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Abstract
This paper applies Probabilistic Relational Mod-
els (PRMs) to the Collaborative Filtering task,
focussing on the EachMovie data set. We first
learn a standard PRM, and show that its per-
formance is competitive with the best known
techniques. We then define hierarchical PRMs,
which extend standard PRMs by dynamically re-
fining classes into hierarchies. This represne-
tation is more expressive that standard PRMs,
and allows greater context sensitivity. Finally,
we show that hierarchical PRMs achieve state-
of-the-art results on this dataset.

1. Introduction

Personalized recommender systems, which recommend
specific products (e.g., books, movies) to individuals, have
become very prevalent — see the success of widely used
systems like Amazon.com’s book recommender and Ya-
hoo!’s LAUNCHcast music recommender system. The
challenge faced by these system is predicting what each
individual will want.

A purecontent-basedrecommender will base this on only
facts about the products themselves and about the individ-
ual (potential) purchaser. This enables us to express each
possible purchase as a simple vector of attributes, some
about the product and others about the person. If we also
know who previously liked what, we can view this as a
standard labelled data sample, and use standard machine
learning techniques (Mitchell, 1997) to learn a classifier,
which we can later use to determine whether a (novel) per-
son will like some (novel) item.

To make this concrete, consider a movie recommenda-
tion system that tries to determine whether a specified
person will like a specified movie — e.g., will John like
Star Wars (SW)? A content-based system could use a large
People ×Movies database, where each tuple lists facts
about a person, then facts about a movie, together with a

vote (e.g., a number between 1 and 5). We could use this
dataset to learn a classifier that predicts this vote, based
on facts about a person and movie — here about John
and aboutSW. There have been a number of such sys-
tems based on clustering (Breese et al., 1998) and Bayesian
Models (Chickering et al., 1997), among other technolo-
gies.

Notice this prediction does not consider other people (e.g.,
people “similar” to John) or other movies (similar toSW).

The other main type of recommender system,collabora-
tive filtering, addresses this deficiency, by using associa-
tions: If person P1 appears similar to person P2 (perhaps
based on their previous “liked movies”), and P2 liked X,
then perhaps P1 will like X as well. A pure collaboration-
only system would use only a matrix, whose〈i, j〉 element
is the vote that personi gives to moviej, which could be
unknown. The challenge, then, is using this matrix effec-
tively, to acquire the patterns that will help us predict future
votes. While there are a number of other techniques that
have proven effective here, such as clustering, PCA, and
K-nearest-neighbor (Ungar & Foster, 1998b; Ungar & Fos-
ter, 1998a), notice classical Machine Learning techniques
do not work here, as there is no simple way to map this
matrix into a simple fixed-size vector of attributes.

Of course, we would like to useboth content and col-
laborative information — i.e., include, as training data,
facts about the people, facts about the movies, and a set
of 〈P, M, V〉 records, which specifies that personP gave
movie M the vote ofV. The challenge is how to use all
of this information to predict howJohn will vote on SW.
Here, we want to use facts about John and aboutSW, and
also find and exploit collaborative properties, that deal with
people similar to John (in terms of liking similar movies),
and movies similar to SoM (in terms of being liked by sim-
ilar people).

Stepping back, the challenge here is learning a distribution
over a set ofdatabases, here descriptions ofsetsof people
andsetsof products, as well as their votes. This is quite



different from the classical machine learning challenge of
learning distributions over tuples (i.e., individual rows of
a single relational database), which are iid. That is, while
standard techniques seek relationshipswithin a row, (e.g.,
relating a.vote to a.gender and a.movieType ), our
collaborative system needs to reasonacrossrows — e.g.,
to decide that John (described in one row) is sufficiently
like George (described in another row) that we use facts
about George to make inferences about John. Another nat-
ural inter-row application is based onsetsof rows: e.g., we
might use the fact that thesetof people with some charac-
teristic (e.g.,Age=teenage , gender =male ) typically
like members of asetmovies with some other characteris-
tic (e.g.,Genre =action ).

Probabilistic Relational Models (PRMs) (Koller & Pfef-
fer, 1198) were designed to address exactly this type of
relational learning and inference problem. This paper
shows that PRMs can be successfully applied to this learn-
ing scenario, in the context of the Recommendation task.
We examine the effectiveness of standard PRMs applied
to the recommendation task on the EachMovie (Each-
Movie, ) dataset, then evaluate the effectiveness of an
extended version of PRMs called “hierarchical PRMS”
(hPRMs) (Getoor, 2002). Our empirical results show that
standard PRMs can achieve competitive results on the rec-
ommendation task, and then that hPRMs can outperform
standard PRMs here.

As PRMs can be viewed as a relational extension of Be-
lief Nets, Section 2 describes standard PRMs by showing
how they extend Bayesian Networks; in particular, we pro-
vide both inference and learning algorithms here. It then
presents our application of the PRM framework to the Rec-
ommendation task. Section 3 describes some limitations of
standard PRMs for this task; addressing these limitations
leads naturally to hierarchical PRMs. We introduce our
implementation of hierarchical PRMs, and show how an
hPRM can provide a more expressive model of the Each-
Movie dataset. Finally, Section 4 demonstrates the overall
effectiveness of PRMs as a recmmendation system, and in
particular the superiority of hPRMs over standard PRMs.

2. Probabilistic Relational Models

A PRM can encodeclass-leveldependencies that can sub-
sequently be used to make inferences about a particular
instance of a class. For example, we might connect (the
class of) teenage boys to (the class of) action movies, then
use that to infer that the teenage boyJohn will like the
action movieSW. Of course, we could do something like
that in a standard Belief Network, by first transforming this
relational information into a non-structured, proposition-
alized form. However, by performing this transformation
we lose the rich relational structure and introduce statisti-

cal skews (Getoor, 2002). A PRM can be learned directly
on a relational database, thereby retaining and leveraging
the rich structure contained therein.

We base our notation and conventions for PRMs on those
used in (Getoor, 2002). In general, a PRM is a pair
〈S, θS〉 defined over a Relational SchemaR, whereS is
the qualitative dependency structure of the PRM andθS is
the set of associated parameters. TheRelational Schema
R contains two fundamental elements: a set ofclasses,
X = {X1, . . . , Xn}, and a set ofreference slots{ρi} that
define the relationships between the classes.

Each classX ∈ X is composed of a set ofdescriptive
attributesA(X), which in turn take on a range of val-
uesV (X.A). For example, consider a schema describ-
ing a domain describing votes on movies. This schema
has three classes:Vote , Person , and Movie . For
the Vote class, the single descriptive attribute isScore
with values{0, . . . , 5}; for Person the two descriptive
attributes areAge and Gender , which take on values
{young , middle-aged , old } and{Male , Female }
respectively; and forMovie the single descriptive attribute
is Rating which takes on values{G, PG, M, R}. Fur-
thermore, a class can be associated with a set ofrefer-
ence slots, R(X) = {ρ1, . . . , ρk}. A particular refer-
ence slot,X.ρ, describes how objects of classX are re-
lated to objects in other classes in the relational schema.
Continuing our example, theVote class would be asso-
ciated with two reference slots:Vote .ofPerson , which
describes how to linkVote objects to a specificPerson ;
andVote .ofMovie , which describes how to linkVote
objects to a specificMovie object. A sequence of one or
more reference slots can composed to form areference slot
chain, τ = ρ1 ◦ · · · ◦ ρ`, and attributes of related objects
can be denoted by using the shorthandX.τ.A, whereA is
a descriptive attribute of the related class. For example,
Vote .ofPerson.Gender refers to the gender attribute
of thePerson associated with a givenVote .

The dependency structure for a PRM defines the par-
ents Pa(X.A) for each attributeX.A. The parent for
an attributeX.A is a descriptive attribute, which can be
within the classX, or within another classY that is reach-
able through a reference slot chain. For instance, in
the above example,Vote .Score could have the parent
Vote.ofPerson .Gender .

In many cases, the parent of a given attribute will take on
a multisetof valuesS in V (X.τ.A). For example, there
could be discover a dependency of aPerson ’s age on their
rating of movies in the PRMclassChildren genre. However,
we cannot directly model this dependency since the user’s
ratings onChildren ’s movies is a multiset of values, say
{4, 5, 3, 5, 4}. For such a numeric attribute, we may
choose to use theMedian database aggregate operator to



reduce this multiset to a single value, in this case4. In this
paper we reduceS to a single value using various types of
aggregation functions.

The following definition summarizes the key elements of a
PRM:

Definition 1 ((Getoor, 2002)) A probabilistic relational
model (PRM)Π = 〈S, θS〉 for a relational schemaR =
〈X ,A〉 is defined as follows. For each classX ∈ X and
each descriptive attributeA ∈ A(X), we have a set of
parents Pa(X.A), and aconditional probability distribution
(CPD) that representsPΠ(X.A|Pa(X.A)),

2.1. Applying Standard PRMs to the EachMovie
Dataset

PRMs provide an ideal framework for capturing the kinds
of dependencies a recommender system needs to exploit.
In general, model-based collaborative filtering algorithms
try to capture high-level patterns in data that provide some
amount of predictive accuracy. For example, in the Each-
Movie dataset, one may want to capture the pattern that
teenage males tend to rate Action movies quite highly, and
subsequently use this dependency to make inferences about
unknown votes. PRMs are able to model such patterns as
class-level dependencies, which can subsequently be used
at an instance level to make predictions on unknown ratings
— i.e., how will John vote onSW.

In order to use a PRM to make predictions about an un-
known rating, we must first learn the PRM from data. In
our experiments we use the PRM learning produce de-
scribed in (Friedman et al., 1999), which provides an al-
gorithm for both learning a legal structure for a PRM and
estimating the parameters associated with that PRM. Fig-
ure 1(a) shows a sample PRM structure learned from the
EachMovie dataset.

With the learned PRM in hand, we are left with the task
of making an inference about a new, previously unseen
Vote .score . To accomplish this task, we leverage the
ground Bayesian Network(Getoor, 2002) induced by a
PRM. Briefly, a Bayesian Network is constructed from a
database using the link structure of the associated PRM’s
dependency graph, together with the parameters that are
associated with that dependency graph. For example, for
the PRM in Figure 1(a), if we needed to infer the Score
value for a newVote object, we simply construct a ground
Bayesian Network using the appropriate attributes retrieved
from the associatedPerson andMovie objects; see Fig-
ure 1(b). The PRM’s class-level parameters for the various
attributes are then tied to the ground Bayesian Network’s
parameters, and standard Bayesian Network inference pro-
cedures can be used on the resulting network (Getoor,
2002).

3. Hierarchical Probabilistic Relational
Models

3.1. Motivation

The collaborative filtering problem reveals two major limi-
tations of PRMS, which in turn motivate hPRMs. First, in
the above model,Vote .Score can depend on attributes
of related objects, such asPerson .Age, but it is not pos-
sible to haveVote .Score depend on itself in any way.
This is because the class-level PRM’s dependency struc-
ture must be a directed acyclic graph (DAG) in order to
guarantee that the instance-level ground Bayesian Network
forms a DAG (Friedman et al., 1999), and thus quality as
a well-formed probability distribution. Without the abil-
ity to haveVote .Score depend probabilistically on it-
self, we lose the ability to have a user’s rating of an item
depend on his rating of other items or on other user’s rat-
ings on this movie, which is critical for a collaborative sys-
tem. For example, we may wish to have the user’s ratings
of Comedies influence his rating ofAction movies,
or his rating of a specificComedy movie influence his
ratings of otherComedy movies; or Collaborative Filter-
ing: use personA’s rating on a movie to predict person
B’s rating. Second, in the above model, we are restricted
to one dependency graph forVote .Score ; however, de-
pending on the type of object the rating is for, we may wish
to have a specialized dependency graph to better model
the dependencies. For example, the dependency graph
for anAction movie may haveVote .Score depend on
Vote .PersonOf.Gender , whereas aDocumentary
may depend onVote .PersonOf.Age .

3.2. Overview

To address the problems described above, we introduce a
class hierarchy that applies to our dataset, and modify the
PRM learning procedure to leverage this class hierarchy in
making predictions. In general, the class hierarchy can ei-
ther be provided as input, or can be learned directly from
the data. We refer to the class hierarchy for classX as
H[X]. Figure 2 shows a sample class hierarchy for the
EachMovie domain.H[X] is a DAG that defines an IS-A
hierarchy using the subclass relation≺ over a finite set of
subclassesC[X] (Getoor, 2002). For a givenc, d ∈ C[X],
c ≺ d indicates thatXc is a direct subclassof Xd (and
Xd is adirect superclassof Xc). The leaf nodes ofH[X]
represent thebasic subclassesof the hierarchy, denoted
basic(H[X] ). In this paper we assume all objects are
members of a basic subclass, although this is not a fun-
damental restriction of hPRMs. Each object of classX has
a subclass indicatorX.Class ∈ basic(H[X]), which can
either be specified manually or learned automatically by
a supplementary algorithm. By defining a hierarchy for a
classX in a PRM, we also implicitly specialize the classes



Figure 1.(a) Standard PRM learned on EachMovie dataset(b) Ground Bayesian Network for oneVote object

Figure 2.Sample class hierarchy

that are reachable fromX via one or more reference slots.
For example, if we specialize theMovie class, we implic-
itly specialize the relatedVote table into a hierarchy as
well. For example, in Figure 3, theVote class is refined
into four leaf classes, each associated with one of the hier-
archy elements inbasic(H[X]).

Definition 2 The components of aHierarchical Probabilis-
tic Relational Model (hPRM)ΠH are:

• A class hierarchyH[X] = (C[X],≺)

• A set of basic, leaf-node elementsbasic(H[X]) ⊂
H[X]

• A subclass indicator attribute X.Class ∈
basic(H[X])

• For each subclassc ∈ C[X] and attribute A ∈
A(X) we have a specialized CPD forc denoted
P (Xc.A|Pac(X.A))

• For every classY reachable via a reference slot chain
from X we have a specialized CPD forc denoted
P (Y c.A|Pac(Y.A))

The algorithm for learning an hPRM is very similar to the
algorithm for learning a standard PRM. Instead of dealing
with the standard set of classesX when evaluating structure
quality and estimating parameters, our hPRM algorithm

dynamically partitions the dataset into the subclasses de-
fined byH[X]. For inference, a similar technique is used,
as for any given instancei of a class,i’s place in the hi-
erarchy is flagged throughX.Class ; using this flag it is
possible to associate the proper CPD with a given class in-
stance.

3.3. Applying hPRMs to the EachMovie Dataset

Applying the hPRM framework to the EachMovie dataset
first requires a hierarchy to be defined, which is then used to
build an hPRM that is ultimately used to make predictions
for unknown votes.

In our experiments we automatically learn a hierarchy to
be used in the learning procedure. In the EachMovie
database, a movie can belong to zero or more of the
following genre categories:{ action , animation ,
art foreign , classic , comedy , drama , family ,
horror , romance , thriller }.
We letG(χ ) denote the set of genres that the movieχ be-
longs to. For example,G( WhenHarryMetSally ) =
{comedy , drama , romance }. To build our hierarchy
dynamically, we first enumerate all combinations of gen-
res that appear in the EachMovie database, and denote this
setG. Of course, this set is significantly smaller than the
entire2` power-set of all possible subsets of the` genres.
We also store the number of movies associated with each
element ofG. We then proceed to greedily partitionG based
on this quantity, until reaching a predefined limit ofk par-
titions. (Here, we usedk = 11.) We define one additional
partition that is used for movies that do not fall into one
of the predefined partitions. This partition, together with
the otherk partitions, are used to create ak + 1-element
hierarchy.

Given this hierarchy, the hPRM learning algorithm is ap-
plied to the EachMovie dataset, using the same algorithm
used for learning standard PRMs (Section 2.1), with the ex-
ception that the learning procedure is modified as outlined



Figure 3.Example hPrm for EachMovie dataset

above.

4. Experimental Results

This section outlines our results in applying both stan-
dard PRMs and hPRMs to the recommendation task for the
EachMovie dataset. We also compare our results to other
recommendation algorithms.

4.1. Experimental Design

One of the main challenges in designing an experiment to
test the predictive accuracy of a PRM model is in avoid-
ing resubstitution error. If a PRM is learned on the entire
EachMovie database, and subsequently used to make pre-
dictions on objects from the same database, we are using
the same data for testing as we used for training.

The standard learning paradigm typically splits the data
into n subsets, and trains on(n− 1)/n of the data, and test
of the remaining1/n subset. This simple approach does
not apply here, as it is not trivial to divide the data into “in-
dependent” compartments, as the movies and people are
intertwined

We address this issue by applying a modified cross-
validation procedure to the dataset. While the traditional
method of dividing data into cross-validation folds cannot
be applied directly to a relational database, we extend the
basic idea to a relational setting as follows. Forn-fold cross
validation, we first createn new datasets{D1, . . . , Dn}
with the EachMovie data schema. We then iterate over
all the objects in thePerson table, and randomly allo-
cate the individual to one ofDi ∈ {D1 . . . Dn}. Finally,
we add all theVote objects linked to that individual, and
all theMovie objects linked to thoseV ote objects, toDi.
This procedure, when complete, createsn datasets with

Algorithm Absolute Deviation
CR 1.257
BC 1.127
BN 1.143

VSIM 2.113
PRM 1.26

Table 1.Absolute Deviation scoring results for EachMovie
dataset, using “Two Non-Active Votes” (Breese et al., 1998)

roughly balanced properties, in terms of number of individ-
uals, number of votes per person, etc. In our experiments
we use 5-fold cross validation.

4.2. Evaluation Criteria

In this paper we adopt theAbsolute Deviationmet-
ric (Miller et al., 1997; Breese et al., 1998) to assess the
quality of our recommendation algorithms. We divide the
data into a training and test set using the method described
above, and build a PRM (resp., hPRM) using the training
data. We then iterate over each user in the test set, allowing
each user to become theactive user. For the active user we
then iterate over his set of votes,Pa, allowing each vote
to become theactive vote; each of the remaining votes are
used in the PRM model. We letpa,j denote the predicted
vote for the active usera on moviej, andva,j denote the
actual vote. The average absolute deviation, over thema

vote predictions made, is:

Sa =
1

ma

∑

j∈Pa

|pa,j − va,j | (1)

The absolute deviation for the dataset as a whole is the av-
erage of this score over all the users in the test set of users.



Algorithm Absolute Deviation
CR 0.994
BC 1.103
BN 1.066

VSIM 2.136
hPRM 1.060

Table 2.Absolute Deviation scoring results for EachMovie
dataset, using “All-But-One Votes” (Breese et al., 1998)

4.3. Standard PRMs

In our experiments, we were able to achieve an abso-
lute deviation error of 1.26. For comparison, Table 1
includes the results from (Breese et al., 1998): corre-
lation (CR), Bayesian Clustering (BC), a Bayesian Net-
work model (BN), and Vector Similarity (VSIM). We have
elected to include the results from (Breese et al., 1998)
where algorithms were given two votes out of the non-
active votes to use in making the prediction, since the stan-
dard PRM model does not have any direct dependency on
otherVotes .

In this experiment, standard PRMs are able to outper-
form the VSIM algorithm, and is competitive with the
correlation-based algorithm. However, both Bayesian
Clustering and the Bayesian Network model have superior
results in this context.

4.4. Hierarchical PRMs

The first part of the experiment for hPRMs was con-
structing a class hierarchy from the EachMovie
dataset. In our experiment we set the size of the
hierarchy to be 12. Our greedy partitioning algo-
rithm arrived at the following basic classes:{ drama ,
comedy , classic , action , art-foreignDrama ,
thriller , romance-comedy , none , family ,
horror , actionThriller , other }.
By applying hPRMs to the EachMovie dataset, we are able
to reduce the absolute deviation error from 1.26 (with stan-
dard PRMs) to 1.06. Again, for comparison Table 2 in-
cludes results from (Breese et al., 1998); however, since
hPRMs are able to leverage other votes the user has made
in making predictions, we use theAll-But-Oneresults pre-
sented in (Breese et al., 1998), where the prediction algo-
rithm is able to use all of the active user’s votes (except for
the current active vote) in making a prediction. Compar-
ing Table 1 to Table 2, We see that including the additional
voting information results in a substantial reduction in error
rate for most of the other four algorithms.

hPRMs not only provide a significant performance advan-
tage over standard PRMs, but are also able to outperform

all but one of the other four algorithms.

5. Conclusion

In this paper we outlined a framework for using PRMs to
model the recommendation task. We first use a standard
PRM, then extend this representation to hPRMs, to account
for hierarchical relationships that are present in the data.
hPRMs improve the expressiveness and context-sensitivity
of standard PRMs, and also realize real-world performance
benefits.
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