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Abstract vote (e.g., a number between 1 and 5). We could use this
dataset to learn a classifier that predicts this vote, based
on facts about a person and movie — here about John
and aboutSW There have been a number of such sys-
tems based on clustering (Breese et al., 1998) and Bayesian
Models (Chickering et al., 1997), among other technolo-

This paper applies Probabilistic Relational Mod-
els (PRMs) to the Collaborative Filtering task,
focussing on the EachMovie data set. We first
learn a standard PRM, and show that its per-
formance is competitive with the best known

techniques. We then define hierarchical PRMs, ~ 91€S:
which extend standard PRMs by dynamically re- Notice this prediction does not consider other people (e.g.,
fining classes into hierarchies. This represne-  people “similar” to John) or other movies (similar Y.

tation is more expressive that standard PRMs,
and allows greater context sensitivity. Finally,
we show that hierarchical PRMs achieve state-
of-the-art results on this dataset.

The other main type of recommender systamljabora-
tive filtering addresses this deficiency, by using associa-
tions: If person P1 appears similar to person P2 (perhaps
based on their previous “liked movies”), and P2 liked X,
then perhaps P1 will like X as well. A pure collaboration-
1. Introduction only system would use only a matrix, whoSej) element

is the vote that persongives to moviej, which could be
Personalized recommender systems, which recommenghknown. The challenge, then, is using this matrix effec-
specific products (e.g., books, movies) to individuals, haveively, to acquire the patterns that will help us predict future
become very prevalent — see the success of widely usegotes. While there are a number of other techniques that
systems like Amazon.com’s book recommender and Yahave proven effective here, such as clustering, PCA, and
hoo!’s LAUNCHcast music recommender system. TheK-nearest-neighbor (Ungar & Foster, 1998b; Ungar & Fos-
challenge faced by these system is predicting what eacter, 1998a), notice classical Machine Learning techniques
individual will want. do not work here, as there is no simple way to map this

A pure content-basedecommender will base this on only matrix into a simple fixed-size vector of attributes.

facts about the products themselves and about the individdf course, we would like to usboth content and col-

ual (potential) purchaser. This enables us to express eadaborative information — i.e., include, as training data,
possible purchase as a simple vector of attributes, somiacts about the people, facts about the movies, and a set
about the product and others about the person. If we alsof (P, M V) records, which specifies that persBrgave
know who previously liked what, we can view this as a movie Mthe vote ofV. The challenge is how to use all
standard labelled data sample, and use standard machioéthis information to predict howohn will vote on SW
learning techniques (Mitchell, 1997) to learn a classifier,Here, we want to use facts about John and alSMtand
which we can later use to determine whether a (novel) peralso find and exploit collaborative properties, that deal with
son will like some (novel) item. people similar to John (in terms of liking similar movies),

To make this concrete, consider a movie recommenda2nd movies similar to SoM (in terms of being liked by sim-

tion system that tries to determine whether a specifiedIar people).

person will like a specified movie — e.g., will John like Stepping back, the challenge here is learning a distribution
Star Wars $W? A content-based system could use a largeover a set oflatabaseshere descriptions afetsof people
People xMovies database, where each tuple lists factsand setsof products, as well as their votes. This is quite
about a person, then facts about a movie, together with a



different from the classical machine learning challenge ofcal skews (Getoor, 2002). A PRM can be learned directly

learning distributions over tuples (i.e., individual rows of on a relational database, thereby retaining and leveraging

a single relational database), which are iid. That is, whilethe rich structure contained therein.

stan_dard techniques seek refationstvi in a row, eg. We base our notation and conventions for PRMs on those

relatinga.vote to a.gender anda.movieType ), our . . .
) used in (Getoor, 2002). In general, a PRM is a pair

collaborative system needs to reasmmossrows — e.g.,

X . . . S S,0s) defined over a Relational Scherfig wheresS is
to decide that John (described in one row) is suff|C|entIyt<he q8u>alitative dependency structure Ofﬁ PRM ais

like George (described in another row) that we use fact : .
. he set of associated parameters. Reational Schema
about George to make inferences about John. Another nals . )

contains two fundamental elements: a setlafsses

ur_al inter-row application is based eBtsqf rows: e.g.,we  ,, — {X1,...,X,}, and a set ofeference slotgp;} that
might use the fact that theetof people with some charac- ) . .

o ~ _ . define the relationships between the classes.
teristic (e.g.,Age=teenage , gender =male) typically
like members of @etmovies with some other characteris- Each classX € X is composed of a set afescriptive
tic (e.g.,Genre =action ). attributes A(X), which in turn take on a range of val-

Probabilistic Relational Models (PRMs) (Koller & Pfef- ues V(X'A).' For e’_‘?mp'e' consider a schemg describ-
. . g a domain describing votes on movies. This schema
fer, 1198) were designed to address exactly this type o .
relational learning and inference problem. This paper, as three cIassesVoFe, Person ,_and Mowe. For
) the Vote class, the single descriptive attributeSsore

shows that PRMs can be successfully applied to this leam\Ivith values{0,...,5}; for Person the two descriptive

ing scenario, in the context of the Recommendation task. .. . .
. . ._attributes areAge and Gender, which take on values
We examine the effectiveness of standard PRMs applie .
. . young , middle-aged , old } and{Male, Female }
to the recommendation task on the EachMovie (Each- o : . D :
. . respectively; and foMovie the single descriptive attribute
Movie, ) dataset, then evaluate the effectiveness of an : .
. s . »1S Rating which takes on value$G PG M R}. Fur-
extended version of PRMs called “hierarchical PRMS ¢ .
- thermore, a class can be associated with a setfef-
(hPRMs) (Getoor, 2002). Our empirical results show that :
g o ence slotsR(X) = {p1, ..., px}. A particular refer-
standard PRMs can achieve competitive results on the rec- . .
. ence slot,X.p, describes how objects of class are re-
ommendation task, and then that hPRMs can outperforrp : . : )
ated to objects in other classes in the relational schema.
standard PRMs here. L
Continuing our example, theote class would be asso-
As PRMs can be viewed as a relational extension of Beeiated with two reference slotdote .ofPerson , which
lief Nets, Section 2 describes standard PRMs by showinglescribes how to link/ote objects to a specifiPerson ;
how they extend Bayesian Networks; in particular, we pro-andVote .ofMovie , which describes how to link/ote
vide both inference and learning algorithms here. It therobjects to a specifidovie object. A sequence of one or
presents our application of the PRM framework to the Recimore reference slots can composed to fomrafarence slot
ommendation task. Section 3 describes some limitations ofhain = = p; o --- o py, and attributes of related objects
standard PRMs for this task; addressing these limitationsan be denoted by using the shorthatid. A, whereA is
leads naturally to hierarchical PRMs. We introduce oura descriptive attribute of the related class. For example,
implementation of hierarchical PRMs, and show how anVote .ofPerson.Gender  refers to the gender attribute
hPRM can provide a more expressive model of the Eachef thePerson associated with a giveviote .
Mowe_ dataset. Finally, Section 4 demongtrates the overaH_he dependency structure for a PRM defines the par-
effectiveness of PRMs as a recmmendation system, and in

. - ents Pa(X.A) for each attributeX.A. The parent for
particular the superiority of hNPRMs over standard PRMs. an attributeX. A is a descriptive attribute, which can be

o ) within the classX, or within another clasy¥ that is reach-
2. Probabilistic Relational Models able through a reference slot chain. For instance, in

A PRM can encodelass-levedependencies that can sub- the above examplevote .Score  could have the parent
Vote.ofPerson .Gender .

sequently be used to make inferences about a particular

instance of a class. For example, we might connect (thén many cases, the parent of a given attribute will take on
class of) teenage boys to (the class of) action movies, thea multisetof valuesS in V(X.7.A). For example, there
use that to infer that the teenage hiaghn will like the could be discover a dependency &erson s age on their
action movieSW Of course, we could do something like rating of movies in the PRMclassChildren genre. However,
that in a standard Belief Network, by first transforming this we cannot directly model this dependency since the user’s
relational information into a non-structured, proposition-ratings onChildren ’s movies is a multiset of values, say
alized form. However, by performing this transformation {4, 5, 3, 5, 4}. For such a numeric attribute, we may
we lose the rich relational structure and introduce statistichoose to use thiledian database aggregate operator to



reduce this multiset to a single value, in this cdsén this 3. Hierarchical Probabilistic Relational
paper we reducé to a single value using various types of  Models

aggregation functions.
) o ) 3.1. Motivation
The following definition summarizes the key elements of a

PRM: The collaborative filtering problem reveals two major limi-
tations of PRMS, which in turn motivate hPRMs. First, in

Definition 1 ((Getoor, 2002)) A probabilistic relational e above model/ote .Score can depend on attributes
model (PRM)II = (S, ds) for a relational schem& = of related objects, such &erson .Age, but it is not pos-

(X, A) is defined as follows. For each class € X and sible to haveVote .Score depend on itself in any way.
ea(;h descriptive attributel € A(X), we have a set of This is because the class-level PRM’s dependency struc-

parents PaY. A), and aconditional probability distribution ture must be a dir_ected acyclic graph (DAG) i_n order to
(CPD)that represents; (X.A| Pa(X.A)) guarantee that the instance-level ground Bayesian Network

forms a DAG (Friedman et al., 1999), and thus quality as
a well-formed probability distribution. Without the abil-
ity to have Vote .Score depend probabilistically on it-
self, we lose the ability to have a user’s rating of an item
PRMs provide an ideal framework for capturing the kindsdepend on his rating of other items or on other user’s rat-
of dependencies a recommender system needs to exploifigs on this movie, which is critical for a collaborative sys-
In general, model-based collaborative filtering algorithmstem. For example, we may wish to have the user’s ratings
try to capture high-level patterns in data that provide somef Comedies influence his rating ofAction movies,
amount of predictive accuracy. For example, in the Eachor his rating of a specifi€omedy movie influence his
Movie dataset, one may want to capture the pattern thatatings of otheiComedy movies; or Collaborative Filter-
teenage males tend to rate Action movies quite highly, anéhg: use persom\'s rating on a movie to predict person
subsequently use this dependency to make inferences abdsis rating. Second, in the above model, we are restricted
unknown votes. PRMs are able to model such patterns a@® one dependency graph fgbte .Score ; however, de-
class-level dependencies, which can subsequently be usgending on the type of object the rating is for, we may wish
at an instance level to make predictions on unknown rating$o have a specialized dependency graph to better model
—i.e., how will John vote oBW the dependencies. For example, the dependency graph

In order to use a PRM to make predictions about an unlcor anAction movie may have/ote .Score depend on

. . Vote .PersonOf.Gender , whereas @&Documentary
known rating, we must first learn the PRM from data. In

. . may depend oivote .PersonOf.Age
our experiments we use the PRM learning produce de-
scribed in (Friedman et al., 1999), which provides an al-
gorithm for both learning a legal structure for a PRM and
estimating the parameters associated with that PRM. Figfo address the problems described above, we introduce a
ure 1(a) shows a sample PRM structure learned from thelass hierarchy that applies to our dataset, and modify the

EachMovie dataset. PRM learning procedure to leverage this class hierarchy in

With the learned PRM in hand, we are left with the taskmaking pred'ictions. ]n general, the class hierarchy can ei-
of making an inference about a new, previously unseefher be provided as input, or can be learned directly from

Vote .score . To accomplish this task, we leverage the € data. 'We refer to the class hierarchy for claSss
ground Bayesian NetworkGetoor, 2002) induced by a H[X]. Flgure 2 §hows a sample class hlgrarchy for the
PRM. Briefly, a Bayesian Network is constructed from a E@chMovie domainH[X] is a DAG that defines an IS-A
database using the link structure of the associated PRMAI€rarchy using the subclass relatienover a finite set of
dependency graph, together with the parameters that arPclasse€[X] (Getoor, 2002). For a givend € C[X],
associated with that dependency graph. For example, fdf = ¢ indicates thatX. is adirect subclasof X, (and

the PRM in Figure 1(a), if we needed to infer the Score- iS adirect superclassf X.). The leaf nodes of/[X]
value for a new/ote object, we simply construct a ground repr.esent théoasic s_ubclassesf the hierarchy, d.enoted
Bayesian Network using the appropriate attributes retrieve§@Si4 H[X]). In this paper we assume all objects are
from the associateBerson andMovie objects; see Fig- members of a b§\S|c subclass, although this is not a fun-
ure 1(b). The PRM's class-level parameters for the varioudlamental restriction of hPRMs. Eaph object of c_Ié(sbas
attributes are then tied to the ground Bayesian Network'& Subclass indicatok .Class € basic(H[X]), which can
parameters, and standard Bayesian Network inference pr&!ther be specified manually or learned automatically by

cedures can be used on the resulting network (Getoof* SUPPlementary algorithm. By defining a hierarchy for a

2002). classX in a PRM, we also implicitly specialize the classes

2.1. Applying Standard PRMs to the EachMovie
Dataset

3.2. Overview
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that are reachable frod¥ via one or more reference slots.
For example, if we specialize tiovie class, we implic-
itly specialize the relateYote table into a hierarchy as
well. For example, in Figure 3, théote class is refined
into four leaf classes, each associated with one of the hie
archy elements ibasic(H[X]).

Definition 2 The components oftdierarchical Probabilis-
tic Relational Model (hPRM)1y are:

A class hierarchy [X] = (C[X], <)

A set of basic, leaf-node elemertissic(H[X]) C
H[X]

A subclass
basic(H[X])
For each subclass € C[X] and attribute A €
A(X) we have a specialized CPD far denoted
P(X¢.A|Pa®(X.A))

For every clas¥” reachable via a reference slot chain

from X we have a specialized CPD far denoted
P(Y©.A|Pa“(Y.A))

indicator attribute X.Class €

The algorithm for learning an hPRM is very similar to th
algorithm for learning a standard PRM. Instead of dealin
with the standard set of class&svhen evaluating structure

e

d

dynamically partitions the dataset into the subclasses de-
fined by H[X]. For inference, a similar technique is used,
as for any given instanceof a class,i's place in the hi-
erarchy is flagged througK.Class ; using this flag it is
possible to associate the proper CPD with a given class in-
stance.

3.3. Applying hPRMs to the EachMovie Dataset

Applying the hPRM framework to the EachMovie dataset
first requires a hierarchy to be defined, which is then used to
build an hPRM that is ultimately used to make predictions
for unknown votes.

In our experiments we automatically learn a hierarchy to
be used in the learning procedure. In the EachMovie
database, a movie can belong to zero or more of the

F_ollowing genre categories:{ action , animation
art _foreign , classic , comedy, drama, family
horror , romance , thriller }.

We letG( x ) denote the set of genres that the moyibe-
longs to. For exampleiZ( WhenHarryMetSally )
{comedy, drama, romance }. To build our hierarchy
dynamically, we first enumerate all combinations of gen-
res that appear in the EachMovie database, and denote this
setG. Of course, this set is significantly smaller than the
entire2¢ power-set of all possible subsets of thgenres.

We also store the number of movies associated with each
element ofj. We then proceed to greedily partitiGrbased

on this quantity, until reaching a predefined limitiopar-
titions. (Here, we use#l = 11.) We define one additional
partition that is used for movies that do not fall into one
of the predefined partitions. This partition, together with
the otherk partitions, are used to createka+ 1-element
hierarchy.

Given this hierarchy, the hPRM learning algorithm is ap-

lied to the EachMovie dataset, using the same algorithm
sed for learning standard PRMs (Section 2.1), with the ex-
ception that the learning procedure is modified as outlined

quality and estimating parameters, our hPRM algorithm
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above. Algorithm | Absolute Deviation
CR 1.257
4. Experimental Results BC 1127
BN 1.143
This section outlines our results in applying both stan- VSIM 2.113
dard PRMs and hPRMs to the recommendation task for the PRM 1.26
EachMovie dataset. We also compare our results to other
recommendation algorithms. Table 1.Absolute Deviation scoring results for EachMovie

dataset, using “Two Non-Active Votes” (Breese et al., 1998)
4.1. Experimental Design

One of the main challenges in designing an experiment t9,,ghly balanced properties, in terms of number of individ-
test the predictive accuracy of a PRM model is in aVO'd'uaIs, number of votes per person, etc. In our experiments
ing resubstitution error. If a PRM is learned on the entire\ye se 5-fold cross validation.

EachMovie database, and subsequently used to make pre-

dictions on objects frqm the same databasg,_ we are usinzg_z‘ Evaluation Criteria

the same data for testing as we used for training.

In this paper we adopt thé\bsolute Deviationmet-

Fic (Miller et al., 1997; Breese et al., 1998) to assess the
quality of our recommendation algorithms. We divide the
data into a training and test set using the method described
above, and build a PRM (resp., hPRM) using the training
thata. We then iterate over each user in the test set, allowing
each user to become thetive user For the active user we
We address this issue by applying a modified crossthen iterate over his set of votes,, allowing each vote
validation procedure to the dataset. While the traditionako become thactive vote each of the remaining votes are
method of dividing data into cross-validation folds cannotused in the PRM model. We let, ; denote the predicted

be applied directly to a relational database, we extend thgote for the active uset on moviej, andv, ; denote the
basic ideato a relational setting as follows. Refold cross ~ actual vote. The average absolute deviation, ovemthe

The standard learning paradigm typically splits the dat
into n subsets, and trains ¢n — 1) /n of the data, and test

of the remainingl /n subset. This simple approach does
not apply here, as it is not trivial to divide the data into “in-

dependent” compartments, as the movies and people a
intertwined

validation, we first create: new dataset§D;,...,D,,}  Vvote predictions made, is:

with the EachMovie data schema. We then iterate over

all the objects in théPerson table, and randomly allo- S, = 1 Z Pa; — Va (1)
m : ;

cate the individual to one ab; € {D;...D,}. Finally,

we add all thevote objects linked to that individual, and
all theMovie objects linked to thos& ote objects, taD;. The absolute deviation for the dataset as a whole is the av-
This procedure, when complete, createslatasets with erage of this score over all the users in the test set of users.

@ jeP,



Algorithm | Absolute Deviation all but one of the other four algorithms.
CR 0.994
BC 1.103 5. Conclusion
BN 1.066
VSIM 2.136 In this paper we outlined a framework for using PRMs to
hPRM 1.060 model the recommendation task. We first use a standard

PRM, then extend this representation to hPRMSs, to account
Table 2Absolute Deviation scoring results for EachMovie for hierarchical relationships that are present in the data.
dataset, using “All-But-One \Votes” (Breese et al., 1998) hPRMs improve the expressiveness and context-sensitivity
of standard PRMs, and also realize real-world performance
benefits.
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