
Using neural networks for relational learning

Hendrik Blockeel hendrik.blockeel@cs.kuleuven.ac.be

Werner Uwents
Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract

Relational learners need to be able to handle
the information contained in a set of related
tuples. Most current relational learners are
biased either towards the use of aggregate
functions that summarize that set, or towards
checking the existence of specific kinds of ele-
ments in that set. Learning patterns that
contain a combination of both is a challen-
ging task. In this paper we introduce a neural
networks based approach to relational learn-
ing, where the neural net that is learned can
actually represent such a combination. This
capacity is illustrated on toy problems, but
several questions are open with respect to
learnability of more complicated concepts.

1. Introduction

Non-relational (“propositional”) learners can be said
to learn a function f(x) where the domain of x is a
cartesian product of different domains. That is, x is
described by a fixed number of attributes, for each of
which a single value is given; or, in yet other words, x
is a single tuple.

In relational learning, a single instance is described
by a tuple together with a set of other tuples related
(linked) to it. We will adopt the terminology from re-
lational databases here. A database contains a set of
relations, each of which is a set of tuples. Tuples may
be linked to each other through foreign key relation-
ships. Thus, if we have relations R and S in a rela-
tional database, a tuple r of R forms a propositional
description of some entity, whereas r together the set
of all s ∈ S that are linked to r, forms a relational
description of the same entity.

Assuming we disallow set-valued attributes, the in-
formation contained in a set of related tuples can in
practice not be represented accurately as a single tuple
(for instance, because its size is unbounded), it can
only be approximated. We can then distinguish two
approaches: those that describe the set with a number
of features that is chosen in advance (e.g., its cardin-
ality) and then learn from a propositional represent-
ation (these are also called “propositionalization ap-

proaches”), and those that search a potentially infinite
space of features for the most relevant ones; this fea-
ture construction is then part of the learning process.

In relational algebra terminology, the features that are
used to describe sets are usually of the general form
F(σC(S)) where F is some kind of aggregation func-
tion, C is a condition that elements of S may or may
not fulfill, and σC(S) is the set of all elements of S
that fulfill C. The set S, when classifying a tuple t, is
obtained by joining t with any other tuples to which it
is linked, joining those tuples again with linked tuples,
and so on, up to a certain maximum number of con-
secutive joins.

Now it is instructive to look at how relational learners
fill in F and C. In propositionalization approaches,
the feature itself, i.e., the combination of F and C, is
defined in advance. Any combination can be identi-
fied by the user as potentially relevant. There is no
automatic feature construction.

Other approaches construct features using some struc-
tured search. These typically focus their search on
either σC(S) or F . Inductive logic programming (ILP)
(Muggleton & De Raedt, 1994) algorithms typically
construct a complex σC(S), where S is several levels
deep and C may be a complex conjunction of condi-
tions; but F reduces to testing the emptiness of σC(S)
(logical clauses, as learned in ILP, are existentially
quantified), in other words, F(X) = [count(X) > 0].

Yet other approaches, typically described in a rela-
tional databases framework, allow several predefined
aggregation functions F , but apply them only to S it-
self, not to a selection of S. Knobbe et al. (2002) are,
to our knowledge, the first to present a method that
performs a systematic search in a hypothesis space (in
this case, that of “selection graphs”) where hypotheses
combine aggregation and selection. Their approach is
however limited to monotone aggregation functions (F
is monotone if S ⊆ S′ ⇒ F(S) < F(S′)), which limits
its applicability somewhat (for instance, Sum and Av-
erage are not monotone), and to selecting aggregate
functions from a limited set given by the user.

Finally, some approaches may learn any aggregation
function, not only predefined ones; an example of these
is presented by Perlich and Provost (2003), who clas-

sify tuples based on the distribution of linked tuples.
These authors also present a classification of relational
data mining tasks, stating that most current relational
systems handle tasks in categories 1 or 2 (involving
no aggregation or uni-dimensional aggregation). Cat-
egories 3 and 4 involve multi-dimensional aggregation
(aggregating over several variables, of the same rela-
tion for category 3, of different relations for category
4). (They also have a category 5, not relevant for this
discussion). ILP-like methods are the only ones that
consider tasks up to level 4, albeit with strong lim-
itations with respect to the aggregate functions that
they allow. Knobbe et al. (2002) partially lift this
limitation, by allowing any aggregate function that is
a member of a user-defined set of monotone functions.
To our knowledge, no approaches currently combine
a complicated selection with less limited kinds of ag-
gregation.

In this paper, we explore the use of neural networks
for relational learning. The approach we propose, does
combine complicated, non-predefined, selections and
aggregations, and hence can be positioned in category
4. It can be considered a supervised learning approach,
where aggregations and selections are learned in par-
allel, tuned to each other in order to provide max-
imal information with respect to the tuple to be clas-
sified. This paper presents preliminary work, showing
the promise of the approach, but leaving many ques-
tions open. We define relational neural networks in
Section 2, present some experiments in Section 3, and
conclude in Section 4.

2. Relational Neural Nets

A standard feedforward neural network has a fixed
number of inputs, all with a well-distinguished effect
on the output; in other words, it represents a function
f(x) where x is a single tuple. In order to use a neural
network for relational learning, we need to extend it
with a capacity for handling sets. More specifically,
for a given instance, we need to be able to feed a set of
tuples into the network for any one-to-many relation-
ship that the instance participates in.

We first discuss how we can handle a set of inputs
using a recurrent neural network; then we show how
a relational neural network structure can be derived
from a relational database schema. Finally we com-
pare this approach to some other approaches that use
neural networks for relational learning.

2.1. Handling set inputs using recurrent
neural networks

A recurrent neural network is a standard feedforward
neural network in which feedback loops are introduced;
that is, the outputs of certain neurons are fed back into
their inputs (either directly or indirectly).

For 2-layer recurrent neural networks, three architec-
tures are typically distinguished:

• Elman: the output of each layer 1 (hidden layer)
node is fed back into each layer 1 node

• Jordan: the output of each layer 2 node is fed
back into each layer 1 node

• Willams-Zipfer: all layer 1 and layer 2 outputs are
fed back into all layer 1 nodes (thus combining the
Elman and Jordan architectures).

The feedback loops give the network a kind of memory,
which allows one to feed multiple input vectors into
the network for a given training example. Recurrent
networks are typically used for time series, where the
prediction at a given time point may depend not only
on inputs for that time point but also on previous in-
puts. The input vectors at times t− k, t− k + 1, . . . ,
t−1, t are then typically fed into the network one after
another and the output produced by the network after
seeing these inputs is compared with the desired out-
put yt at time t. Reduction of the difference between
yt and the network output can be done using a gradi-
ent descent procedure that can be implemented using a
variant of the standard backpropagation algorithm. A
typical method used is backpropagation through time,
where the recurrent network is unfolded into a multi-
layer feedforward neural network to which standard
backpropagation is applied.

While recurrent neural networks are often used for
time series prediction, they appear to be less com-
monly used for handling sets of input vectors. The
main difference between these two is that in time series
prediction, the input for a given instance is an ordered
set of vectors, rather than an unordered set (which is
what we need here). Obviously, any function of an
unordered set can be represented as a function of an
ordered set, but the converse does not hold. The fact
that we want to learn an order-invariant function could
in principle be used to constrain the neural net’s para-
meters so that only order-invariant functions can be
learnt. At this stage we have not investigated exactly
how this could be done.

2.2. Relational neural networks

Assume we have a relational database schema where
RT is the target relation, and R1, . . . , Rn are other re-
lations in the database. We denote the attribute sets
of Ri by Ui. In the following we will assume a classi-
fication setting for ease of discussion, but everything
applies equally well to any predictive setting.

Given any relation R, we define

• S1(R): Ri ∈ S1(R) iff each tuple t ∈ R is con-
nected to exactly one tuple in Ri (i.e., there is

a one-to-one or many-to-one relationship between
R and Ri, in which R participates completely)

• S01(R): Ri ∈ S01(R) iff each tuple t ∈ R is con-
nected to at most one tuple in Ri (again one-to-
one or many-to-one, but partial participation)

• Sn(R): Ri ∈ Sn(R) iff each tuple t ∈ R is connec-
ted to zero, one, or more tuples in Ri (partial or
complete participation of R in a one-to-many or
many-to-many relationship with Ri)

• Su(R): Ri ∈ Su iff Ri is a relation of the relational
database not in S1(R), S01(R) or Sn(R) (i.e., it is
not directly connected to R)

Given a tuple t in the target relation RT , we want to
classify it based on the information contained in the
tuple and in any tuples linked to this tuple. For a re-
lation Ri we use Ui to denote the original attribute set
of that relation and Ii to denote the attribute set ac-
tually used as input to our classifier; one might expect
Ii = Ui but there will be some small differences. For
the target table, IT = UT − {C} where C is the class
attribute.

For any tuples ti ∈ Ri where Ri ∈ S1(RT), the inform-
ation in ti can be added to t by joining Ri with {t}: a
single tuple is thus obtained. Ii = Ui for these tuples.

For any Ri ∈ S01(RT), an outer join with {t} also
yields exactly one tuple, which may however contain
null values for the attributes of Ri. As neural networks
do not have a distinguished encoding for null values, we
will use an extra attribute Ei that indicates whether
the link to Ri yielded a joining tuple or not. Ii =
Ui ∪ {Ei}.

For Ri ∈ Sn(RT), an indefinite number of tuples ti1,
. . . , tin may be linked to a single t ∈ RT . In order to
allow this set of tuples to influence the classification
of t, a recurrent neural network will be constructed.
The tuples tij will be represented using their original
attribute values plus an extra attribute Ei which is
always true for these tuples. The fact that no tuples
tij exist will be indicated using a single input tuple
where Ei = false.

Tuples in Ri ∈ Su(RT) are not directly linked to tuples
in RT , but may be linked indirectly. For now we ignore
these.

Based on the above, we can propose several options for
constructing a relational neural network that classifies
t ∈ RT based on its own attribute values as well as
those of (directly) related tuples. Two options that
we will explore here, are:

Option 1: For each relation involved, including the
target relation, a different neural network (called a
“component”) is constructed. The outputs of these
networks are combined by a single perceptron. The

components are standard feedforward neural networks
for the target relation RT and for any relations in
S1(RT) and S01(RT), with as inputs the Ii as defined
above. The components for Sn(RT) are recurrent
neural networks.

Option 2: For each t, we can construct a tuple t′ with
attributes

IT ∪(
⋃

i:Ri∈S1(RT)

Ii)∪(
⋃

i:Ri∈S01(RT)

Ii)∪(
⋃

i:Ri∈Sn(RT)

Oi)

with Ii as defined above, and Oi a set of attributes the
values of which are the outputs of a 2-layer recurrent
neural network with as inputs Ui.

Of course, other options are possible as well, but we
restrict ourselves in this paper to these two. Of these
two, Option 1 is the more restricted one: a simpler
network is constructed in which the results of different
components are combined by one perceptron. Option
2 creates a larger and more expressive network; it also
has an extra structural parameter, namely the number
of outputs |Oi| of the recurrent networks (which we
assume here to be the same for all recurrent networks).

Note that the Oi attributes in Option 2 can be seen
as aggregate functions that summarize the set of Ri-
tuples related to t. Thus, this approach is closer to the
propositionalization approach, where a propositional
learner learns from a fixed set of attributes, some of
which summarize set information. It differs from clas-
sical propositionalization approaches in that these ag-
gregates are now learned, instead of predefined.

Note that with Option 2, the technique of adding to t
the Oi attributes that summarize related tuples, can
be repeated for those related tuples, thus also incor-
porating information in indirectly linked tuples (from
relations in Su(RT)).

2.3. Related work

The existing work that is probably closest to our ap-
proach, is a line of work in the neural networks com-
munity on learning from structured data using recurs-
ive neural networks or folding architecture networks
(Goller & Küchler, 1996; Sperduti & Starita, 1997;
Frasconi et al., 1998). These authors describe how to
learn from structured data (e.g., logical terms, trees,
graphs), and discuss tasks like the identification of sub-
structures, but they do not aim at learning aggrega-
tion functions. Those tasks relate to the tasks we con-
sider, more or less in the same way as ILP relates to
our approach. Our approach however is not essentially
different, and many existing results on learnability of
recursive neural networks may carry over to our set-
ting.

A number of neural network based approaches have
been defined in the ILP setting (Botta et al., 1997;
Basilio et al., 2001); the neural networks in these ap-

ID Gender Father Mother
albert M bob alice
peter M bob alice
alice F jack mary
bob M james anne
.

Table 1. An example instance of the family database.

proaches typically mimic logical inference as it would
be made by logic programs or implement numerical
computations in them. Again, they do not learn ag-
gregate functions as we do. Ramon and De Raedt
(2000) have defined multi-instance neural networks;
these are a subset of our relational neural networks de-
signed specifically for the multi-instance case. Ramon
et al.’s neural logic programs (Ramon et al., 2002) are
somewhat similar to our relational neural networks,
with as main differences that they are described in a
first order logic framework and that, just like for multi-
instance neural networks, specific aggregate functions
are encoded in advance by the user, instead of learned
(and typically they represent logical conjunctions and
disjunctions). We believe that from the point of view
of relational learning, the ability to learn aggregate
functions is a crucial advantage of our approach.

3. Experiments

To evaluate the potential of this approach, we have
performed a number of experiments, varying paramet-
ers along a number of dimensions: Option 1 versus Op-
tion 2, as discussed above; different architectures for
the recurrent components (Elman, Jordan, Williams-
Zipfer); different learning approaches (backpropaga-
tion through time, evolutionary learning), different
parameter settings for these approaches.

3.1. A family database

In this artificially generated toy database, there is
a single relation with attributes ID, Gender, Father,
Mother; it describes a number of persons and parent-
ship relations between them (Father and Mother are
foreign keys to ID). We show an example relation in
Table 1. Note that the ID, Father and Mother at-
tributes are present only to identify tuples and to link
them to each other; they are not descriptive attributes
of which the value will be tested by a hypothesis.

For this toy database, we define a few simple concepts.
Given a tuple t, let S(t) be the set of tuples s for which
s.Father = t.ID or s.Mother = t.ID.

• C1: has at least one son;
C1(t)⇔ count(σGender=M (S(t))) > 0

• C2: has 2 children; C2(t)⇔ count(S(t)) = 2

• C3: has 2 sons;

C3(t)⇔ count(σGender=M (S(t))) = 2

• C4: has one son and one daughter;
C4(t)⇔ (count(σGender=M (S(t))) = 1∧
count(σGender=F (S(t))) = 1)

• C5: has one son or two daughters;
C5(t)⇔ count(σGender=F (S(t))) = 1∨
count(σGender=M (S(t))) = 2)

• C6: has a grandson; C6(t)⇔
count({s ∈ S(t)|countσGender=F (S(s))) > 0}) >
0

Note that C1 is a concept that could be learned by any
ILP system: it involves some selection criterion but a
trivial aggregation function. C2 is a concept that could
easily be learned by any system where aggregates over
sets of related tuples are predefined. Concept C3 is
a more complicated concept that involves an aggreg-
ate over a selection of related tuples. C4 is again an
ILP-like concept, but a slightly more complicated one
than C1. Similarly, C5 is a slightly more complicated
concept than C3, combining two functions that them-
selves combine aggregation and selection. C6 is an ex-
ample of a concept that takes into account information
“two steps away” from the tuple to be classified.

Most existing systems can learn these only with a re-
latively strong bias; e.g., in an ILP system typically
the allowed aggregate function as well as any condi-
tions that are allowed in the argument of this aggreg-
ate function would have to be given in advance.

The experimental setting is as follows: each combina-
tion of relational (Option 1, Option 2) and recurrent
(Elman, Jordan, Williams-Zipfer) architecture is tried
on all concepts C1-C6. For each architecture-concept
combination, five runs with different random initial-
izations of the network weights are made. Each run
uses the same training set, which consists of 2/3 of the
dataset. Of these five randomized runs, the one with
highest training accuracy is chosen and evaluated on
the remaining, unseen, examples (1/3 of the dataset).
(Using a separate validation set would allow to separ-
ate the overfitting risk of an architecture from its true
generalization power; for these initial exploratory ex-
periments we found it unnecessary to have this separ-
ation, but it would be desirable for more sophisticated
experiments.)

It turned out that for both relational architectures,
using backpropagation through time, the network is
able to learn correctly (with 100% test set accuracy)
all the concepts. In general, some tuning of the net-
work parameters was necessary for this, which is not
unexpected; and usually not all random initializations
of the network allowed it to converge to the correct
concept. The results for evolutionary learning were
similar.

3.2. Other Datasets

We have also attempted to evaluate the proposed ap-
proach on two benchmark datasets: the Musk dataset
(Dietterich et al., 1997), a multi-instance problem on
which several relational learning approaches have been
compared, and the Financial dataset (Berka, 2000) for
which also Knobbe et al. (2002) have reported results.

Due to inefficiencies in our current implementation,
we have been able to evaluate the approach only on
relatively small data sets up till now. For the Musk
experiments, we have used Musk-1, the smaller of the
two available data sets. For the Financial data set,
we have not been able to include the Transaction rela-
tion in the training data, because it is too large. This
means that for this data set our results are not com-
parable to results published elsewhere.

For the Musk-1 data set, we performed a tenfold cross-
validation with the same folds that were used else-
where. Four different combinations of parameters and
architectures were tried, and predictive accuracies on
unseen data varied between 79.3% (19 errors) and
85.9% (13 errors). This is to be compared with
88% (11 errors) reported for “multi-instance neural
networks” (MINNs) (Ramon & De Raedt, 2000) ap-
proach, which are a special case of our relational neural
networks.

Relational neural networks cannot outperform MINNs
on this type of problems, since the hypothesis space
searched by the former, HRNN , is a superset of the hy-
pothesis space HMINN searched by the latter, and any
hypothesis in HRNN − HMINN is necessarily mean-
ingless because it violates the multi-instance assump-
tions. In other words, the hypothesis in HRNN that
best approximates the target hypothesis, must also be
in HMINN . The best we can hope for, is that our ap-
proach performs as well as multi-instance neural net-
works on multi-instance problems (while performing
better outside that class). From that point of view,
the obtained results are promising, but more experi-
mentation is needed to obtain more insight into, e.g.,
the probability of obtaining with our more general ap-
proach an accuracy that is comparable to that of the
more specialized approach.

For the Financial dataset, 2/3 of the data were used for
training and 1/3 for testing, and six different configur-
ations were tried. Obtained accuracies were between
74% and 85%. This data set has a highly skewed class
distribution: the frequency of the majority class is
85%. Thus, accuracy-wise, these results are quite bad.
A ROC analysis, however, shows that on average the
method does perform better than random guessing, in
the best case combining a true positive rate of 0.95
with a false positive rate of 0.75. As mentioned, these
results are not comparable with published results be-
cause only a subset of the available information was
used.

4. Conclusions

We have presented a novel, neural network based, ap-
proach to relational learning. The approach consists of
constructing a neural network based on the relational
database schema, where recurrent components are in-
troduced for one-to-many relationships. The power of
this approach is yet to be determined, but this initial
exploration reveals that, in Perlich and Provost’s ter-
minology (Perlich & Provost, 2003), simple category 3
and category 4 concepts (as defined for our toy data-
base) can be accurately represented and learned. An
experiment on a multi-instance benchmark further in-
dicates that the approach may work equally well on
this type of problems as the more specialized MINN
approach (Ramon & De Raedt, 2000). An experiment
on a fully relational problem has mainly revealed the
need for a more efficient implementation: the compu-
tational complexity of the approach is relatively high
and currently precludes a meaningful comparison of
our approach to other approaches, on this benchmark.

Many questions remain open. What is the best ar-
chitecture for these networks? We have proposed two
options; our Option 2 is clearly more expressive than
the other, but both appear to learn well on the prob-
lems we have considered. Among the three architec-
tures for recurrent networks, there was a tendency of
the Williams-Zipfer architecture to perform somewhat
better than the others in our experiments, but again
further experimentation is necessary.

What subclass of Perlich and Provost’s category 3-
4 can be learned using this approach? We have fo-
cused here on “combining selection and aggregation”,
which is a special case of multidimensional aggrega-
tion for which it is intuitively easier to see that our
relational neural networks should be able to represent
them. Even for this subclass, formal results would be
desirable, and further experiments should be conduc-
ted.

Our recurrent neural networks in principle learn from
ordered sets; they might be made to learn more effect-
ively if their parameters are somehow constrained so
that the network expresses a function of an unordered
set. (Randomly permuting the elements of a set, each
time the set is fed to the network, is also an option,
but may not be the most efficient one.)

It is clear that there are connections between this ap-
proach and some existing approaches for learning from
structured data that are not directly connected with
statistical relational learning. We expect that some
further investigation into those approaches may ad-
vance the field of relational learning.

5. Acknowledgements

Hendrik Blockeel is a post-doctoral fellow of the Fund
for Scientific Research of Flanders (FWO-Vlaanderen).
We thank Martijn van Otterlo, Kristian Kersting and
Jan Ramon for useful suggestions concerning this
work.

References

Basilio, R., Zaverucha, G., & Barbosa, V. C. (2001).
Learning logic programs with neural networks. Pro-
ceedings of the Eleventh International Conference on
Inductive Logic Programming. Springer-Verlag.

Berka, P. (2000). Guide to the financial data set. The
ECML/PKDD 2000 Discovery Challenge.

Botta, M., Giordana, A., & Piola, R. (1997). Fonn:
Combining first order logic with connectionist learn-
ing. Proceedings of the 14th International Confer-
ence on Machine Learning (pp. 46–56). Morgan
Kaufmann.

Dietterich, T. G., Lathrop, R. H., & Lozano-Pérez, T.
(1997). Solving the multiple-instance problem with
axis-parallel rectangles. Artificial Intelligence, 89,
31–71.

Frasconi, P., Gori, M., & Sperduti, A. (1998). A gen-
eral framework for adaptive processing of data struc-
tures. IEEE-NN, 9, 768–786.

Goller, C., & Küchler, A. (1996). Learning task-
dependent distributed representations by back-
propagation through structure. Proceedings of the
IEEE International Conference on Neural Networks
(ICNN-96) (pp. 347–352).

Knobbe, A., Siebes, A., & Marseille, B. (2002).
Involving aggregate functions in multi-relational
search. Principles of Data Mining and Knowledge
Discovery, Proceedings of the 6th European Confer-
ence (pp. 287–298). Springer-Verlag.

Muggleton, S., & De Raedt, L. (1994). Inductive logic
programming : Theory and methods. Journal of
Logic Programming, 19,20, 629–679.

Perlich, C., & Provost, F. (2003). Aggregation-based
feature invention and relational concept classes.
Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining (pp. 167–176). ACM Press.

Ramon, J., & De Raedt, L. (2000). Multi in-
stance neural networks. Proceedings of the ICML-
Workshop on Attribute-Value and Relational Learn-
ing.

Ramon, J., Driessens, K., & Demoen, B. (2002).
Neural logic programs. Unpublished.

Sperduti, A., & Starita, A. (1997). Supervised neural
networks for the classification of structures. IEEE
Transactions on Neural Networks, 8, 714–735.

