
Relational Markov Networks for Collective Information Extraction

Razvan C. Bunescu RAZVAN@CS.UTEXAS.EDU

Raymond J. Mooney MOONEY@CS.UTEXAS.EDU

Department of Computer Sciences, The University of Texas at Austin, 1 University Station C0500, Austin, TX 78712-0233

Abstract

Most information extraction (IE) systems treat
separate potential extractions as independent.
However, in many cases, considering influences
between different potential extractions could im-
prove overall accuracy. Statistical methods based
on undirected graphical models, such as condi-
tional random fields (CRFs), have been shown to
be an effective approach to learning accurate IE
systems. We present a new IE method that em-
ploys Relational Markov Networks, which can
represent arbitrary dependencies between extrac-
tions. This allows for “collective information
extraction” that exploits the mutual influence
between possible extractions. Experiments on
learning to extract protein names from biomed-
ical text demonstrate the advantages of this ap-
proach.

1. Introduction

Information extraction (IE), locating references to specific
types of items in natural-language documents, is an impor-
tant task with many practical applications. Since IE sys-
tems are difficult and time-consuming to construct, most
recent research has focused on empirical techniques that
automatically construct information extractors by training
on supervised corpora (Cardie, 1997; Califf, 1999). One of
the current best empirical approaches to IE is conditional
random fields (CRF’s) (Lafferty et al., 2001). CRF’s are
a restricted class of undirected graphical models (Jordan,
1999) designed for sequence segmentation tasks such as
IE, part-of-speech (POS) tagging (Lafferty et al., 2001),
and shallow parsing (Sha & Pereira, 2003). In a recent
follow-up to previously published experiments comparing
a large variety of IE-learning methods (including HMM,
SVM, MaxEnt, and rule-based methods) on the task of
tagging references to human proteins in Medline abstracts
(Bunescu et al., 2004), CRF’s were found to significantly
out-perform competing techniques.

As typically applied, CRF’s, like almost all IE methods,

assume separate extractions are independent and treat each
potential extraction in isolation. However, in many cases,
considering influences between extractions can be very use-
ful. For example, in our protein-tagging task, repeated ref-
erences to the same protein are common. If the context
surrounding one occurrence of a phrase is very indicative
of it being a protein, then this should also influence the tag-
ging of another occurrence of the same phrase in a different
context which is not indicative of protein references.

Relational Markov Networks (RMN’s) (Taskar et al., 2002)
can be seen as a generalization of CRF’s that allow for col-
lective classification of a set of arbitrarily related entities
by integrating information from features of individual en-
tities as well as the relations between them. Results on
classifying connected sets of web pages have verified the
advantage of this approach (Taskar et al., 2002). In this
paper, we present an approach to collective information ex-
traction using RMN’s that simultaneously extracts all of
the information from a document by exploiting the textual
content and context of each relevant substring as well as
the document relationships between them. Experiments on
human protein tagging demonstrate the advantages of col-
lective extraction on several annotated corpora of Medline
abstracts.

2. The RMN Framework for Entity
Recognition

Assume we are given a collection of training documents�
where all named entities have been manually annotated.

We associate with each document ��� � a set of candidate
entities ����� , in our case a restricted set of token sequences
from the document. Each entity �	�
����� is characterized
by a set of boolean features ��� � . This set of features is
the same for all candidate entities, and it can be assimilated
with the relational database definition of a table. One par-
ticular feature is ������������ which is set to 1 if � is considered a
valid extraction, and 0 otherwise. In our document model,
labels are the only hidden features, and the inference pro-
cedure will try to find a most probable assignment of values
to labels, given the current model parameters.

Each document is associated with an undirected graphical
model, with nodes corresponding directly to entity features,
one node for each feature of each candidate entity in the
document. The set of edges is created by matching clique
templates against the entire set of entities ��� � . A clique
template is a procedure that finds all subsets of entities sat-
isfying a given constraint and then connects feature nodes
associated with the entities in each subset so that they form
a clique.

Formally, there is a set of clique templates � , with each
template ���	� defined by:

1. A matching operator �
� for selecting subsets of enti-
ties.

2. A selected set of features � ���������! #"$��% for entities
returned by the matching operator. �&� denotes the ob-
served features, while "$� refers to the hidden labels.

3. A clique potential '(� that gives the compatibility of
each possible configuration of values for the features
in � � , s.t. ' �*),+.-0/21� 435+ �6� � .

Given a set, � , of nodes, � �.) � -6798�: consists of sub-
sets of entities whose selected feature nodes � � are to be
connected in a clique. In previous applications of RMNs,
the selected subsets of entities for a given template have the
same size; however, our clique templates may match a vari-
able number of entities. The set �;� may contain the same
feature from different entities. Usually, for each entity in
the matching set, its label is included in �;� . Depending on
the number of hidden labels in " � , we define two categories
of clique templates:< Local Templates are all templates �6�=� for which> "$� > �@? . They model the correlations between an

entity’s observed features and its label.< Global Templates are all templates �A�B� for which> "$� >DC ? . They capture influences between multiple
entities from the same document.

After the graph model for a document � has been completed
with cliques from all templates, the probability distribution
over the random field of hidden entity labels �E� " given the
observed features ��� � is computed as:

FHGJILK MON ILK PRQ;S TUVGJILK PRQXWY[Z�\ W] Z*^`_ba c�d e$f�g \ G�hiK P Ykj hiK M Y Q (1)

where l) �E� �m- is the normalizing partition function:

UVGJILK P&Q;Son#p WY[Z�\ W] Z�^ _ a�cbd e(f�g \ G�hiK P Y!j hiK M Y Q (2)

3. Candidate Entities and Entity Features

Like most entity names, almost all protein mentions in our
data are base noun phrases or parts of them. Therefore,
such substrings are used to determine candidate entities. To
avoid missing options, we adopt a very broad definition of
base noun phrase.

Definition 1: A base noun phrase is a maximal con-
tiguous sequence of tokens whose POS tags are fromq

”JJ”, ”VBN”, ”VBG”, ”POS”, ”NN”, ”NNS”, ”NNP”,
”NNPS”, ”CD”, ”–” r , and whose last word (the head) is
tagged either as a noun, or a number.

Candidate extractions consist of base NPs, augmented with
all their contiguous subsequences headed by a noun or
number.

The set of features associated with each candidate is based
on the feature templates introduced in (Collins, 2002), used
there for training a ranking algorithm on the extractions re-
turned by a maximum-entropy tagger. Many of these fea-
tures use the concept of word type, which allows a different
form of token generalization than POS tags. The word type
is created by replacing any maximal contiguous sequences
of capital letters with ’A’, of lower-case letters with ’a’, and
of digits with ’0’. For example, the word TGF-1 would be
mapped to type A-0. Consequently, each token position s in
a candidate extraction provides three types of information:
the word itself, its POS tag, and its type.

The left and right boundaries of a candidate extraction gen-
erate bigram and trigram features that combine words and
word types. Other useful features are the head (last word),
prefix and suffix lists of words from the candidate entity. A
more detailed account of these feature templates is given in
(Collins, 2002).

4. Local Clique Templates

Each feature template instantiates numerous features. For
example, the candidate extraction HDAC1 enzyme has
the head word HD=enzyme, the short type ST=A0 a, the
prefixes PF=A0 and PF=A0 a, and the suffixes SF=a and
SF=A0 a. All other features depend on the left or right
context of the entity. Feature values that occur less than
three times are filtered out. If, after filtering, we are left
with t distinct boolean features (uwv = x.y), we create t lo-
cal (clique) templates zD{}| zD{5~ ����� zD{�� . Each template’s
matching operator is set to match any single-entity set. The
collection of features �;v corresponding to template zD{�v ap-
plied to the singleton entity set

q
e r is ��v = ��� v , " v % = � q

e. u v = x y r , q e.label r % . The 2-node cliques created by all t
templates around one entity are illustrated in Figure 1.

Each entity has a label node connected to its own set oft binary feature nodes. This leads to an excessive num-

...
ee

e label

ef =v1 f =v f =v2 hi 1 2i hi

Figure 1. RMN generated by local templates.

ber of nodes in the model, most of which have the value
zero. To reduce the number of nodes, we could remove
the observed nodes from the graph, which then results in
many one-node clique potentials (due to the observed fea-
tures) being associated with the same label node. Because
these clique potentials may no longer be distinguished in
the MRF graph, in order to have all of them as explicit
as possible in the graphical model, we decided to trans-
form the relational Markov network into its equivalent fac-
tor graph representation. Factor graphs (Kschischang et al.,
2001) are bipartite graphs that express how a global func-
tion of many variables (the probability �) �E� " > �E� �m- in
Equation 1) factors into a product of local functions (the
potentials '$�)�� � ���. #� � "$�b- in Equation 1). Factor graphs
subsume many different types of graphical models, includ-
ing Bayesian networks and Markov random fields. The
sum/max-product algorithms used for inference in factor
graphs generalize a wide variety of algorithms including
the forward/backward algorithm, the Viterbi algorithm, and
Pearl’s belief propagation algorithm (Pearl, 1988). To ob-
tain the factor graph for a given Markov random field, we
copy all nodes from the MRF, and create a new node for
each instantiated clique potential. Each potential node is
then linked to all nodes from the associated clique. How-
ever in this case, instead of creating a potential node for
each feature-value pair as in the initial MRF model, we cre-
ate a potential node only for the binary features that are 1
for the given entity. Correspondingly, the table associated
with the potential will be reduced from 4 to 2 values. As an
example, Figure 2 shows that part of the factor graph which
is generated around the entity label for HDAC1 enzyme.

e label

φHD=enzyme

φPF=A0

φPF=A0_a

φSF=a

φSF=A0_a

...

Figure 2. Factor Graph for local templates.

Note that the factor graph above has an equivalent RMN

graph consisting of a one-node clique only, on which it is
hard to visualize the various potentials involved. There are
cases where different factor graphs may yield the same un-
derlying RMN graph, which makes the factor graph repre-
sentation preferable.

5. Global Clique Templates

Global clique templates enable us to model hypothesized
influences between entities from the same document. They
connect the label nodes of two or more entities, which, in
the factor graph, translates into potential nodes connected
to at least two label nodes. In our experiments we use three
global templates:

Overlap Template (OT): No two protein names overlap in
the text i.e if the span of one protein is � + | �w|#� and the span
of another protein is � + ~ ��~�� , and + |i� + ~ , then �|i� + ~ .
Repeat Template (RT): If multiple entities in the same
document are repetitions of the same name, their labels
tend to have the same value (i.e. most of them are protein
names, or most of them are not protein names). Later we
discuss situations in which repetitions of the same protein
name are not tagged as proteins, and design an approach to
handle this.

Acronym Template (AT): It is common convention that
a protein is first introduced by its long name, immediately
followed by its short-form (acronym) in parentheses.

5.1. The Overlap Template

The overlap template matches any two overlapping candi-
date entities and connects their label nodes through a po-
tential node that forbids the case in which both have label-
value 1, as illustrated in Table 1.

An alternative solution for the overlap template is to create
a potential node for each token position that is covered by
at least two candidate entities in the document, and connect
it to their label nodes. The difference in this case is that the
potential node will be connected to a variable number of
entity label nodes. However this approach is better since it
leads to fewer nodes being created in the document factor
graph, which results in faster inference.

Table 1. Overlap Potential.'$�;� �w|.����������� ��1 �w|.����������� ��?��~*����������� ��1 1 1� ~ ����������� ��? 1 0

5.2. The Repeat Template

We could specify the potential for the repeat template in a
similar 2-by-2 table, this time leaving the table entries to
be learned, given that it is not a hard constraint. However
we can do better by noting that the vast majority of cases
where a repeated protein name is not also tagged as a pro-
tein happens when it is part of a larger phrase that is tagged.
For example, HDAC1 enzyme is a protein name, there-
fore HDAC1 is not tagged in this phrase, even though it was
tagged previously in the abstract where it was not followed
by enzyme. We need a potential that allows two entities
with the same text to have different labels if the entity with
label-value 0 is inside another entity with label-value 1. But
a candidate entity may be inside more than one “including”
entity, and the number of including entities may vary from
one candidate extraction to another. We solve this problem,
by introducing a logical OR clique template that matches a
variable number of entities. When this template matches
a subset of entities � | � ~ ����� ��� , it will create an auxiliary
OR entity ���#� , with a single feature �*�[�w� ���L���.� . The poten-
tial function is set so that it assigns a non-zero potential
only when �*�[�*� ���L���.� � � | � ���L���.���R� ~ ��������������������R�.�$����������� .
The cliques are only created as needed, e.g. when the aux-
iliary OR variable is required by repeat and acronym clique
templates.

Figure 3 shows the factor graph for a sample instantiation
of the repeat template using the OR template. Here, � andx represent two same-text entities, �;| , �$~ , ... , � � are all
entities that include � , and x�| , xw~ , ..., xw� are entities that in-
clude x . To avoid clutter, all entities in this and subsequent
factor graphs stand for their corresponding label features.
The potential function can either be preset to prohibit un-
likely label configurations, or it can be learned to represent
an appropriate soft constraint. In our experiments, it was
learned since this gave slightly better performance.

1 u2u v1 2v

φ φ
u u v v

or or

or or

RT
φ

un vm
... ...

Figure 3. Repeat Factor Graph.

5.3. The Acronym Template

One approach to the acronym template would be to use an
extant algorithm for identifying acronyms and their long
forms in a document, and then define a potential func-
tion that would favor label configurations in which both
the acronym and its definition have the same label. One
such algorithm is described in (Schwartz & Hearst, 2003),
achieving a precision of ��L� at a recall rate of � 8 � . How-
ever, because this algorithm would miss a significant num-
ber of acronyms, we have decided to implement a softer
version as follows: detect all situations in which a sin-
gle word is enclosed between parentheses, such that the
word length is at least 2 and it begins with a letter. Letx denote the corresponding entity. Let �}| , �$~ , ..., � � be
all entities that end exactly before the open parenthesis.
If this is a situation in which x is an acronym, then one
of the entities �(v is its corresponding long form. Con-
sequently, we use a logical OR template to introduce the
auxiliary variable �(�#� , and connect it to x ’s node label
through an acronym potential, as illustrated in Figure 4.
For example, consider the phrase the antioxidant
superoxide dismutase - 1 (SOD1), where
both superoxide dismutase - 1 and SOD1 are
tagged as proteins. SOD1 satisfies our criteria for
acronyms, thus it will be associated with the entity x in Fig-
ure 4. The candidate long forms are �;| = antioxidant
superoxide dismutase - 1, �5~ = superoxide
dismutase - 1, and �(� = dismutase - 1.

1 u2u

φ
u v

or

or

un

...

φAT

Figure 4. Acronym Factor Graph.

6. Inference in Factor Graphs

Given the clique potentials, the inference step for the factor
graph associated with a document involves computing the
most probable assignment of values to the hidden labels of
all candidate entities:

"A� � ��¡.¢`£R¤w¥¦ �) ��� " > �E� �m- (3)

where �) ��� " > �E� �m- is defined as in Equation 1. A brute-
force approach is excluded, since the number of possible

label configurations is exponential in the number of can-
didate entities. The sum-product algorithm (Kschischang
et al., 2001) is a message-passing algorithm that can be
used for computing the marginal distribution over the label
variables in factor graphs without cycles, and with a minor
change (replacing the sum operator used for marginaliza-
tion with a max operator) it can also be used for deriving
the most probable label assignment. In our case, in order
to get an acyclic graph, we would have to use local tem-
plates only. However, it has been observed that the algo-
rithm often converges in general factor graphs, and when
it converges, it gives a good approximation to the correct
marginals. The algorithm works by altering the belief at
each label node by repeatedly passing messages between
the node and all potential nodes connected to it (Kschis-
chang et al., 2001).

The time complexity of computing messages from a po-
tential node to a label node is exponential in the number
of label nodes attached to the potential. Since this “fan-
in” can be large for OR potential nodes (and also for the
second solution to overlap potential nodes), this step re-
quired optimization. Fortunately, due to the special form
of the OR and overlap potentials, and the normalization be-
fore each message-passing step, we were able to develop
a linear-time algorithm for these special cases. For exam-
ple, the formulae for computing the OR messages for the
sum-product algorithm are shown in Equations 4, with the
relevant messages illustrated in Figure 5 (to avoid clutter, �
and ' stand for � �}§ and ' �¨§ respectively).

©;ª*«¬)�1�-®� �Wv�¯}| ©�¬±°�«Oª)�1�-©;ª*«¬)4?.-®� ?V² ©;ª*«¬)�1�-©;ª*«¬±°)�1�-®� ©;ª*«¬)±?�-;³©;ª*«¬)�1�-© ¬ ° «´ª)�1�-) ©;ª*«¬)�1�-¨² ©;ª*«´¬)±?�-4-© ª*«¬ °)4?.-®� © ª*«¬)±?�-
(4)

7. Learning Potentials in Factor Graphs

Following a maximum likelihood estimation, we shall use
the log-linear representation of potentials:

g \ G�hiK P Ykj hiK M Y Q5SBµ�¶�·�¸�¹�ºb»�º*G�hiK P Y!j hiK M Y Q½¼
Let ¾ be the concatenated vector of all potential parame-
ters ¾À¿ . One approach to finding the maximum-likelihood
solution for ¾ is to use a gradient-based method, which
requires computing the gradient of the log-likelihood with
respect to potential parameters ¾�¿ . It can be shown that
this gradient is equal with the difference between the em-
pirical counts of ÁÂ¿ and their expectation under the current

e

µe−>φ

µφ −>e

...
e ne 1

...
e i

µ −>φ ei µei −>φ

OR

ORφ

Figure 5. Messages in OR Factor Graph.

set of parameters ¾ . This expectation is expensive to com-
pute, since it requires summing over all possible configu-
rations of candidate entity labels from a given document.
To circumvent this complexity, we use the Collins’ voted
perceptron approach (Collins, 2002), which approximates
the full expectation of ÁÂ¿ with the Á,¿ counts for the most
likely labeling under the current parameters, ¾ . In all our
experiments, the perceptron was run for 50 epochs, with a
learning rate set at 0.01.

8. Experimental Results

We have tested the RMN approach on two datasets that
have been hand-tagged for human protein names. The first
dataset is Yapex1 which consists of 200 Medline abstracts.
The second dataset is Aimed2 which has been previously
used for training the protein interaction extraction systems
in (Bunescu et al., 2004). It contains 225 Medline abstracts,
of which 200 are known to describe interactions between
human proteins, while the other 25 do not refer to any
interaction. We compared the performance of three sys-
tems: LT-RMN is the RMN approach using local templates
and the overlap template, GLT-RMN is the full RMN ap-
proach, using both local and global templates, and CRF,
which uses a CRF for labeling token sequences. We used
the CRF implementation from (McCallum, 2002) with the
set of tags and features used by the Maximum-Entropy tag-
ger described in (Bunescu et al., 2004). All Medline ab-
stracts were tokenized and then POS tagged using Brill’s
tagger (Brill, 1995). Each extracted protein name in the test
data was compared to the human-tagged data, with the po-
sitions taken into account. Two extractions are considered
a match if they consist of the same character sequence in
the same position in the text. Results are shown in Tables 2
and 3 which give average precision, recall, and F-measure

1URL: www.sics.se/humle/projects/prothalt/
2URL: ftp.cs.utexas.edu/mooney/bio-data/

using 10-fold cross validation.

Table 2. Extraction Performance on Yapex.
Method Precision Recall F-measure

LT-RMN 70.79 53.81 61.14
GLT-RMN 69.71 65.76 67.68

CRF 72.45 58.64 64.81

Table 3. Extraction Performance on Aimed.
Method Precision Recall F-measure

LT-RMN 81.33 72.79 76.82
GLT-RMN 82.79 80.04 81.39

CRF 85.37 75.90 80.36

These tables show that, in terms of F-measure, the use of
global templates for modeling influences between possible
entities from the same document significantly improves ex-
traction performance over the local approach (a one-tailed
t-test for statistical significance results in a Ã value less than1 � 1�? on both datasets). There is also a small improvement
over CRF’s, with the results being statistically significant
only for the Yapex dataset, corresponding to a Ã value of1 � 1�8 . We hypothesize that further improvements to the LT-
RMN approach would push the GLT-RMN performance
even higher. The tagging scheme used by CRFs, in which
each token is assigned a tag, is essentially different from the
RMN approach, where candidate extractions are either re-
jected or accepted. In the tagging approach used by CRFs,
extracted entities are available only after tagging is com-
plete, thereby making it difficult to account for influences
between them during tagging.

9. Related Work

There have been some previous attempts to use global
information from repetitions, acronyms, and abreviations
during extraction. In (Chieu & Ng, 2003), a set of global
features are used to improve a Maximum-Entropy tagger;
however, these features do not fully capture the mutual
influence between the labels of acronyms and their long
forms, or between entity repetitions. In particular, they
only allow earlier extractions in a document to influence
later ones and not vice-versa. The RMN approach handles
these and potentially other mutual influences between enti-
ties in a more complete, probabilistically sound manner.

10. Conclusions and Future Work

We have presented an approach to collective information
extraction that uses Relational Markov Networks to reason
about the mutual influences between multiple extractions.

A new type of clique template – the logical OR template
– was introduced, allowing a variable number of relevant
entities to be used by other clique templates. Soft corre-
lations between repetitions and acronyms and their long
form in the same document have been captured by global
clique templates, allowing for local extraction decisions to
propagate and mutually influence each other. Experimen-
tal results showed that a collective approach to extraction
significantly improves performance.

Regarding future work, a richer set of features for the local
templates would likely improve performance. Currently,
LT-RMN’s accuracy is still significantly less than CRF’s,
which limits the performance of the full system. Another
limitation is the approximate inference used by both RMN
methods. The number of factor graphs for which the sum-
product algorithm did not converge was non-negligible,
and our approach stopped after a fix number of iterations.
Besides exploring improvements to loopy belief propaga-
tion that increase computational cost (Yedidia et al., 2000),
we intend to examine alternative approximate-inference
methods such as Gibbs sampling, and other Monte Carlo
algorithms.

A natural next step is to integrate IE subtasks like named
entity recognition and coreference resolution, such that de-
cisions made in one subtask influence decisions made in the
other. The context of a pronoun referring to an entity can
help in disambiguating the class of that entity through the
use of a general repeat template. Recent work in anaphora
resolution using RMNs (McCallum & Wellner, 2003) and
the joint solving of two different NLP tasks using dynamic
CRFs (McCallum et al., 2003) show the benefit of an inte-
grated, collective approach.

11. Acknowledgements

This work was partially supported by grants IIS-0117308
and IIS-0325116 from the NSF.

References

Brill, E. (1995). Transformation-based error-driven learn-
ing and natural language processing: A case study in
part-of-speech tagging. Computational Linguistics, 21,
543–565.

Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney,
R. J., Ramani, A. K., & Wong, Y. W. (2004). Compar-
ative experiments on learning information extractors for
proteins and their interactions. Special Issue in the Jour-
nal Artificial Intelligence in Medicine on Summarization
and Information Extraction from Medical Documents.
To appear.

Califf, M. E. (Ed.). (1999). Papers from the AAAI-1999

Workshop on Machine Learning for Information Extrac-
tion. Orlando, FL: AAAI Press.

Cardie, C. (1997). Empirical methods in information ex-
traction. AI Magazine, 18, 65–79.

Chieu, H. L., & Ng, H. T. (2003). Named entity recogni-
tion with a maximum entropy approach. Proceedings of
the Seventh Conference on Natural Language Learning
(CoNLL-2003) (pp. 160–163). Edmonton, Canada.

Collins, M. (2002). Ranking algorithms for named-
entity extraction: Boosting and the voted perceptron.
Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL-02) (pp. 489–496).
Philadelphia, PA.

Jordan, M. I. (Ed.). (1999). Learning in graphical models.
Cambridge, MA: MIT Press.

Kschischang, F. R., Frey, B., & Loeliger, H.-A. (2001).
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47, 498–519.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. Proceedings of 18th
International Conference on Machine Learning (ICML-
2001) (pp. 282–289). Williams College, MA.

McCallum, A., Rohanimanesh, K., & Sutton, C. (2003).
Dynamic conditional random fields for jointly labeling
multiple sequences. NIPS-2003 Workshop on Syntax, Se-
mantics, Statistics. Whistler, Canada.

McCallum, A., & Wellner, B. (2003). Toward conditional
models of identity uncertainty with application to proper
noun coreference. Proceedings of the IJCAI-2003 Work-
shop on Information Integration on the Web (pp. 79–86).
Acapulco, Mexico.

McCallum, A. K. (2002). Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. San Mateo,CA:
Morgan Kaufmann.

Schwartz, A. S., & Hearst, M. A. (2003). A simple algo-
rithm for identifying abbreviation definitions in biomed-
ical text. Proceedings of the 8th Pacific Symposium on
Biocomputing (pp. 451–462). Lihue, HI.

Sha, F., & Pereira, F. (2003). Shallow parsing with condi-
tional random fields. Proceedings of Human Language
Technology and the Meeting of the North American As-
sociation for Computational Linguistics (pp. 134–141).
Edmonton, Canada.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative
probabilistic models for relational data. Proceedings of
18th Conference on Uncertainty in Artificial Intelligence
(UAI-02) (pp. 485–492). Edmonton, Canada.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2000). Gen-
eralized belief propagation. Advances in Neural Infor-
mation Processing Systems 12 (pp. 689–695). Denver,
CO.

