Probabilistic Entity-Relationship Models, PRMs, and Plate Models

David Heckerman
Christopher Meek

One Microsoft Way, Redmond, WA 98052

Daphne Koller
Computer Science Department, Stanford, CA 94305

Abstract

We introduce a graphical language for re-
lational data called the probabilistic entity-
relationship (PER) model. The model is an
extension of the entity-relationship model,
a common model for the abstract repre-
sentation of database structure. We con-
centrate on the directed version of this
model—the directed acyclic probabilistic
entity-relationship (DAPER) model. The
DAPER model is closely related to the plate
model and the probabilistic relational model
(PRM), existing models for relational data.
The DAPER model is more expressive than
either existing model, and also helps to
demonstrate their similarity.

1. Introduction

For over a century, statistical modeling has focused
primarily on “flat” data—data that can be encoded
naturally in a single two-dimensional table having rows
and columns. The disciplines of pattern recognition,
machine learning, and data mining have had a similar
focus. Notable exceptions include hierarchical models
(e.g., Good, 1965) and spatial statistics (e.g., Besag,
1974). Over the last decade, however, perhaps due
to the ever increasing volumes of data being stored
in databases, the modeling of non-flat or relational
data has increased significantly. During this time,
several graphical languages for relational data have
emerged including plate models (e.g., Buntine, 1994;
Spiegelhalter, 1998) and probabilistic relational mod-
els (PRMs) (e.g., Friedman, Getoor, Koller, and Pfef-
fer, 1999. These models are to relational data what or-

Appearing in Proceedings of the 21°% International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

HECKERMAQMICROSOFT.COM
MEEKQ@QMICROSOFT.COM

KOLLERQCS.STANFORD.EDU

dinary graphical models (e.g., directed-acyclic graphs
and undirected graphs) are to flat data.

In this paper, we introduce a new graphical model for
relational data—the probabilistic entity-relationship
(PER) model. This model class is more expressive
than either PRMs or plate models. We concentrate on
a particular type of PER model—the directed acyclic
probabilistic entity-relationship (DAPER) model—in
which all probabilistic arcs are directed. It is this ver-
sion of PER model that is most similar to the plate
model and PRM. We define new versions of the plate
model and PRM such their expressiveness is equivalent
to the DAPER model, and then (in the expanded tech
report, Heckerman, Meek, and Koller, 2004) compare
the new and old definitions. Consequently, we both
demonstrate the similarity among the original lan-
guages as well as enhance their abilities to express con-
ditional independence in relational data. Our hope is
that this demonstration of similarity will foster greater
communication and collaboration among statisticians
who mostly use plate models and computer scientists
who mostly use PRMs.

We in fact began this work with an effort to unify
traditional PRMs and plate models. In the process,
we discovered that it was important to make both
entities and relationships (concepts discussed in de-
tail in the next section) first class objects in the lan-
guage. We in turn discovered an existing language
that does this—the entity-relationship (ER) model—a
commonly used model for the abstract representation
of database structure. We then extended this language
to handle probabilistic relationships, creating the PER
model.

We should emphasize that the languages we discuss
are neither meant to serve as a database schema nor
meant to be built on top of one. In practice, database
schemas are built up over a long period of time as
the needs of the database consumers change. Conse-

quently, schemas for real databases are often not op-
timal or are completely unusable as the basis for sta-
tistical modeling. The languages we describe here are
meant to be used as statistical modeling tools, inde-
pendent of the schema of the database being modeled.

This work borrows heavily from concepts surrounding
PRMs described in (e.g.) Friedman et al. (1999) and
Getoor et al. (2002). Where possible, we use similar
nomenclature, notation, and examples.

2. ER Models

We begin with a description of a language for mod-
eling the data itself. The language we discuss is the
entity-relationship (ER) model, a commonly used ab-
stract representation of database structure (e.g., Ull-
man and Widom, 2002). The creation of an ER model
is often the first step in the process of building a rela-
tional database. Features of anticipated data and how
they interrelate are encoded in an ER model. The ER
model is then used to create a relational schema for the
database, which in turn is used to build the database
itself.

It is important to note that an ER model is a repre-
sentation of a database structure, not of a particular
database that contains data. That is, an ER model can
be developed prior to the collection of any data, and
is meant to anticipate the data and the relationships
therein.

When building ER models, we distinguish between en-
tities, relationships, and attributes. An entity corre-
sponds to a thing or object that is or may be stored in
a database or dataset!; a relationship corresponds to
a specific interaction among entities; and an attribute
corresponds to a variable describing some property of
an entity or relationship. Throughout the paper, we
use examples to illustrate concepts.

Example 1 A university database maintains records
on students and their IQs, courses and their difficulty,
and the courses taken by students and the grades they
receive.

In this example, we can think of individual students
(e.g., john, mary) and individual courses (e.g., cs107,
stat10) as entities.? Naturally, there will be many stu-
dents and courses in the database. We refer to the
set of students (e.g., {john,mary,...}) as an entity set.

In what follows, we make no distinction between a
database and a dataset.

In a real database, longer names would be needed to
define unique students and courses. We keep the names
short in our example to make reading easier.

The set of courses (e.g., {cs107,stat10,...}) is another
entity set. Most important, because an ER model can
be built before any data is collected, we need the con-
cept of an entity class—a reference to a set of entities
without a specification of the entities in the set. In our
example, the entity classes are Student and Course.

A relationship is a tuple of pointers to entities—an
indication that those referenced entities are somehow
related. In our example, a possible relationship is
the pair (john, ¢s107), meaning that john took the
course cs107. Using nomenclature similar to that
for entities, we talk about relationship sets and re-
lationship classes. A relationship set is a collection
of like relationships—that is, a collection of relation-
ships each relating entities from a fixed list of entity
classes. In our example, we have the relationship set of
student-course pairs. A relationship class refers to an
unspecified set of like relationships. In our example,
we have the relationship class Takes.

The IQ of john and the difficulty of cs107 are ex-
amples of attributes. We use the term attribute
class to refer to an unspecified collection of like at-
tributes. In our example, Student has the single at-
tribute class Student.IQ and Course has the single at-
tribute class Course.Diff. Relationships also can have
attributes; and relationship classes can have attribute
classes. In our example, Takes has the attribute class
Takes.Grade.

An ER model for the structure of a database graph-
ically depicts entity classes, relationships classes, at-
tribute classes, and their interconnections. An ER
model for Example 1 is shown in Figure 1la. The entity
classes (Student and Course) are shown as rectangu-
lar nodes; the relationship class (Takes) is shown as a
diamond-shaped node; and the attribute classes (Stu-
dent.IQ, Course.Diff, and Takes.Grade) are shown as
oval nodes. Attribute classes are connected to their
corresponding entity or relationship class, and the re-
lationship class is connected to its associated entity
classes. (Solid edges are customary in ER models.
Here, we use dashed edges so that we can later use
solid edges to denote probabilistic dependencies.)

An ER model describes the potential attributes and
relationships in a database. It says little about actual
data. A skeleton for a set of entity and relationship
classes is specification of the entities and relationships
associated with a particular database. That is, a skele-
ton for a set of entity and relationship classes is collec-
tion of corresponding entity and relationship sets. An
example skeleton for our university-database example
is shown in Figure 1b.

An ER model applied to a skeleton defines a specific
set of attributes. In particular, for every entity class
and every attribute class of that entity class, an at-
tribute is defined for every entity in the class; and,
for every relationship class and every attribute class of
that relationship class, an attribute is defined for every
relationship in the class. The attributes defined by the
ER model in Figure 1a applied to the skeleton in Fig-
ure 1b are shown in Figure lc. In what follows, we use
ER model to mean both the ER diagram—the graph
in Figure la—and the mechanism by which attributes
are generated from skeletons.

A skeleton still says nothing about the values of at-
tributes. An instance for an ER model consists of (1)
a skeleton for the entity and relationship classes in
that model, and (2) an assignment of a value to every
attribute generated by the ER model and the skele-
ton. That is, an instance of an ER model is an actual
database.

3. PER Models

Let us now turn to the probabilistic modeling of
relational data. To do so, we introduce a spe-
cific type of probabilistic entity-relationship model:
the directed acyclic probabilistic entity-relationship
(DAPER) model. Roughly speaking, a DAPER model
is an ER model with directed (solid) arcs among the at-
tribute classes that represent probabilistic dependen-
cies among corresponding attributes, and local distri-
bution classes that define local distributions for at-
tributes. Recall that an ER model applied to a skele-
ton defines a set of attributes. Similarly, a DAPER
model applied to a skeleton defines a set of attributes
as well as a DAG model for these attributes. Thus,
a DAPER model can be thought of as a language
for expressing conditional independence among unre-
alized attributes that eventually become realized given
a skeleton.

As with the ER diagram and model, we sometimes dis-
tinguish between a DAPER diagram, which consists of
the graph only, and the DAPER model, which consists
of the diagram, the local distribution classes, and the
mechanism by which a DAPER model defines a DAG
model given a skeleton.

Example 2 In the university database (Example 1),
a student’s grade in a course depends both on the stu-
dent’s 1Q and on the difficulty of the course.

The DAPER model (or diagram) for this example
is shown in Figure 2a. The model extends the ER
model in Figure 1 with the addition of arc classes

and local distribution classes. In particular, there is
an arc class from Student.IQ to and arc class from
Takes.Grade and from Course.Diff to Takes.Grade.
These arc classes are denoted as a solid directed arc.
In addition, there is a single local distribution class for
Takes.Grade (not shown).

Just as we expand attribute classes in a DAPER model
to attributes in a DAG model given a skeleton, we
expand arc classes to arcs. In doing so, we sometimes
want to limit the arcs that are added to a DAG model.
In the current problem, for example, we want to draw
an arc from attribute ¢.Diff for course ¢ to attribute
Takes(s, ¢’).Grade for course ¢’ and any student s, only
when ¢ = ¢/. This limitation is achieved by adding
a constraint to the arc class—namely, the constraint
course[Diff] = course[Grade] (see Figure 2a). Here, the
terms “course[Diff]” and “course[Grade]” refer to the
entities ¢ and ¢/, respectively—the entities associated
with the attributes at the ends of the arc.

The arc class from Student.IQ to Takes.Grade has
a similar constraint: student[IQ] = student[Grade].
This constraint says that we draw an arc from
attribute s.IQ for student s =student[IQ] to
Takes(s, ¢).Grade for student s’=student[Grade| and
any course ¢ only when s = s’. As we shall see, con-
straints in DAPER models can be quite expressive—
for example, they may include first-order expressions
on entities and relationships.

Figure 2c shows the DAG (structure) generated by the
application of the DAPER model in Figure 2a to the
skeleton in Figure 2b. (The attribute names in the
DAG model are abbreviated.) The arc from stat10.Diff
to Takes(mary,cs107).Grade (e.g.) is disallowed by
the constraint on the arc class from Course.Diff to
Takes.Grade.

Regardless of what skeleton we use, the DAG model
generated by the DAPER model in Figure 2a will be
acyclic. In general, as we show in Heckerman et al.
(2004), if the attribute classes and arc classes in the
DAPER diagram form an acyclic graph, then the DAG
model generated from any skeleton for the DAPER
model will be acyclic. Weaker conditions are also suffi-
cient to guarantee acyclicity. We describe one in Heck-
erman et al. (2004).

In general, a local distribution class for an attribute
class is a specification from which local distribu-
tions for attributes corresponding to the attribute
class can be constructed, when a DAPER model
is expanded to a DAG model. In our exam-
ple, the local distribution class for Takes.Grade—
written p(Takes.Grade|Student.IQ, Course.Diff)—is a

T(mary.stat10).G

Course Student
Course o cs107 john
': sat10 mary
Y Student Course
1
i john ¢s107
1
Student {-- mery os107
mary sat10
@ (b)

(©)

Figure 1. (a) An entity-relationship (ER) model depicting the structure of a university database. (b) An example skeleton
for the entity and relationship classes in the ER model. (c¢) The attributes defined by the application of the ER model to

the skeleton. The attribute names are abbreviated.

specification from which the local distributions for
Takes(s, ¢).Grade, for all students s and courses ¢,
can be constructed. In our example, each attribute
Takes(s, ¢).Grade will have two parents: s.IQ and
c.Diff. Consequently, the local distribution class need
only be a single local probability distribution. We
discuss more complex situations in Heckerman et al.

(2004).

Whereas most of this paper concentrates issues of rep-
resentation, the problems of probabilistic inference,
learning local distributions, and learning model struc-
ture are also of interest. For all of these problems,
it is natural to extend the concept of an instance to
that of a partial instance; an instance in which some
of the attributes do not have values. A simple ap-
proach for performing probabilistic inference about at-
tributes in a DAPER model given a partial instance is
to (1) explicitly construct a ground graph, (2) instan-
tiate known attributes from the partial instance, and
(3) apply standard probabilistic inference techniques
to the ground graph to compute the quantities of in-
terest. Omne can improve upon this simple approach
by utilizing the additional structure provided by a re-
lational model—for example, by caching inferences in
subnetworks. Koller and Pfeffer (1997), for example,
have done preliminary work in this direction. With re-
gards to learning, note that from a Bayesian perspec-
tive, both learning about both the local distributions
and model structure can be viewed as probabilistic in-
ference about (missing) attributes (e.g., parameters)
from a partial instance. In addition, there has been
substantial research on learning PRMs (e.g., Getoor
et al., 2002) and much of this work is applicable to
DAPER models.

4. Plates Models and PRMs

Plate models were developed independently by Bun-
tine (1994) and the BUGS team (e.g., Spiegelhalter
1998) as a language for compactly representing graph-
ical models in which there are repeated measurements.
We know of no formal definition of a plate model,
and so we provide one here. This definition deviates
slightly from published examples of plate models, but
it enhances the expressivity of such models while re-
taining their essence (see Heckerman et al., 2004).

According to our definition, plate and DAPER models
are equivalent. The invertible mapping from a DAPER
to plate model is as follows. Each entity class in a
DAPER model is drawn as a large rectangle—called
a plate. The plate is labeled with the entity-class
name. Plates are allowed to intersect or overlap. A
relationship class for a set of entity classes is drawn at
the named intersection of the plates corresponding to
those entities. If there is more than one relationship
class among the same set of entity classes, the plates
are drawn such that there is a distinct intersection for
each of the relationship classes. Attribute classes of
an entity class are drawn as ovals inside the rectangle
corresponding to the entity but outside any intersec-
tion. Attribute classes associated with a relationship
class are drawn in the intersection corresponding to
the relationship class. Arc classes and constraints are
drawn just as they are in DAPER models. In additon,
local distribution classes are specified just as they are
in DAPER models.

The plate model corresponding to the DAPER model
in Figure 2a is shown in Figure 3a. The two rect-
angles are the plates corresponding to the Student
and Course entity classes. The single relationship
class between Student and Course—Takes—is repre-

Course Student
Course 1-- cs107 john
| course] Diff] =
\ course] Grade] Stat10 mary
- - Takes
Y Student Course
I student[1Q] =
i student[Grade] john cs107
1
Student {-- mary es107
mary sat10
@ (b)

Figure 2. (a) A directed acyclic probabilistic entity-relationship (DAPER) model showing that a student’s grade in a
course depends on both the student’s IQ and the difficulty of the course. (b) An example skeleton for the entity and
relationship classes in the ER model (the same one shown in the previous figure). (¢) The DAG model (structure) defined

by the application of the DAPER model to the ER skeleton.

sented as the named intersection of the two plates.
The attribute class Student.IQ is drawn inside the
Student plate and outside the Course plate; the at-
tribute class Course.Diff is drawn inside the Course
plate and outside the Student plate; and the attribute
class Takes.Grade is drawn in the intersection of the
Student and Course plate. The arc classes and their
constraints are identical to those in the DAPER model.

Probabilistic Relational Models (PRMs) were devel-
oped in (e.g.) Friedman et al. (1999) explicitly for the
purpose of representing relational data. The PRM ex-
tends the relational model—another commonly used
representation for the structure of a database—in
much the same way as the PER model extends the ER
model. In this paper, we shall define directed PRMs
such that they are equivalent to DAPER models and,
hence, plate models. This definition deviates from the
one given by (e.g.) Friedman et al. (1999), but en-
hances the expressivity of the language as previously
defined (see Heckerman et al., 2004).

The invertible mapping from a DAPER model to a
directed PRM (by our definition) takes place in two
stages. First, the ER-model component of the DAPER
model is mapped to a relational model in a standard
way (e.g., Ulman and Widom, 2002). In particular,
both entity and relationship classes are represented
as tables. Foreign keys—or what Getoor et al. 2002
call reference slots—are used in the relationship-class
tables to enocde the entity-relationship connections
in the ER model. Attribute classes for entity and
relationship classes are represented as attributes or
columns in the corresponding tables of the relational
model. Second, the probabilistic components of the
DAPER model are mapped to those of the directed

PRM. In particular, arc classes and constraints are
drawn just as they are in the DAPER model.

The directed PRM corresponding to the DAPER
model in Figure 2a is shown in Figure 3b. (The lo-
cal distribution for Takes.Grade is not shown.) The
Student entity class and its attribute class Student.IQ
appear in a table, as does the Course entity class and
its attribute class Course.Diff. The Takes relationship
and its attribute class Takes.Grade is shown as a table
containing the foreign keys Student and Course. The
arc classes and their constraints are drawn just as they
are in the DAPER model.

5. Details

In this short discussion, we have omitted many of the
technical details of DAPER models as well as impor-
tant facets of modeling relational data including the
use of restricted relationships, self relationships, and
probabilistic relationships. In addition, we have not
described several important classes of PER model that
expand into graphical models other than traditional
DAG models. These topics are covered in Heckerman
et al. (2004).

References

[Besag, 1974] Besag, J. (1974). Spatial interaction and
the statistical analysis of lattice systems. Journal of
the Royal Statistical Society, B, 36:192-236.

[Buntine, 1994] Buntine, W. (1994). Operations for
learning with graphical models. Journal of Artificial
Intelligence Research, 2:159-225.

[Friedman et al., 1999] Friedman, N., Getoor, L.,

Course
Diff

course[Diff] =
courseGrade]

:

Takes
G

>®:
@

student[IQ] =
student[Grade]

:

(@

Student

" ;- Course

Diff]

course[Diff] =
course]Grade]

Takes

-4- Course
Student
Grade

student[IQ] =

- -3 Student student[Grade]

(b) 2

Figure 3. A plate model (a) and probabilistic relational model (b) corresponding the DAPER model in Figure 2a.

Koller, D., and Pfeffer, A. (1999). Learning proba-
bilistic relational models. In Proceedings of the Siz-
teenth International Joint Conference on Artificial
Intelligence, Stockholm, Sweden, pages 1300-1309.
International Joint Conference on Artificial Intelli-
gence.

[Getoor et al., 2002] Getoor, L., Friedman, N., Koller,
D., and Pfeffer, A. (2002). Learning probabilistic
relational models of link structure. Journal of Ma-
chine Learning Research, 3:679-707.

[Good, 1965] Good, I. (1965). The Estimation of
Probabilities. MIT Press, Cambridge, MA.

[Heckerman et al., 2004] Heckerman, D., Meek, C.,
and Koller, D. (2004). Probabilisitic mod-
els for relational data. Technical Report
MSR-TR-2004-30, Microsoft Research, Redmond,
WA. http://research.microsoft.com/research/pubs/
view.aspx?tr_id=734.

[Koller and Pfeffer, 1997] Koller, D. and Pfeffer, A.
(1997). Object-oriented Bayesian networks. In
Geiger, D. and Shenoy, P., editors, Proceedings of
Thirteenth Conference on Uncertainty in Artificial
Intelligence, Providence, RI, pages 302-313. Mor-
gan Kaufmann, San Mateo, CA.

[Spiegelhalter, 1998] Spiegelhalter, D.
Bayesian graphical modelling:
monitoring health outcomes.
47:115-134.

(1998).
A case-study in
Applied Statistics,

[Ullman and Widom,] Ullman, J. and Widom, J. A
First Course in Database Systems. Prentice Hall,
Upper Saddle River, NJ.

