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Abstract

Semantic scene classification is a challenging
problem in computer vision. Special-purpose
semantic object and material (e.g., sky and
grass) detectors help, but are faulty in prac-
tice. In this paper, we propose a genera-
tive model of outdoor scenes based on spatial
configurations of objects in the scene. Be-
cause the number of semantically-meaningful
regions (for classification purposes) in the im-
age is expected to be small, we infer exact
probabilities by utilizing a brute-force ap-
proach. However, it is impractical to obtain
enough training data to learn the joint distri-
bution of the configuration space.

To help overcome this problem, we propose a
smoothing technique that modifies the naive
uniform (Dirichlet) prior by using model-
based graph-matching techniques to popu-
late the configuration space. The proposed
technique is inspired by the backoff technique
from statistical language models. We com-
pare scene classification performance using
our method with two baselines: no smoothing
and smoothing with a uniform prior. Initial
results on a small set of natural images show
the potential of the method. Detailed explo-
ration of the behavior of the method on this
set may lead to future improvements.

1. Introduction

Semantic scene classification, categorizing pho-
tographs at a high level into discrete categories such as
beach, mountain, or indoor, is a useful, yet challenging
problem in computer vision. It can help with image
organization and with content-based image retrieval.

Most approaches (Vailaya et al., 1999; Szummer &
Picard, 1998; Torralba et al., 2003) typically use low-
level (e.g., color, texture) features and classifiers to
achieve reasonable results.

Higher-level features, such as the output from object
and material detectors, can also help classify scenes.
An advantage to this approach is its modularity, allow-
ing independently-developed, domain-sensitive detec-
tors to be used. Only recently has object and material
detection in natural environments become accurate
enough to consider using in a practical system. Re-
cent work using object detection for other tasks (Mul-
hem et al., 2001; Song & Zhang, 2002; Smith et al.,
2003) has achieved some success using object presence
or absence alone as evidence. However, faulty detec-
tors present a continuing difficulty for this approach.

Figure 1 shows an image, true material identities of
key regions (color-coded), and simulated detector re-
sults, expressed as likelihoods that each region is la-
beled with a given material. The problem is how to
determine which scene type best explains the observed
(imperfect) evidence.
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Figure 1. (a) A beach image (b) Its manually-labeled ma-
terials. The true configuration includes sky above water,
water above sand, and sky above sand. (c) The underlying
graph showing detector results and spatial relations.



How does one overcome detector errors? One princi-
pled way is to use a probabilistic inference system (vs.
a rule-based one, such as (Mulhem et al., 2001)) to
classify a scene based on the presence or absence of
semantic materials. Furthermore, we can extract ad-
ditional useful evidence from the input image, such as
spatial relationships between the detected regions, to
improve scene classification.

In this paper, we study statistical relational learning of
scene configurations, consisting of both materials and
their spatial relations. We propose a generative model
of scene classification that uses material detectors and
full scene configurations. The main limitation of this
model is obtaining enough training data to learn the
joint distribution of the configuration space (materials
in specific configurations). To this end, we also pro-
pose a smoothing technique that improves upon the
naive uniform (Dirichlet) prior by using model-based
graph-matching techniques to populate the configura-
tion space. Our technique is inspired by graph match-
ing and backoff techniques. It is used in learning only;
the inference phase needs no adaptation. We com-
pare scene classification performance using our method
with two baselines, no smoothing and a uniform prior,
to show its promise.

2. Scene Configurations

Scene configurations consist of both the actual spatial
arrangement (graph edge labels) of regions and the
identities of those regions (node labels), as illustrated
in Figure 1.

Our terminology is as follows: let n be the number of
distinct regions detected in the image, M be the small
set of semantically critical materials for which detec-
tors are used, SR be the set of spatial relations, and
C be the set of configurations of materials in a scene.
Then an upper bound on the number of scene con-

figurations, |C|, is \M|"|SR|(Z) (in a fully connected
graph).

In (Luo et al., 2003), the spatial relations above, be-
low, far above, far below, beside, enclosed, and en-
closing (i.e., |SR| = 7)) were shown to be effective
for spatially-aware material detection within outdoor
scenes. We adopt essentially the same spatial relations
in this study.

In the inference phase, the spatial arrangement of the
test image is known (computed); thus, its graph need
only be compared with those of training images with
the same arrangement. We restrict our attention in
this paper to learning the distribution of region identi-
ties within a fized spatial arrangement, of which there

are |M|™ configurations. For example, an image with
two regions, Ry above Ry has only |M|? configurations.

Adding to our terminology, we can formalize the
scene classification problem as follows: let S be
the set of scene classes considered, and E =
{E1, Es,...E,} be the detector evidence, where each
E; = {e1,ea,...ep} is a likelihood vector for the
identity of region j.

In this framework, we seek to calculate:
argmax P(S;|E) « argmax P(S;)P(E|S;) (1)
Taking the joint distribution of P(E|S;) with C yields

arg m?XP(Si)Z P(E, ¢|S;) (2)
ceC

Conditioning on ¢ gives

argmlaxP(Si) 2:P(E|c7 Si)P(c|S;) (3)
ceC

2.1. Relation to Graphical Models

Figure 2a shows a graphical representation (not graph-
ical model) for a single scene. While it is possible to
represent this system with a grapical model, we chose
a different approach in this study. On the surface, it
looks like a standard two-level Markov Random Field
(MRF) (Geman & Geman, 1984; Freeman et al., 2000).
As in these MRFs, evidence nodes in our represen-
tation are conditionally dependent only on the iden-
tity of the underlying region’s scene node, while the
scene nodes are dependent on each other. However,
this is not a typical graphical model. Fundamentally,
we are solving a different problem than those for which
MRFs are used. MRF's are typically used to regular-
ize input data (Geman & Geman, 1984; Chou, 1988),
finding P(C|E), the single configuration (within a sin-
gle model) that best explains the observed faulty ev-
idence. In constrast, we are trying to perform cross-
model comparison, P(S|E), comparing how well the
evidence matches each model in turn. To do this, we
need to sum across all possible configurations of the
scene nodes (Equation 3). In this framework, we need
to use a brute force approach.

Further, at this coarse segmentation, even distant (in
the underlying image) nodes may be strongly corre-
lated, e.g., sky and pavement in urban scenes. Thus,
we cannot factorize the scene structure (as could be
done in low-level vision problems) and instead assume
a fully-connected scene structure. Fortunately, for



scene classification, and particularly for landscape im-
ages, the number of critical material regions of inter-
est, n, is generally small (n < 6) 1, so a brute-force
approach to maximizing Equation 3 is tractable.

2.2. Scene Classification System

Figure 2b shows the full scene classification
system. After each scene model computes
> ecc P(Elc, Si)P(c|S;) for scene class S;, the
results are compared at the top level to make a
decision (incorporating priors for the scene classes if
available).
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Figure 2. (a) Graphical representation for a single scene
class. The observed nodes (detector inputs; shown as
filled circles) are each connected to a single node in the
fully-connected scene graph (which represents a configu-
ration, treated as a single hidden state in the brute-force
approach). (b) Full system: a bank of scene models. The
instantiated detector inputs to each scene are the same for
each class.

We can learn P(F|c, S) relatively easily. As described
above, a reasonable assumption is that a detector’s
output on a region depends only on the object present
in that region and not on other objects or upon the
class of the scene. This allows us to factor the dis-
tribution into []j_, P(Ej|c;); each of which describes
a single detector’s characteristics and can be learned
by counting detection frequencies on a training set of
regions or fixed using using domain knowledge.

However, P(c|S) is difficult to factor because of the
strong dependency between regions. The resulting
joint distribution is sparsely populated: there are
O(|M|™) parameters (the counts of each configuration)
to learn, and only |Ts| training images of scene class S.
The sparseness is exacerbated by correlation between
objects and scenes. How do we deal with this sparse
distribution?

'The material detectors can be imbued with the ability
to merge regions, so over-segmentation is rare.

2.3. Naive Approaches to Smoothing

The simplest approach is to do nothing. This adds
no ambiguity to the distribution. However, without
smoothing, we have P(c|S) = 0 for each configuration
C ¢ Ts. This automatically rules out, by giving zero
probability to, any valid configuration not seen in the
sparse training set, regardless of the evidence: clean,
but unsatisfying.

Another simple technique is use a uniform Dirichlet
prior on the configurations, implemented by adding a
matrix of pseudo-counts of value e to the matrix of
configuration counts. However, this can allow for too
much ambiguity, because in practice, many configura-
tions should be impossible, for example configurations
containing snow in the Desert model. We seek the
middle ground: allowing some matches with configu-
rations not in the training set, but not indiscriminately
allowing all matches.

2.4. Graph-based Smoothing

Our goal is to smooth using the training set and knowl-
edge of the image domain. Specifically, we compute
P(c|S) as follows. Fix the spatial arrangement of ma-
terials. Let Ts = {G1,5,G2,s,...G 14,5} be the set
of graphs of training images of class S with that spa-
tial arragnment. For 1 < j < r, let N} € M" be
r-dimensional matrices of counts. The configuration,
¢, is an index into the matrices. Let sub;(G) denote a
subgraph of graph G with j nodes and = denote graph
isomorphism.

Then define

Ni(c) = {Gis}| : subj(c) = subj(Gy5))  (4)

Ns(e) = 3" a;N§(o) )

Ns(c)

) e Ns

(6)

Each N7 represents the pseudo-counts of the sub-
graphs of size j occurring in the training set. N" is
the standard count of full scene configurations occur-
ring in the training set. As the subgraph size decreases,
the subgraphs are less-specific to the training set, and
so should contribute less to the overall distribution.
Thus, we expect that the parameters o; will decrease
monotonically. Furthermore, as j decreases, each NN;
becomes more densely populated. Intuitively, this is
like radial basis function smoothing, in that points



“close” to the training points are given more weight
in the small area near the peaks than in the larger
area at the tails. Finally the counts are normalized to
obtain P(c|S). For example, consider the contribution
to NV of a single training configuration “sky above wa-
ter above sand”: each configuration containing “sky
above sand”, “sky above water”, or “sand above wa-
ter” receives weight as and any configuration contain-
ing sky, water, or sand receives weight a; < aw; other
configurations receive no weight.

The desired result of modifying the uniform Dirichlet
prior in this way is that the weight a configuration
receives is a function of how closely it matches config-
urations seen in the training set. While our proposed
technique is inspired mainly by the graph matching
literature, it can also be viewed as backprojection and
as a backoff technique; we discuss each connection in
Section 4.

3. Experimental Results

We have a database of 923 images in 5 classes: Beach,
Desert, Fall Foliage, Field, and Mountain. Each im-
age is automatically segmented using the algorithm
described in (Comaniciu & Meer, 2002), and the
semantically-critical regions are manually labeled with
their true materials (i.e., ground truth), as in Figure
1b. The ground truth labels correspond to those ma-
terials (e.g., sky, grass, foliage, rocks) expected to pre-
dict these scenes. Other regions are left unlabeled.

To simulate actual detectors, which are faulty, we ran-
domly perturbed the ground truth to create simulated
detector responses. We set the detection rates of indi-
vidual material detectors on each true material (both
true positive rates, e.g., how often the grass detector
fires on grass regions, and false positive rates, e.g.,
how often the grass detector fires on water regions)
by counting performance of corresponding actual de-
tectors on a validation set (or estimating them in the
case of detectors to be developed in the future). When
they fire, they are assigned a belief that is distributed
normally with mean p. The parameter p can be set
differently for true and false positive detections; vary-
ing the ratio between the two is a convenient way to
simulate detectors with different accuracies.

Spatial relations are computed using a computation-
ally efficient version of the “weighted walk-through”
approach (Berretti et al., 2001), detailed in (Luo et al.,
2003). We simplify the relations by ignoring the
“far” modifier and the enclosure relations (which oc-
cur rarely). We focus further on the single spatial ar-
rangement occurring most often in training: of the 256

images with 3 regions, 172 have a vertical structure,
Ry above Rs, Ry above Rz, and Ry above Rs.

We learn P(c|S) using the proposed smoothing
method and compare it with learning using two base-
lines: no smoothing and smoothing by a uniform prior
added to the counts.

We perform leave-one-out cross-validation to estimate
scene classification performance using the brute force
inference method of Equation 3. We eliminate the
effect of the priors over scene types by setting them
equal. Because we are simulating faulty detectors, we
can vary their performance and compare the methods
across the spectrum of detector accuracy (Figure 3).
While the subgraph smoothing method performs bet-
ter than the two baselines at all detector accuracies,
we admit the difference is small. We believe optimiz-
ing the smoothing weights, a;, should improve per-
formance; learning those parameters is the subject of
future work.
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Figure 3. Classification accuracy of the methods as a func-
tion of detector accuracy. The smoothing method performs
better than the baselines at nearly all detector accuracies.
Standard error is shown (n = 30).

4. Discussion

As expected, the smoothing technique helps to classify
images having a plausible, but rarely-occurring, scene
configuration. Figure 4 shows a number of examples.
The mountain scene on the left with the configura-
tion “gray sky above snow above grass” was classified
correctly by our method, but failed when no smooth-
ing was applied, because that specific configuration
did not occur in the training set, but its subgraphs
did. Other similar examples are the desert scene in



the configuration “blue sky above blue sky above bare
ground” and the field scene in the configuration “fo-
liage above blue sky above grass”.

Figure 4. Some images for which the baseline methods fail,
but the proposed method succeeds. Top: original scenes.
Bottom: hand-labeled regions.

4.1. Related Techniques for Graph Matching

Presently we are doing exact graph matching in the
sense that we demand an isomorphism for the arcs and
nodes, but inexract matching in that we are matching
attributed graphs, those with values or labels attached
to the nodes and arcs. We do multiple-matching: we
are matching into a database of graphs, looking for
the best match. Graph isomorphism is a problem of
unknown complexity. Inexact graph matching (differ-
ing number of nodes) is known to be NP-complete,
but is a basic utility for recognition problems. Thus
graph matching has a long history in image and scene
understanding.

Probabilistic techniques in graph matching, often us-
ing relaxation, have been used for some time (Han-
cock & Kittler, 1990). A comparison of various search
strategies appears in (Williams et al., 1999), and
(Shams et al., 2001) compares various matching al-
gorithms to one based on maximizing mutual infor-
mation. Hierarchical relaxation has been used in a
Bayesian context (Wilson & Hancock, 1999). Mix-
ture models have been explored for EM matching:
a weighted sum of Hamming distances is used as a
matching metric in (Finch et al., 1998). Generally,
only unary attributes and binary relations are used in
these probabilistically-founded searches. More com-
plex relations can be used in relaxation-like schemes as
in (Skomorowski, 1999). Various schemes using learn-
ing and Bayes nets for inexact matching are explored
in (Bengoetxea et al., 2000).

4.2. Related Concepts

One way to view our method is as a backprojection
(Swain & Ballard, 1991) technique. If we view the
configuration space C' as an r-dimensional space, sub-
graphs of lower dimension (size ¢ < r) can be backpro-

jected into C' to populate the space. Figure 5 shows an
example with » = 3 and ¢ = 2. The 3D configuration
space is sparsely populated in the absence of smooth-
ing. The training points are projected into 2D along
3 axes (the three subgraphs). The resulting 2D spaces
corresponding to the same spatial configurations are
integrated to combine evidence from different train-
ing examples. Finally they are backprojected into the
original 3D space (with lower weights than the original
counts).

Figure 5. Backprojection using our technique. For legibil-
ity in this 3D example, only one training point and two
backprojection directions (of the three possible with this
spatial configuration) are shown. The training set gener-
alizes through combining counts of subgraphs of multiple
training configurations.

Our technique can also be viewed as a backoff tech-
nique, as commonly used in speech recognition (Man-
ning & Schutze, 1999); a hierarchical, more principled
model is presented in (MacKay & Peto, 1994). If there
is insufficient data to learn a trigram model for a given
word, one can use a less-specialized, but more densely-
populated, bigram or unigram model. However, we
pre-compute the probabilities in the learning phase;
inference needs no special treatment.

5. Conclusions and Future Work

We have presented a generative model for classifying
scenes using faulty material detectors and spatial con-
figurations of materials present in the image. This ap-
proach poses a challenge to statistical relational learn-
ing, as scene configurations attempt to capture cor-
relations between sets of materials and scene types.
Initial results on a small set of landscape images have
also shown that performance can be improved by us-
ing a smart smoothing technique using subgraphs of
the training images.

Clearly, this is work in progress. Future investigation
will involve experimentation using real material detec-
tors and a much larger number of images. We also plan
to expand the library of spatial arrangements (e.g., Ry
above Ro, Ry above R3, Rs beside R3) and to address



the accompanying scalability issues through investi-
gating prototypical spatial arrangements and factor-
ization of the scene models.

More detailed analysis of the behavior of the method
may lead to future improvements, such as in learning
the parameters of the model. Another interesting di-
rection is to incorporate theoretical work on improving
purely uniform priors (Nemenman et al., 2001).
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