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Abstract

Autocorrelation, a common characteristic of
many datasets, refers to correlation between
values of the same variable on related ob-
jects. It violates the critical assumption of in-
stance independence that underlies most con-
ventional models. In this paper, we provide
an overview of research on autocorrelation in
a number of fields with an emphasis on im-
plications for relational learning, and outline
a number of challenges and opportunities for
model learning and inference.

1. Introduction

Autocorrelation refers to correlation between values of
the same variable on related objects. More formally,
it is defined with respect to a set of related instance
pairs (zi, zj) ∈ Z and a variable X defined on these
instances, and is the correlation between the values
of X on these instance pairs. Autocorrelation is a
common characteristic of many datasets. For exam-
ple, hyperlinked web pages are more likely to share
the same topic than randomly selected pages (Taskar
et al., 2002), and proteins located in the same place in
a cell (e.g., mitochondria or cell wall) are more likely
to share the same function (e.g., transcription or cell
growth) than randomly selected proteins (Neville &
Jensen, 2002).

The prevalence of autocorrelation is not unexpected—
a number of widely occurring phenomena give rise to
such dependencies. Temporal and spatial locality very
often result in autocorrelated observations, due to tem-
poral or spatial dependence of measurement errors, or
the existence of a variable whose influence is correlated
among instances that are located closely in time or
space (Mirer, 1983; Anselin, 1998). Social phenomena
such as social influence (Marsden & Friedkin, 1993),
diffusion processes (Doreian, 1990), and the princi-

ple of homophily (McPherson et al., 2001) give rise
to autocorrelated observations as well, through their
influence on social interactions that govern the data
generation process.

Presence of autocorrelation is a strong motivation for
relational learning and inference. It is well known
that in relational domains, joint inference over an en-
tire dataset results in more accurate predictions than
conditional inference over each instance independently
(Macskassy & Provost, 2003; Chakrabarti et al., 1998;
Taskar et al., 2002; Yang et al., 2002; Neville & Jensen,
2003). Recent work has shown that the improvement
over conditional models increases with increased auto-
correlation (Jensen et al., 2004)—autocorrelation al-
lows inferences on one object to be useful for inferences
on related objects.

The presence of autocorrelation, however, also
presents additional challenges for learning. A major
difficulty is that the assumption of independent data
instances that underlie most conventional models is
no longer valid. For instance, in models constructed
from temporal and spatial datasets, autocorrelation
has long been recognized as a source of increased bias
and variance (Anselin, 1998). These problems are only
more severe in relational data that do not exhibit the
regularities of temporal and spatial datasets. For ex-
ample, linkage—a measure of the number of related
instances—can be far greater and can vary dramati-
cally throughout the dataset, and it is known that link-
age interacts with autocorrelation to increase variance
and such variance can bias feature selection toward
features with the least amount of evidence (Jensen &
Neville, 2002).

Datasets exhibiting autocorrelation are common in
many fields including sociology, economics, geography,
and physics (Doreian, 1990). Social network analysis
often examines networks of social interactions which
exhibit homophily. For example, in elementary school



friendship networks, same-gender ties are more likely
than different-gender ties (Anderson et al., 1999).
Economic analysis often examines datasets with re-
peated measures of the same variable over time, which
typically exhibit temporal autocorrelation (e.g., stock
prices). As a consequence, researchers in these fields
have investigated the effects of autocorrelation in pa-
rameter estimation, hypothesis testing, and structure
search.

A common finding in these disparate fields is that de-
partures from independence cannot be ignored—they
may cause unduly complex models, and biased, in-
consistent, or inefficient estimators. One possible ap-
proach is to design new statistical procedures that are
robust to autocorrelation. A second one is to model
dependencies explicitly.

In this paper, we provide an overview of research on
autocorrelation in these fields with an emphasis on im-
plications for machine learning. The remainder of this
paper is organized as follows: First, we provide an
overview of work in temporal sequence analysis focus-
ing on work in econometrics. This field has a long
history of analyzing the effects of autocorrelation. We
next discuss research in spatial statistics that extend
one-dimensional temporal models to address the needs
of higher-dimensional spatial data, and continue with
work in social network analysis on general network
data. We then briefly outline models in relational
learning and discuss the utility and implications of
work in related fields for relational learning models.

2. Temporal Sequential Models

Linear regression models are commonly employed in
both natural and social sciences to model the depen-
dence of a single response variable Y on a set of pre-
dictor variables X = {X1, . . . , Xm}. The conventional
linear regression model is specified as follows:

Yi = βXi + εi (1)

where β is a vector of weights, ε is a normally-
distributed error term with mean 0, and i is an in-
dex over data instances. The weight vector β is usu-
ally estimated using Ordinary Least Squares (OLS),
which is known to be the Best Linear Unbiased Esti-
mator (BLUE)—the minimum variance estimator for
the class of linear unbiased estimators.

One of the implicit assumptions underlying these mod-
els is that instances are independent. However, this
assumption is violated in many datasets consisting of

observations over time. For example, the daily closing
price of a stock market index (e.g., S&P500) can be
represented as a time series. It is well known that stock
prices exhibit autocorrelation over time—the best pre-
diction of tomorrow’s stock prices is based on today’s
prices (Wooldrige, 2003). 1

If a conventional linear regression model is used to
model autocorrelated data, the residuals of the model
will be autocorrelated. This violates the modeling as-
sumption of independent and identically distributed
errors. For example, if equation 1 is used to regress
a number of market indicators X (e.g. unemployment
rate, federal interest rate) on the index price Y , errors
will be similar for instances close in time due to the
autocorrelation of Y . Serially correlated errors can
be detected using a variety of statistics. The most
widely-used is the Durbin-Watson statistic, which is a
normalized sum of the squared differences of successive
terms in a time series (Kennedy, 1998).

When the errors are autocorrelated, OLS esti-
mators are unbiased, but they are no longer
BLUE (Wooldrige, 2003). That is, there exist other
unbiased linear estimators with lower variance. Not
accounting for the autocorrelation structure results in
larger sampling errors for the β estimates. Typically,
this increased variance will bias hypothesis tests in the
direction of increased Type I errors (rejecting the null
hypothesis when it is true) and will result in incorrect
conclusions of significance. Furthermore, the amount
of bias will increase as the level of autocorrelation in-
creases.

Autocorrelated errors typically arise in one of two sit-
uations. First, autocorrelated errors may be due to
correlated measurement errors. For example, trading
patterns can produce serially correlated estimates of
stock returns even when there is no serial correlation
for returns in general. Returns are measured using
the price of the stock on the last trade in a given time
period; if the measurement time period is short and
the stock is sparsely traded, the estimates of return
values will exhibit autocorrelation. Models that rep-
resent such autocorrelation dependencies among error
terms are known generally as disturbances models, but
are also referred to as heterogeneity models in spatial
analysis, or as serial correlation models in temporal
analysis. Second, autocorrelated errors may be due
to correlation of the response values. For example, as
was mentioned above, the price of an index today may

1Unfortunately, this characteristic cannot be used for
accurate prediction because the chance of a stock’s future
price going up is the same as it going down. The overall
process is is a random walk.



influence the price tomorrow. This case is typically
modeled by including a lagged value of the response
variable as a regressor. Models that represent these
dependencies are known generally as effects models,
but are also referred to as autoregressive models or as
dependence models in spatial and social network anal-
ysis. Below we discuss each of these in turn.

2.1. Disturbances Model

Serial correlation implies that there is systematic de-
pendence among the error terms of individual in-
stances. The most common form is first-order serial
correlation, in which the error term in one period in-
cludes a proportion of the error term in the previous
period. The is commonly referred to as an AR(1) dis-
turbance model:

Yi = βXi + µi, where µi = ρµi−1 + εi (2)

where ρ is a parameter called the autocorrelation co-
efficient, whose absolute value is constrained to be less
than 1. When ρ = 0, this model reduces to the stan-
dard linear model of equation 1.

When serial autocorrelation is present, analysts gen-
erally abandon OLS in favor of Generalized Least
Squares (GLS) estimators that are BLUE. Unfortu-
nately, knowledge of the correlation structure is needed
for exact GLS estimates and in general this is not
known apriori. Alternative Estimated Generalized
Least Squares (EGLS) methods estimate ρ and β
iteratively or jointly. EGLS estimators are neither
linear nor unbiased but Monte Carlo studies have
shown that EGLS is preferable to OLS in many sit-
uations (Kennedy, 1998). In particular, for the AR(1)
disturbances model, EGLS is equal, or superior, to
OLS when ρ > 0.3. The most frequently used EGLS
methods are Cochrane-Orcutt iterative least squares,
Durbin’s two-stage method, Hildreth-Lu search proce-
dure, and maximum likelihood. These four methods
mainly differ in how they estimate ρ and are asymp-
totically equivalent if ε is distributed normally. Recent
studies have shown that Bayesian estimation, which
averages over a number of ρ estimates, is far superior
to methods that use a single estimate (Kennedy, 1998).

2.2. Effects Model

Effects models take into account dependencies among
the response values by including a lagged value of the
response variable as one of the regressor variables.
When lag equals 1 (e.g. first-order autocorrelation),
the underlying model is referred to as an AR(1) effect

model:

Yi = ρYi−1 + βXi + εi (3)

When the underlying process is correctly modeled with
equation 3, OLS estimators are biased but consistent
as long as the errors are contemporaneously uncor-
related. This means that the nth regressor term is
not correlated with the nth error term; it may be
correlated with other error terms. In this case, an-
alysts consider OLS to be the most appropriate esti-
mator (Kennedy, 1998). In small samples, the OLS
estimate for ρ is downward-biased, and the OLS esti-
mate for β is upward-biased. In general however, there
are no other estimators with superior small-sample
properties so analysts prefer OLS for its asymptotic
properties. Research has focused on obtaining un-
biased OLS estimates for a range of specific autore-
gressive models, with recent work proposing a Monte
Carlo based approach for models with non-normal er-
ror terms, higher-order autocorrelations, and exoge-
nous variables (Tanizaki, 2000).

If, on the other hand, the errors are contemporane-
ously correlated, OLS estimators are biased and in-
consistent. A two-step EGLS (as described in section
2.1) is not feasible in this situation because the resid-
uals are correlated with the exogenous variables. The
most common approach to take in this situation is in-
strumental variable (IV) estimation, which introduces
extra instument variables to decouple the correlation
between the regressors and the error terms to produce
consistent estimators.

Autoregressive conditional heteroskedasticity (ARCH)
models extend the basic AR models described above
to model volatility clustering with non-constant vari-
ance that depends on past information (Engle, 1995).
If the model does not include lagged-dependent vari-
ables, OLS estimators are BLUE, but non-linear max-
imum likelihood estimators are more efficient. If the
model includes lagged-dependent variables then the
OLS standard errors will not be consistent. In this
case, EGLS estimators are asymptotically efficient and
standard errors are asymptotically valid.

3. Spatial Models

Spatial datasets are analyzed in a number of fields
including geography, biology, and economics. These
datasets are typically represented in discrete or con-
tinuous two-dimensional space. For example, a spatial
dataset may record soil properties throughout a spatial
region. Equation 1 may also be used to model these



data, for example to model the effects of soil proper-
ties on ground water contamination. In this case each
vector index i indicates a point in space. We will focus
on (simpler) models for discrete space where the data
are represented as a lattice—each point in space corre-
sponds to a node in the graph and is linked to a fixed
number of other nodes that are closest with respect to
a distance measure.

Tests for the presence of residual spatial autocorrela-
tion are based on either OLS or ML estimates, includ-
ing tests based on Moran’s I statistic, and Wald, Like-
lihood Ratio, and Lagrange Multiplier tests (Anselin,
1998). If spatial data exhibit autocorrelation, the qual-
ity of OLS parameter estimates are affected in the
same manner as was discussed for temporal data—
OLS estimators are unbiased but they are no longer
BLUE (Anselin, 1998). Again this results in biased
hypothesis tests, with the amount of bias depending
on the level of autocorrelation.

Dependencies among instances occur in the same man-
ner as in the temporal model discussed above. Auto-
correlated errors may be due to spatially correlated
measurement errors. For example, a severe weather
event may affect only part of the region, resulting in
a cluster of correlated errors. On the other hand, au-
tocorrelated errors may be due to spatial autocorre-
lation in the response variable itself—contamination
levels are likely to correlated with the levels at nearby
locations.

3.1. Disturbances Model

When the data exhibit autocorrelated disturbances,
the error term of one instance influences the error
terms of neighboring instances. A spatial disturbances
model subsumes the first-order serial correlation model
(equation 2) by allowing more general dependencies
among the error terms:

Yi = βXi + µi, where µi = ρWµ + εi (4)

Here W is an n × n weight matrix specifying the na-
ture of dependencies among the disturbances, and ρ is
the autocorrelation parameter. When ρ = 0 or W is
uniformly 0, this model reduces to the standard lin-
ear model of equation 1. The matrix W is designed
to represent the influence processes present in the net-
work. Each entry wij denotes the influence node j has
on node i. For example, in a first-order spatial distur-
bances model, row i has a value of 1 for each neighbor
j of node i and all other entries are 0.

Spatial autocorrelation among error terms has been
shown to affect the quality of OLS parameter esti-
mates (Anselin, 1998). The effects are similar to those
reported for temporal models—OLS estimators will be
unbiased but inefficient and GLS estimators are BLUE
but are of academic interest only because the correla-
tion structure is generally unknown. Futhermore, the
multidirectional nature of spatial dependencies limits
the types of EGLS methods that will produce consis-
tent estimates. Approaches based on ML or IV re-
sult in consistent estimates of ρ and therefore retain
the asymptotic properties of consistency and efficiency.
However, in small samples, OLS may sometimes per-
form equivalently, or better than EGLS, in terms of
bias and mean squared error—though finite sample
analysis is limited (Anselin, 1998).

3.2. Effects Model

The second type of dependency is again due to auto-
correlation of the regressor values. The spatial effects
model represents these dependencies with the follow-
ing:

Yi = ρWY + βXi + εi (5)

Again, when ρ = 0 or W is uniformly 0, this model
reduces to the standard regression model (equation 1).

If the response variable is autocorrelated, OLS estima-
tors will be biased, inconsistent, and inefficient regard-
less of the properties of the error term (Anselin, 1998).
In temporal effects models (equation 3), the OLS esti-
mates will be unbiased if the error terms show no serial
correlation. The multidirectional nature of spatial de-
pendencies however, introduces added complexity to
the OLS estimates so the conditions for consistency
are only met when autocorrelation is not present, when
ρ = 0. This means that no consistent estimates can
be obtained for OLS procedures, so spatial analogues
of EGLS methods are not appropriate.

Maximum likelihood (ML) estimation does not suffer
from the same effects that plague OLS estimation so it
is the preferred method of estimation among analysts
for both the disturbances and the effects model. ML
estimators have attractive asymptotic properties—
consistency, efficiency, normality—but are more com-
plex and computationally intensive than OLS. We
should also note here that the attractive asymptotic
properties of ML estimation do not hold uniformly,
but are valid under the following conditions: the exis-
tence of the log-likelihood function for the parameters,
continuous differentiability of the log-likelihood func-



tion, boundedness of partial derivatives, positive defi-
niteness and/or non-singularity of covariance matrices,
and the finiteness of quadratic forms (Anselin, 1998).
Typically, these conditions are satisfied if the spatial
interaction structure (ρW) is non-explosive (i.e., the
correlation between yi and yi+d goes to zero sufficiently
”quickly” as d →∞, where d is graph distance).

Depending on the model form, ML estimation may
involve a normalizing constant that is difficult to com-
pute in closed form. For the models discussed above,
this involves computing the log-determinant of an n×n
matrix, which requires O(n3) operations for dense ma-
trices. Research has focused on techniques to make
ML estimation more tractable, including pseudolike-
lihood estimation (Besag, 1975), approximate ML es-
timation with Markov Chain Monte Carlo (MCMC)
methods (Geyer & Thompson, 1992), and closed-form
ML methods that avoid direct computation of the de-
terminant (LeSage & Pace, 2001).

Hypothesis tests for ML estimates include the Wald
test, the Likelihood Ratio test, and the Lagrange Mul-
tiplier test, all of which are based on the optimal
asymptotic properties of the ML estimator. The tests
are asymptotically equivalent but care must be taken
when interpreting the tests on finite samples because
some have higher Type I errors and others have higher
Type II errors. The relative power of the tests for
spatial data is yet to be investigated (Anselin, 1998).

4. Network Models

Spatial models have been applied extensively in the
field of social network analysis where data consist of
a network of interactions among entities (e.g., people,
institutions). Social network datasets are represented
as general graphs and differ from temporal and spatial
data representations in that they are not restricted to
a uniform structure. For example, to model the effects
of socio-economic status on voting behavior in a com-
munity, income and status would be measured along
with friendship ties to other members in the commu-
nity. A set of nodes representing people and a set of
edges representing their friendships forms the network
graph. The graph structure varies as each person has a
different number of friends. Again equation 1 may be
used to model network data. In this case each vector
index i indicates a node in the graph.

Spatial autocorrelation models are expressive enough
to use as network autocorrelation models. Equation 4
represents a network disturbances model and equation
5 represents a network effects model (Marsden & Fried-
kin, 1993). In social network models, the weight ma-

trix W specifies the social influence patterns present
in the network and it can affect virtually all of the
conclusions drawn from autocorrelation models (Leen-
ders, 2002). Therefore, correct specification of W is
crucial to the utility of the models. In practice, social
network analysts do not estimate W. Instead, they
specify a W manually to model specific theories of so-
cial influence such as communication and comparison.

Social network models share the same challenges as
spatial models—OLS parameter estimates of autocor-
related data will be inefficient and/or biased and in-
consistent, and although ML estimates are more ro-
bust, they are computationally intensive (Doreian &
K. Teuter, 1984). Simulation studies have demon-
strated the superiority of ML estimates over a wide
range of conditions (Doreian & K. Teuter, 1984). Al-
though social network datasets are not restricted to a
uniform structure, unfortunately there appears to be
little work in social networks that examines the impact
of varying graph structure on parameter estimation
and hypothesis tests.

5. Models in Relational Learning

Datasets with more general dependencies than are seen
in temporal, spatial, and social network data are com-
monplace in relational learning. For example, rela-
tional data for citation analysis can be represented
as a typed, attributed graph, with nodes representing
authors, papers and journals, and edges representing
citation and published-in relationships. A model of
paper topic may include attributes of related authors
(e.g., speciality) and journals (e.g., prestige). How-
ever, an important characteristic of these data is that
topic is autocorrelated—the topic of a paper is not
independent of the topics of papers that it cites.

Relational data pose a number of additional challenges
for model learning and inference. First, relational data
often consider more than one type of entity in the same
dataset (e.g., papers, authors and references). Second,
relational data have complex dependencies, both as
a result of direct relations (e.g., research paper ref-
erences) and through chaining multiple relations to-
gether (e.g., papers published in the same journal).
Third, relational data have varying structure (e.g., pa-
pers have different numbers of authors, references and
citations).

Recent research in relational learning has pro-
duced several novel types of models to address
these issues, including relational Markov network
(RMNs) (Taskar et al., 2002), relational Bayesian
networks (RBNs) (Friedman et al., 1999), and re-



lational dependency networks (RDNs) (Neville &
Jensen, 2004). These three models have the ability
to represent and reason with autocorrelation; however,
only RMNs and RDNs can reason with arbitrary forms
of autocorrelation—RBNs can only reason with acyclic
forms of autocorrelation, such as relationships that are
structured by temporal constraints (Friedman et al.,
1999).

There are two major findings that relate autocorre-
lation to learning and inference in relational models:
that autocorrelation improves joint inference, and that
autocorrelation may bias feature selection. We discuss
each of these below.

First, several studies have shown that joint inference
can significantly reduce classification error (Macskassy
& Provost, 2003; Chakrabarti et al., 1998; Taskar
et al., 2002; Yang et al., 2002; Neville & Jensen, 2003).
Joint inference refers to procedures that make simul-
taneous statistical judgments about the same vari-
ables for a set of related data instances. By mak-
ing inferences about multiple data instances simulta-
neously, joint inference can exploit autocorrelation in
the data—judgments about one instance can be used
to improve inferences about related instances. Re-
cent work has shown that the improvement over con-
ditional models, which make inferences in isolation,
increases with increased autocorrelation, and in gen-
eral, a joint inference procedure performs better when
higher-order autocorrelation is present or when few la-
bels are known with certainty (Jensen et al., 2004). In
conditional models, the utility of modeling autocorre-
lation depends on whether the values of the autocorre-
lated attributes are known. Partially labeled datasets
are common, but if the known labels do not exhibit
autocorrelation, they cannot be used to seed the in-
ferences. Related work shows that the relative advan-
tage of a joint inference procedure over a conditional
procedure reduces as the percentage of labeled data
increases (Macskassy & Provost, 2003).

Second, recent research has shown that autocorre-
lation may bias feature selection (Jensen & Neville,
2002). Concentrated linkage and autocorrelation re-
duce the effective sample size of a data set, thus in-
creasing the variance of parameter estimates (e.g., fea-
ture scores) estimated using that set. This reduction
in effective sample size parallels the inefficiencies in
temporal and spatial estimators. As a consequence,
the probability of Type I errors is increased—features
formed from objects with high linkage and autocorrela-
tion may be selected as the best feature, even when the
features are random. To our knowledge, few current
relational learning algorithms adjust for the increased

variance in estimation. Specifically, the current instan-
tiation of RDNs use an underlying conditional model
which adjusts for this bias, but the current instantia-
tions of RBNs and RMNs do not. Inefficient param-
eter estimates will impact both selective (e.g., RBN,
RDN) and non-selective (e.g., RMN) models. For both
types of models, the increased variance may result in
overfitting. In addition, the interpretation of feature
weights/scores may be more difficult for non-selective
models and structure learning may be biased in selec-
tive models.

6. Summary and Discussion

Autocorrelation effects have been studied extensively
in other fields and it is clear that they cannot be ig-
nored in relational learning. In particular, if the data
exhibit autocorrelation, either autocorrelated mea-
surement errors or an autocorrelated response vari-
able, then conventional parameter estimates will be
unbiased but will have increased variance. This has
implications for (1) model performance, (2) feature
rankings, and (3) feature selection. When the model
is learned from “small” samples, the increased vari-
ance may lead to overfitting and result in lower perfor-
mance. Although, we typically have “large” datasets
in relational learning, as the level of autocorrelation
increases so does the variance—the amount of data
needed to offset the increased variance may be be
larger than we expect. Increased variance will also im-
pact feature rankings (by feature weights/scores), and
consequently feature selection. Non-selective models
often use feature weights for interpretation (e.g., to
identify the most important features), and selective
models use feature weights to learn the structure of the
model. Both these endeavors will be adversely affected
by the increased variance due to autocorrelation.

How can we adjust for autocorrelation in relational
models? Below, we summarize past research and dis-
cuss options for model representation, learning and in-
ference.

6.1. Representation

The first decision is how to include autocorrelation
in the model representation—whether to model auto-
correlation directly through variables or indirectly in
the error term. This choice corresponds to selection
of the effects model, the disturbances model, or some
combination of the two, and may be based on the re-
searcher’s hypothesis about the dependencies present
in the data. Explicit representation may result in more
interpretable models, since the influence of an autocor-
related response variable is clear. However, implicit



representation in the error term may be more broadly
applicable. This approach could allow the use of ex-
isting models without a change of representation, but
with only an adjustment for the effects of autocorrela-
tion.

The second decision is how to encode the autocorre-
lation dependencies. This decision corresponds to the
functional form of autocorrelation (e.g., first-order).
For the spatial and network models discussed above,
this refers to the specification of the weight matrix.
For relational models, this usually refers to specifica-
tion of autocorrelation features. For example, to pre-
dict the topic of a web page, we may include a feature
that encodes the topics of other hyperlinked pages.
While considerable attention has been paid to accu-
rate parameter estimation in temporal and spatial au-
tocorrelation models, it appears that researchers are
less concerned with model/feature selection. However,
one could imagine searching over a space of autocor-
relation specifications to learn the correct structure.

6.2. Learning

The effect of autocorrelation on parameter estimation
has been studied extensively. Below is a summary of
the findings in temporal, spatial and network analysis:

1. If autocorrelation is ignored:

• Parameter estimates are computationally ef-
ficient.

• Parameter estimates are unbiased but have
increased variance.

• Hypothesis tests and confidence intervals
may be biased.

2. If autocorrelation is modeled:

• Parameter estimates are computationally
complex, but more tractable approximate
methods exist.

• Parameter estimates are asymptotically opti-
mal but may be biased in finite samples.

• Finite sample comparison is limited. More
complex estimation techniques may not al-
ways be justified.

• Hypothesis tests are asymptotically unbiased
but the relative power of various tests may
vary on finite samples.

Some examples of model parameters in relational
learning include clique potentials and feature weights.
Results for temporal and spatial analysis indicate that

there may be a tradeoff between computational ef-
ficiency and accurate parameter estimation. Under-
standing the effect of varying levels of autocorrelation
on parameter estimation for finite samples is an im-
portant area for research for the relational learning
community.

The effects on parameter estimation will also impact
structure learning. Structure learning typically in-
volves feature selection, which corresponds to either
explicit or implicit hypothesis testing. It has been
shown that autocorrelation can lead to increased Type
I errors in hypothesis tests, which may lead to a un-
fair comparison among different features. The impact
of these errors has not been fully explored in rela-
tional learning. Initial results indicate that they lead
to overly complex models with excess structure, and
may degrade model performance (Neville et al., 2003).

6.3. Inference

The literature on spatial, temporal, and social net-
work autocorrelation models does not provide much
guidance for inference because it focuses on accurate
model learning rather than prediction of unobserved
variables. There has, however, been preliminary work
in relational learning that suggests joint inference can
significantly reduce classification error, and that this
reduction increases with autocorrelation. Clearly, this
is an area with many open questions—e.g., Can au-
tocorrelation be exploited to improve inference effi-
ciency? How does autocorrelation interact with var-
ious inference procedures? How does the amount of
labeled data interact with the level of autocorrelation
in the dataset to determine the improvement in accu-
racy obtained by joint inference?

7. Conclusions

Autocorrelation is ubiquitous—datasets exhibiting au-
tocorrelation are found in a range of fields including
sociology, economics, geography, and physics—and has
been studied extensively. In this paper we presented
findings from econometrics, spatial statistics, and so-
cial network analysis. A common finding is that ig-
noring autocorrelation may result in unduly complex
models, and biased, inconsistent, or inefficient estima-
tors. The effects of autocorrelation are sometimes ad-
dressed by modeling the autocorrelation explicitly, and
sometimes by using statistical procedures that are ro-
bust to these effects.

For reasons we stated earlier, we expect autocorrela-
tion to have greater impact on relational models than
on temporal, spatial, and network models. Although



the presence of autocorrelation has been widely re-
ported for relational datasets, there has been little fo-
cus on the impact of autocorrelation on model learning
and inference. The results we discuss here reveal that
this is an important area for future research.
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