods, Z is a normalizing
constant, and V (L) is the overall label configuration poten-
tial function, which can be decomposed into the functions
VNi

(L) denoting the potential for every neighborhood Ni.

Since we are provided with pairwise constraints over the
class labels, we restrict the MRFs over the hidden vari-
ables to have pairwise potentials. The prior probability of
a configuration of cluster labels L then becomes Pr(L) =
1
Z

exp(−
∑

i

∑
j V (i, j)), where

V (i, j) =

8

<

:

fM (xi,xj) if (xi,xj) ∈ M
fC(xi,xj) if (xi,xj) ∈ C

0 otherwise
(2)

Here, fM (xi,xj) is a non-negative function that penalizes
the violation of a must-link constraint, and fC(xi,xj) is
the corresponding penalty function for cannot-links. Intu-
itively, this form of Pr(L) gives higher probabilities to la-
bel configurations that attempt to satisfy the must-link con-
straints M and cannot-link constraints C.

It is possible to use a learnable distortion measure D that
adapts distance computations to respect the user-provided
constraints. To facilitate learning of distortion measure pa-
rameters, the penalty for violating a must-link constraint
between distant points should be higher than that between
nearby points. This reflects the fact that if two must-linked
points are far apart according to the current distortion mea-
sure, the distance measure parameters need to be modified
to bring those points closer together. Inversely, the penalty
for violating a cannot-link constraint between two points
that are nearby according to the current distance measure
should be higher than for two distant points. To reflect this
reasoning, the penalty functions are chosen as follows:

fM (xi,xj) = wijϕD(xi,xj)
�
[li 6= lj ] (3)

fC(xi,xj) = wij

`

ϕD max − ϕD(xi,xj)
´ �

[li = lj ] (4)

where ϕD is a monotonically increasing penalty scaling
function of the distance between xi and xj (typically equiv-
alent to the distortion measure D), and ϕD max is the max-
imum value of ϕD for the dataset. This form of fC ensures



that the penalty for violating a cannot-link constraint re-
mains non-negative. Note that the resulting potential func-
tion V corresponds to a metric version of previously de-
scribed generalized Potts potential (Kleinberg & Tardos,
1999).

The overall posterior probability of a cluster label configu-
ration L is Pr(L|X ) ∝ Pr(L)Pr(X|L), assuming Pr(X )
to be constant. We consider Pr(X|L) to have an exponen-
tial form, which encompasses most commonly used dis-
tortion measures such as squared Euclidean distance, KL
divergence, and cosine similarity (Basu et al., 2004). Find-
ing the maximum a posteriori (MAP) configuration of the
HMRF then becomes equivalent to maximizing the poste-
rior probability:

Pr(L|X ) =
1

Z
e
−

P

i

P

j V (i,j) · e
−

P

xi∈X D(xi,µli
) (5)

where Z is a normalizing constant. Henceforth, we will
refer to the first exponential factor of Pr(L|X ) as the con-
straint potential, the second factor as the distance potential,
and the negative logarithm of Pr(L|X ) as the posterior en-
ergy. Note that MAP estimation would reduce to maximum
likelihood (ML) estimation of Pr(X|L) if Pr(L) is con-
stant. However, because our model accounts for dependen-
cies between the cluster labels and Pr(L) is not constant,
full MAP estimation of Pr(L|X ) is required.

Taking logarithms of Eqn.(5) gives the following cluster
objective function, minimizing which is equivalent to max-
imizing the MAP probability in Eqn.(5), or, equivalently,
minimizing the posterior energy of the HMRF:

Jobj =
P

xi∈X

D(xi, µli) +
P

(xi,xj)∈M

wijϕD(xi,xj)
�
[li 6= lj ]

+
P

(xi,xj)∈C

wij

`

ϕD max − ϕD(xi,xj)
´ �

[li = lj ] + log Z (6)

where Z is a normalizing constant. Thus, the task is to min-
imize Jobj over {µh}K

h=1, L, and D (if the latter is param-
eterized). For computational efficiency, we consider log Z

to be constant during the clustering iterations.

The Expectation-Maximization (EM) algorithm is a popu-
lar solution to such “incomplete data” problems (Dempster
et al., 1977). It is well-known that K-Means is equivalent to
an EM algorithm with hard clustering assignments (Kearns
et al., 1997; Banerjee et al., 2004). Thus, we can use
a K-Means-type iterative clustering algorithm, HMRF-
KMEANS, to find a (local) maximum of the above function.

2.2. The HMRF-KMEANS Algorithm

The outline of the HMRF-KMEANS algorithm is pre-
sented in Figure 2. Initialization is performed using
neighborhoods inferred from the constraints as described
in (Bilenko et al., 2004). The basic idea of HMRF-
KMEANS is as follows: in the E-step, given the current

cluster representatives, all data points are collectively re-
assigned to clusters to minimize Jobj. In the M-step, the
cluster representatives {µh}

K
h=1 are re-estimated from the

cluster assignments to minimize Jobj for the current assign-
ment. The clustering distortion measure D is updated in the
M-step to reduce the objective function simultaneously by
transforming the space in which data lies, thus performing
metric learning.

Note that this procedure is an instantiation of the general-
ized EM algorithm (Dempster et al., 1977; Neal & Hinton,
1998), where the objective function is reduced but not nec-
essarily minimized in the M-step. Effectively, the E-step
minimizes Jobj over cluster assignments L, the M-step (A)
minimizes Jobj over cluster representatives {µh}

K
h=1, and

the M-step (B) minimizes Jobj over the parameters of the
distortion measure D. The E-step and the M-step are re-
peated till a specified convergence criterion is reached.

Algorithm: HMRF-KMeans

Input: Set of data points X = {xi}
N
i=1, number of clusters K,

set of must-link constraints M = {(xi,xj)},
set of cannot-link constraints C = {(xi,xj)},
distance measure D, constraint violation costs W and W .

Output: Disjoint K-partitioning {Xh}
K
h=1 of X such that

objective function Jobj in Eqn.(6) is (locally) minimized.
Method:

1. Initialize the K clusters centroids {µ
(0)
h }

K
h=1, set t ← 0

2. Repeat until convergence

2a. E-step: Given {µ
(t)
h }

K
h=1, re-assign cluster labels

{l
(t+1)
i }Ni=1 on the points {xi}

N
i=1 to minimize Jobj.

2b. M-step(A): Given cluster labels {l
(t+1)
i }Ni=1, re-calculate

cluster centroids {µ
(t+1)
h }Kh=1 to minimize Jobj.

2c. M-step(B): Re-estimate distance measure D to reduce Jobj.
2d. t ← t+1

Figure 2. The HMRF-KMEANS algorithm

The relational nature of the supervision is significant in
the E-step, where the task is to assign data points to clus-
ters using the current estimates of the cluster representa-
tives. In simple K-Means there is no interaction between
the cluster labels, and the E-step is a simple assignment of
every point to the cluster representative that is nearest to
it according to the clustering distortion measure. In con-
trast, the HMRF model incorporates interaction between
the cluster labels defined by the random field over the hid-
den variables. Thus, optimal assignment in the E-step of
HMRF-KMEANS is a relational inference problem.

3. Inference Techniques

Below we describe three inference methods for collec-
tive assignment of data points to clusters in the E-step of
HMRF-KMEANS.

3.1. The Belief Propagation Approach

A global joint assignment of the points to clusters that (lo-
cally) minimizes the objective function Jobj can be found
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by performing approximate inference on the HMRF using
belief propagation (Pearl, 1988). This approach is similar
to the technique used by Segal et al. (2003).

To implement the message passing algorithm for approx-
imate inference on the HMRF, we represent the HMRF
as a factor graph model (Kschischang et al., 2001). The
sum-product/max-product algorithm on the factor graph
model has been shown to be a generalization of several
well known inference algorithms on graphical models. In-
terpreting the HMRF model as a factor graph enables us to
perform belief propagation on the HMRF using the max-
product message passing algorithm on the corresponding
factor graph.

The factor graph corresponding to the example HMRF in
Figure 1 is shown in Figure 3. The factor graph has the
following components:

(1) N variable nodes {xi}
N
i=1 representing the data points.

(2) N factor nodes {Di}
N
i=1 that encode the distance po-

tential components of the objective function. Each distance
factor node Di has an edge connecting it to the correspond-
ing variable node xi, and a table containing different values
of the distance potential function. This table has an entry
for each possible cluster assignment of the variable; the jth

entry is exp(−d), where d is the distance from the ith point
to the jth cluster.

(3) |M| factor nodes {Mi}
|M|
i=1 and |C| factor nodes

{Ci}
|C|
i=1, which encode the cost of violating the must-link

and cannot-link constraints, respectively. There is one fac-
tor node for each constraint, which is linked by edges to the
2 variable nodes involved in that constraint.

The constraint potential table associated with each con-
straint factor node maps a set of K2 value-pairs (corre-
sponding to possible cluster assignments to the pair of
points in the constraint) to potential values. For the fac-
tor node encoding the must-link constraint (xi,xj), the po-
tential value for the entry (li, lj) in the constraint poten-
tial table is 1 if li = lj , i.e., xi and xj have the same
cluster assignments. If li 6= lj , the potential value is
exp(−d(xi,xj)wij), where d(xi,xj) is the distance be-
tween the points xi and xj according to the current esti-
mate of the distortion measure D, and wij is the weight of
the constraint.

Similarly, for the cannot-link factor nodes, the potential ta-
bles have values of 1 for the entry (li, lj) where li 6= lj ,
and exp(−(dmax(xi,xj) − d(xi,xj))wij) if li = lj . The
potential values of the constraint factor nodes correspond
to the metric version of the Potts potential function, as ex-
plained in Section 2.1.

Finding the collective assignment of points to minimize
Jobj in the E-step corresponds to running the max-product
message-passing algorithm on the factor graph (Kschis-
chang et al., 2001). Once the message-passing algorithm
converges, the cluster assignment for each data point is ob-
tained from the value in the corresponding variable node.

3.2. The Iterated Conditional Modes Approach

The Iterated Conditional Modes (ICM) inference tech-
nique (Besag, 1986) is a greedy strategy to sequentially
update the cluster assignment of each point, keeping the
assignments for the other points fixed. Based on a pre-
selected random ordering, each point xi is sequentially as-
signed to the cluster representative µh that minimizes the
point’s contribution to the objective function Jobj(xi, µh):

Jobj(xi, µh) = D(xi, µh) +
X

(xi,xj)∈M

wijϕD(xi,xj)
�
[h 6= lj ]

+
X

(xi,xj)∈C

wij

`

ϕD max − ϕD(xi,xj)
´ �

[h = lj ] (7)

Optimal assignment for every point is that which minimizes
the distortion between the point and its cluster represen-
tative (first term of Jobj) along with incurring a minimal
penalty for constraint violations caused by this assignment
(second and third terms of Jobj). Once a point x is assigned
to a cluster, the subsequent points in the sequence deter-
mined by the ordering use the current cluster assignment of
x to calculate possible constraint violations.

After all points are assigned, the assignment process is re-
peated according to a new random ordering. This process
proceeds until no point changes its cluster assignment be-
tween two successive iterations. ICM is guaranteed to re-
duce Jobj or keep it unchanged (if Jobj is already at a local
minimum) in the E-step (Besag, 1986).

3.3. The LP Relaxation Approach

The task of finding an assignment of instances to clusters to
minimize the objective function can be posed as an integer
programming problem. Such a formulation has been pro-
posed by Kleinberg and Tardos in the context of the general
metric labeling problem, where they considered the cost of
assigning labels to instances while attempting to satisfy a
set of must-link pairwise constraints (Kleinberg & Tardos,
1999). We extend this formulation to include cannot-link
constraints, which allows using it for assigning instances
to clusters in the E-step of HMRF-KMEANS.



Let Y = {yil}, i = 1..N , l = 1..K, be a set of nonnega-
tive binary variables that encode membership of instances
in clusters: yil = 1 signifies that the ith instance belongs
to the lth cluster. Sets of nonnegative binary variables
Y(M) = {y

(M)
i }

|M|
i=1 and Y(C) = {y

(C)
i }

|C|
i=1 encode vio-

lations of must-link and cannot-link pairwise constraints
respectively. Each y

(M)
k = 1 signifies that the kth must-

link pairwise constraint ek = (xk1
,xk2

) is violated, while
y
(C)
k = 1 signifies that the kth cannot-link pairwise con-

straint ek = (xk1
,xk2

) is violated. The objective function
to be optimized in the E-step of HMRF-KMEANS then be-
comes:

Jobj =
∑

xi∈X

∑

l∈L

D(xi, µl) yil +
∑

(xk1
,xk2

)∈M

wkfM (xk1
,xk2

)y
(M)
k

+
∑

(xk1
,xk2

)∈C

wkfC(xk1
,xk2

)y
(C)
k (8)

Assigning each instance to only one cluster imposes the
following linear constraint on variables in Y:∑

l∈L

yil = 1, xi ∈ X (9)

Also, consistency of pairwise constraint violation variables
in Y(M) and Y(C) with the assignment variables in Y re-
quires satisfaction of the following linear constraints:

y
(M)
k =

1

2

X

l∈L

|yk1l − yk2l|, ek = (xk1
,xk2

) ∈ M;

y
(C)
k = 1 −

1

2

X

l∈L

|yk1l − yk2l|, ek = (xk1
,xk2

) ∈ C (10)

These constraints can be expressed in a linear program by
replacing variables Y(M) and Y(C) with corresponding sets
of auxiliary variables Z(M) and Z(C), where z

(M)
kl = 1 iff

the kth must-link pair ek =(xk1
,xk2

) is violated and either
xk1

or xk2
is assigned to lth cluster. Semantics of z

(C)
kl are

similar: z
(C)
kl =1 iff kth cannot-link pair ek =(xk1

,xk2
) is

violated and both xk1
and xk2

are assigned to lth cluster.
Variables in Y(M) and Y(C) can be expressed via variables
in Z(M) and Z(C) as follows:

y
(M)
k =

1

2

X

l∈L

z
(M)
kl , ek = (xk1

,xk2
) ∈ M

y
(C)
k =

X

l∈L

z
(C)
kl , ek = (xk1

,xk2
) ∈ C (11)

Consistency of assignment variables in Y with pairwise
constraint violation variables in Z(M) and Z(C) can then
be achieved by introducing the following linear constraints:

z
(M)
kl ≥ yk1l − yk2l, ek = (xk1

,xk2
) ∈ M (12)

z
(M)
kl ≥ yk2l − yk1l, ek = (xk1

,xk2
) ∈ M (13)

z
(C)
kl ≤ yk1l + yk2l, ek = (xk1

,xk2
) ∈ C (14)

z
(C)
kl ≥ yk1l + yk2l − 1, ek = (xk1

,xk2
) ∈ C (15)

Minimization of objective function (8) under constraints
(9) and (12)-(15) to solve for binary variables Y , Z (M),
and Z(C) is NP-hard. Kleinberg and Tardos proposed
a linear programming relaxation of this integer program-
ming problem by allowing Y , Z(M), and Z(C) to be non-
negative real numbers, and provided a randomized method
for rounding the real solution to the linear program to in-
tegers (Kleinberg & Tardos, 1999). We follow their ap-
proach, which allows us to perform collective assignment
of all instances in X to cluster centroids.

4. Experiments

4.1. Methodology and Datasets

Experiments were conducted on three datasets: Iris from
the UCI repository, the Protein dataset used by Xing et al.
(2003) and Bar-Hillel et al. (2003), and a randomly sam-
pled subset from the Letters handwritten character recogni-
tion dataset. For Letters, we chose three classes: {I, J, L},
sampling 10% of the data points from the original dataset
randomly. We used parameterized squared Euclidean dis-
tance as the clustering distortion measure D for these ex-
periments.

We used pairwise F-Measure to evaluate the clustering re-
sults based on the underlying classes. F-Measure relies on
the traditional information retrieval measures, adapted for
evaluating clustering by considering same-cluster pairs:

Precision =
#PairsCorrectlyPredictedInSameCluster

#TotalPairsPredictedInSameCluster

Recall =
#PairsCorrectlyPredictedInSameCluster

#TotalPairsInSameCluster

F−Measure =
2 × Precision × Recall

Precision + Recall

We generated learning curves with 2-fold cross-validation
for each dataset. Each point on the learning curve repre-
sents a particular number of randomly selected pairwise
constraints given as input to the algorithm. Unit constraint
costs were used for all constraints, since the datasets did not
provide individual weights for the constraints. The cluster-
ing algorithm was run on the whole dataset, but the pair-
wise F-Measure was calculated only on the test set. Results
were averaged over 10 runs of 2 folds. For each trial, clus-
ter initialization was performed using neighborhoods in-
ferred from the provided constraints (Bilenko et al., 2004),
and then the HMRF-KMEANS algorithm was run with
a particular inference technique in the E-step, and metric
learning for Euclidean distance in the M-step.

4.2. Results and Discussion

We compared the three methods described in Section 3 for
collective assignment of instances to clusters. Figures 4-
6 show learning curves for the three datasets. For each
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dataset, ICM was faster than belief propagation and LP re-
laxation by at least an order of magnitude, which agrees
with the relative computational complexities of these algo-
rithms.

As the results demonstrate, global relational methods such
as belief propagation and LP relaxation outperform the
greedy approaches when a limited number of pairwise con-
straints is provided. However, as the number of provided
constraints increases, returns from these computationally
expensive methods diminish, and for every dataset there
exists a number of constraints beyond which ICM performs
no worse than the global approximate inference methods.

5. Conclusions

We have compared two methods for global approximate
inference (belief propagation and LP relaxation) with a
greedy approximate inference algorithm (ICM) in the con-
text of collective assignment of data points to clusters in
semi-supervised clustering with pairwise relational con-
straints. Our results indicate that belief propagation and
LP relaxation outperform ICM when a limited number of
pairwise constraints is provided. However, given a suffi-
ciently large amount of relational supervision, the greedy
algorithm for approximate inference performs on par with
global methods. Thus, greedy inference techniques should
be considered for scaling up semi-supervised clustering to
large datasets due to their low computational cost.
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