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Abstract

Decision-theoretic intelligent agents must
function under uncertainty and be able to
reason and learn about objects and relations
in the context of action and utility. This pa-
per presents a new relational graphical model
(RGM), analogous to the probabilistic rela-
tional model (PRM), for representation of de-
cisions under uncertainty. It first analyzes
some basic properties of the representation
and gives an adaptation of several decision
network inference algorithms to these rela-
tional decision networks. It then describes
some early experimentation with algorithms
learning link structure in PRMs, discussing
how these can be adapted to learning in deci-
sion networks. Finally, it considers the prob-
lem of representing dynamic relations in de-
cision networks and sketches an extension of
the dynamic PRM representation to include
choice and utility.

1 INTRODUCTION

Uncertainty is a common feature of decision prob-
lems for which the decision network or influence di-
agram is currently one of the most widely-used graph-
ical models. Decision networks represent the state of
the world as a set of variables, and model probabilistic
dependencies, action, and utility. Though they pro-
vide a synthesis of probability and utility theory, deci-
sion networks are still unable to compactly represent
many real-world domains, a limitation shared by other
propositional graphical models such as flat Bayesian
ntworks and dynamic Bayesian networks. Decision
domains can contain multiple objects and classes of
objects, as well as multiple kinds of relations among
them. Meanwhile, objects, relations, choices, and val-
uations can change over time. For example, a supply
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chain consists of multiple raw materials, components
of manufactured goods, multiple goods, and a market
that may consist of multiple redistributors and buyers.

Capturing such a domain in a decision network would
require not only an exhaustive representing of all possi-
ble objects and relations among them, but also a com-
binatorially fast-growing space of choices and valua-
tions. [JT99] This raises two problems. The first one
is that the inference using such a dynamic decision net-
work would likely exhibit near-pathological complex-
ity, making the computational cost prohibitive. The
second is that reducing the rich structure of domains
such as supply-chain management and enterprise re-
source planning (ERP) to very large, “flat” decision
network would make it much more difficult for human
beings to comprehend. This paper addresses these two
problems by introducing an extension of decision net-
works that captures the relational structure of some
decision domains, and by adapting methods for effi-
cient inference in this representation.

First-order formalisms that can represent objects and
relations, as opposed to just variables have a long
history in AI Recently, significant progress has been
made in combining them with a principled treatment
of uncertainty. In particular, probablistic relational
models, or PRMs, are an extension of Bayesian net-
works that allows reasoning with classes, objects, and
relations. [FGKP99] The representation we introduce
in this paper extends PRMs to decision problems in the
same way that the decision networks extend Bayesian
networks. We therefore call it the relational decision
network or RDN. We develop two inference procedures
for RDNs: the first based upon the traditional variable
elimination algorithm developed by Shenoy [She92]
and Cowell [Cow94], the second a more efficient one
based upon an adaptive importance sampling-based
algorithm [CD00, HGJ*03].
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Figure 1: Decision network for the Oil Wildcatter
problem. [She92]

Figure 2: Influence diagram for the Oil Wildcatter
problem. [She92]

2 DECISION NETWORKS AND
INFLUENCE DIAGRAMS

Decision networks, introduced by Howard and
Matheson [HMS81], contain three kinds of nodes:
chance (or uncertainty) nodes representing random
variables as in a Bayesian network; choice (or decision)
nodes) representing decisions to be made; and one or
more wutility nodes, each denoting a random variable
ranging over utilities of the outcomes (as an aggregate
of cost and benefit). These are depicted using circles,
rectangles, and diamonds, respectively. [RN03, Nea04]

In a decision network, the edges are interpreted as fol-
lows [Nea04]:

1. Edges into chance nodes denote conditioning: The
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Figure 3: The DEC-Asia decision network.

values of chance nodes are probabilistically depen-
dent on the values of parents.

2. Edges into choice nodes denote sequence: The val-
ues of parents are known at the time the decision
is made.

3. Edges into utility nodes denote deterministic
functions of the values of parents.

Figure 1 depicts the decision network for the Oil Wild-
catter problem. [She92, CDLS99] This graphical model
represents the joint distribution and utility of a deci-
sion problem with boolean choice nodes and ternary
chance nodes (Amount € Dry, Wet, Soaking; Result €
Poor, Intermediate, Good).

Figure 2 shows an equivalent influence diagram, with
links between choice (decision) nodes. These graphical
models specify a decision sequence: (Test, Result, Drill,
Qil), corresponding to a decision tree of orderings over
choice, chance, and outcome utility nodes.

3 PROBABILISTIC RELATIONAL
MODELS

Probabilistic relational models (PRMs) extend the flat
(propositional) representation of the variables and the
conditional dependencies among them to an object-
relational representation. Before proceeding to dis-
cussion the decision network analogues of PRMs, we
briefly review the PRM family and the relevant com-
ponents of a PRM specification.

A relational schema is a set of classes C =
C1,Cs,...,Cy, where every class C is associated with a
ground set of propositional attributes A(C) and a set of
relational attributes, also known as its reference slots,
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Figure 4: Probabilistic relational model.

R(C). Propositional attributes A are instance vari-
ables C.A ranging over finite domains V(C.4). Sim-
ilarly, relational attributes C.R each correspond to a
set of member objects of a class and therefore range
over the inclusion-exclusion (power set) 2" of some
class C' from C. That is, C.R represents the set of
members of the concept class C’, so it is a selector
function between C and 2¢°. [SDW03]

As an example extending the DEC-Asia decision net-
work above, the Patient schema might be used in
to represent partial or total patient records, with
classes corresponding to information about a patient’s
pulmonary medical history, smoking history, travel
itinerary, and groups of people contacted. The propo-
sitional attributes of the medical history include the
patient’s age, previous contagious pulmonary diseases
contracted, and currently extant diseases; the rela-
tional attributes might include the patient’s member-
ship in a list of quarantine subjects and links between
patients denoting specific exposure incidents and con-
texts. Note that some of these are static and some,
such as clusters of at-risk destinations and groups of
people, may be dynamic relational attributes.

An instantiation of a schema is a set of objects, each
belonging to some class C' € C, where every object is
specified using lists of its propositional and relational
attributes and their nesting according to the (possibly
hierarchical) schema. For example, an instantiation
of the Patient schema might be a particular patient
case history, with all available descriptive data and
test results specified.

A probabilistic relational model (PRM) encodes a prob-
ability distribution over the set of possible instantia-
tions I of some schema [FGKP99]. The object skeleton
of an instantiation is the set of its member objects, ab-

stracted over propositional attributes (i.e., with their
values unspecified). The relational skeleton of an in-
stantiation is the set of its member objects with all
relational attributes specified for a given set of propo-
sitional attribute values. In the case of “known struc-
ture”, the relational skeleton is provided as input and
the PRM specifies a full conditional distribution for
every attribute A of every class C' using this skele-
ton. The underlying ground network consists of arcs
into an attribute in C and parent sets consisting of
attributes of C' and other classes. The eligible classes
that may contain parents of a node in C' are those
related by some slot chain, i.e., a composition of re-
lational attributes. In order to implement this aggre-
gation, a function mapping multiple attribute values
into one is required. Aggregation functions could in-
clude descriptive statistics such as modes, median, and
moments (mean and variance) of relational attributes.
In the example from the previous section, the total or
per capita average of diagnosed severe acute respira-
tory syndrome (SARS) cases in countries visited by a
person is an example of an aggregate.

As a further example to illustrate slot chains, Fig-
ure 4 depicts a PRM for the domain of computa-
tional genomics, particular gene expression modeling
from DNA hybridization microarrays. Slot chains
can be traced using the reference keys (dotted lines).
This PRM contains tables for individual microarrays
or gene chips (admitting aggregation of chip objects
into classes), putative gene function (where known or
hypothesized), putative pathway membership (where
known or hypothesized), and protein production (a
target aspect of discovered function).

A PRM II for a relational schema S is defined as fol-
lows. For every class C' and every propositional at-
tribute A € A(C'), we have:

1. A set of parents Pa(C.A) = {Pay, Pas,..., Pa;},
where each Pa; has the form C.B or v(C.7.B),
where 7 is a slot chain and () is an aggregation
function.

2. A conditional probability function or table for
P(C.A|Pa(C.A)).

Let O be the set of objects in the relational skeleton of
II. The probability distribution over the instantiations
I of S, over which the II abstracts, is:

P(I) = opjcoTl ac A(obs) P(0bj. A| Pa(obj.A))

This allows a PRM to be flattened into a large
Bayesian network containing ground (propositional)
chance nodes, with one variable for every attribute of



every object in the relational skeleton of IT and belief
functions (usually deterministic) for the aggregation
operations. The latter are open-ended in form and
omitted from the formula for brevity.

As Getoor et al. [GFKTO02] and Sanghai et al.
[SDWO03] note, the most general case currently
amenable to learning is where an object skeleton is
provided and structure and parameter learning prob-
lems must be solved in order to specify a distribu-
tion over relational attributes. In the DEC-Asia do-
main, a PRM might specify a distribution over pos-
sible transmission vectors of a SARS-infected person
(the itinerary, the locale of contamination, the set of
persons contacted).

4 RELATIONAL DECISION
NETWORKS

4.1 RDN Representation

We now extend decision networks to relational repre-
sentations using a simple and straightforward synthe-
sis of decision network and PRM specifications.

Definition 1 The relational decision schema S for a
decision network B consists of three sets of classes
Cx = CXl’C.XQ)“‘JCX") Cp = CD1aCD25"'aCDma
and Co = Cop,,Co,,-..,Co,, where every class Cx is
associated with a ground set of propositional attributes
A(Cx) and a set of relational attributes R(Cx).
Propositional decision attributes A are instance vari-
ables C. A ranging over the finite chance, decision, and
utility domains VX(C. Ay VD(C’. Ay Vo (C.4)" Relational
attributes C.R each correspond to a set of member
objects of a class and, for all chance, decision, and
outcome (utility) nodes, respectively, range over the
power sets:

1. Objects: 2¢x' of some class Cx from Cx
2. Actions: 2€p' of some class Cpr from Cp

3. Outcomes: 290" of some class Cor from Cp

Thus the relational attributes C.R can include distin-
guished member action identifiers and outcome identi-
fiers specifying a representation for equivalence classes
of decisions and outcomes. Note that the range of ac-
tions may be continuous (e.g., in intelligent control or
continuous decision problems) and the range of wtili-
ties may also be continuous. Cp and Cp specify only
membership in S.

Definition 2: A relational decision network (RDN)
for a relational schema S is a PRM M = (B,D,U)
with distinguished decision and choice nodes, factored
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Figure 5: Relational decision network for the DEC-
Asia domain.

according to S, where B encodes all conditional proba-
bility functions among chance nodes and their parents
(choice and chance nodes), D encodes all sequential
decision functions, and U encodes all conditional out-
come and utility functions.

When the decision network’s object skeleton is not
known (i.e., the set of decisions and outcomes is not
fully pre-specified), the RDN includes a boolean ezis-
tence variable for propositional attributes of Cx, Cp,
and Cp, and a boolean reference slot variable for rela-
tional attributes of C'x, Cp, and Cop.

Figure 5 shows a DRN for the DEC-Asia domain.

4.2 RDN Inference: Sampling-Based
Algorithms

Our DBN algorithms include two sampling algorithms:
Likelihood Weighting and Adaptive Importance Sam-
pling (AIS). [Guo03] For brevity, we refer interested
readers to Cheng and Druzdzel (2000) [CDO0O] for de-
tailed descriptions of these algorithms.

A desired joint probability distribution function P(X)
can be computed using the chain rule for Bayesian net-
works, given above. The most probable explanation
(MPE) is a truth assignment, or more generally, value
assignment, to a query Q = X E with maximal pos-
terior probability given evidence e. Finding the MPE
directly using Equation (1) requires enumeration of
exponentially many explanations. Instead, a family of
exact inference algorithms known as clique-tree prop-
agation (also called join tree or junction tree propaga-
tion) is typically used in probabilistic reasoning appli-
cations. The first MPE (belief revision) algorithm for
DAG models was developed by Pearl [Pea88]. The first
general maximum a posteriori (MAP or belief updat-



ing) algorithms were developed by Pearl [Pea88] and
independently by Shachter [Sha86]. The most pop-
ular extant implementation of belief updating is the
junction tree algorithm of Lauritzen and Spiegelhal-
ter [CDLS99]. Although exact inference is important
in that it provides the only completely accurate base-
line for the fitness function f, the problem for general
BNs is #P-complete (thus, deciding whether a partic-
ular truth instantiation is the MPE is NP-complete)
[C090, Wi02]. [SJJ96] Approximate inference refers to
approximation of the posterior probabilities given ev-
idence. One stochastic approximation method called
importance sampling [CDO00] estimates the evidence
marginal by sampling query node instantiations.

5 DYNAMIC EXTENSIONS

5.1 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) extend flat
Bayesian networks to model problems with a tempo-
ral component. In a decision network, the state at
time ¢ is represented using a set of random variables
Xt = {X1,,Xo4,.--,Xn,} The state at time ¢ is de-
pendent on thoes at previous time steps. Fach state
in the system is assumed to depend only on the imme-
diately preceding state (i.e., the system observes the
Markov property in the first degree). The representa-
tion must therefore capture the transition distribution
P(X¢41]X:). This can be done using a two-time-slice
Bayesian network fragment (2TBN) By, containing
variables from X;,; whose parents are variables from
X or Xyy1, and variables from X; without any par-
ents. The process is also usually assumed to be sta-
tionary, so that the transition equations for all time
slices are identical: By = By, = ... = By = B_,.
Thus a DBN network is fully specified using a pair
of Bayesian networks (Bg, B_,, where By represents
the initial distribution P(X,) and B_, is a two-time
slice Bayesian network, which as discussed above de-
fines the transition distribution P(Xy11|Xy).

5.2 Dynamic Probabilistic Relational Models

Sanghai et al. recently developed a hybrid of
PRMs and DBNs for decision-theoretic troubleshoot-
ing, which are called dynamic probabilistic relational
models (DPRMs). The key innovation of this related
work is that it is the first representation to support
relational aggregates in a temporal model. This is
achieved by extending the 2TBN representation to a
2TPRM where each time slice contains a PRM. This
extension is straightforward, with the slight complica-
tion that in flattening (or “unrolling”) a PRM into a
ground representation.

DRNs admit straightforward extension to dynamic do-
mains using the 2 time slice dynamic PRM represen-
tation presented by Sanghai et al..

6 CONCLUSIONS AND FUTURE
WORK

We have described a new representation for decision
networks that combines the compact abstraction of
PRMs with utility theoretic graphical model. We
have considered several continuations of this research,
grouped into four categories: applications, scalability,
comparison to other decision models, and improve-
ments to the ordering algorithm. DRNs are currently
being implemented for use in Bayesian Network tools
in Java (BNJ).
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