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Abstract

This paper presents a general methodology
for learning complex motions that, despite
the fact have non-linear correlations, are cyc-
lical and consequently have a defined pattern
of behaviour. Using conventional algorithms
to extract features from images, a Bayesian
classifier is applied to cluster and classify
those features. Clusters are then associated
in different frames and structure learning al-
gorithms for Bayesian networks are used to
recover the structure of the motion. Applica-
tions of these techniques can be from human
motion to multi-robots behaviour analysis.

1. Introduction

A key challenge in robotics is how to learn a represent-
ation of an unstructured world given only a set of se-
quential measurements. As the robot moves, an object
is seen from different perspectives and parts may be
occluded by other objects. In addition, sensor meas-
urements may be erroneous, so requiring a represent-
ation able to handle uncertainty. A possible approach
to these problems is to employ a state estimator such
as a Kalman filter (KF) or Extended Kalman Filter
(EKF). These estimators describe the process of state
transition and observation, and generate an estimate
that minimises estimated mean square error. However,
most applications of KFs consider only point targets or
objects represented by a group of points with the same
dynamic model. In this paper, we are interested in
tracking the motion of complex structures, with correl-
ations between parts of the same structure which may,
nevertheless, execute separate but correlated motion.
The techniques developed are applicable to problems
such as tracking human motion or the coordinated mo-
tions of a set of robots.

The human tracking problem has been widely studied,
especially in the computer vision community. It can be
formulated in a probabilistic manner with two different
approaches, one based on point features and another
based on intensity. Feature-based approaches have the
advantage of being able to employ many different al-
gorithms for feature extraction and are generally more
amenable to real-time implementation. However, they
have additional problems in associating features from
different image frames. In (Song et al., 2003) a prob-
abilistic framework is used to identify joints in the hu-
man body. Triangulated graphs are used to represent
the structure of the body which can be learnt with an
EM-like algorithm. Labelling and classification of fea-
tures is achieved through maximising the likelihood of
the data given the decomposition represented by the
triangulated graphs. In our approach, rather than la-
belling each feature from an existent structural model,
we first cluster features using the EM algorithm and
then learn the structural model by finding correlations
between clusters. Features are extracted from a stream
of frames with the KLT algorithm (Tomasi & Kanade,
1991) and contain positions and velocities. Then, EM
is used to cluster these features under the assumption
that positions and velocities are independent given the
class. In other words, a Naive Bayes classifier (Fried-
man et al., 1997), represented as a Bayesian network,
is learnt with the class variable being hidden. Once
the parameters are learnt, the classifier can then be
applied in features in different frames, making the as-
sociation task straightforward.

With features labelled in every frame, it is then pos-
sible to learn dependencies among clusters, so building
a Bayesian network model of the motion. In complex
structures, dependencies can be non-linear, i.e. vari-
ables may be function of a non-linear combination of
its descendants. Unfortunately, learning a Bayesian
network with continuous nodes and non-linear rela-
tions between variables, even assuming these to be
Gaussian distributed, is a cumbersome task where
Monte Carlo algorithms must generally be applied



(Doucet et al., 2001). It is shown how to tackle this
problem by representing non-linear dependencies as a
set of net structures, with linear Gaussians distribu-
tions. For each frame, a network structure is learnt
along with its correlations with the previous frame. As
motions are usually periodic, the learning process can
stop when the structures have the same dependencies
as those previously learnt.

This paper is organised as follows: in Section 2
we present formal definitions and a brief review of
Bayesian networks. Section 3 shows how to cluster
features in an unsupervised fashion using the EM al-
gorithm. Section 4 presents the structure and para-
meters learning algorithms along with some experi-
mental results. We conclude in Section 5 and present
some ideas for future work.

2. Preliminaries

This section briefly reviews Bayesian networks and in-
troduces necessary notation. Capital letters (X,Y, Z)
are used to denote names of random variables, lower-
case letters (z,y, z) to denote specific values taken by
those variables, boldface capital letters (X,Y,Z) to
denote sets of random variables and boldface lowercase
variables (x,y,z) to denote values taken by those sets.
A joint probability over a set X = { X1, Xo,..., X,,} is
denote by P(X).

A Bayesian network is defined as a tuple B = (G, 9)
where G is a directed acyclic graph whose vertices
represent random variables and © are the parameters
that define the distributions. The main assumption
encoded by a BN is that each variable X; is condition-
ally independent of its non-parents given its parents.
The joint probability is defined by:

P(X) = [[P(X./Pa(x)),

where Pa(X;) represent the parents of the variable Xj;.

In this paper, we use Bayesian networks for two dif-
ferent tasks: 1) unsupervised classification of features
and 2) learning and representation of the structure of
the motion. Except for the class variable of the clas-
sifier, all other variables are assumed to have a nor-
mal (Gaussian) distribution with parameters y and o2,
with the distribution denoted by N (X, 02). Then,
assuming linear relation between Gaussians and an or-
der X1,..., X, of variables, it is possible to define lin-
ear conditional Gaussian distributions as:

1—1
P(Xi|X1,....Xi1) =N Xi§5i,0+25i,jxj70i2 )

j=1

where ;0 and 3; ; describe the linear combination of
the variable X; given its parents Xi,..., X;_1. When
Bi; # 0, there is an edge from X; to X; forming a
graph. Thus, this definition brings linear Gaussian
distributions into Bayesian networks. If 38; ; = 0 for
every ¢ and j, the variable X; is a root node with a
univariate Gaussian distribution. The joint probab-
ility distribution with all variables being Gaussian is
then NV (X; u, 3), defined as:

P (X) = Gy &P (—% (x—m)" 271 (x - u)),

where p is a vector of size n and ¥ is a symmetric
positive-definite matrix of size n x n.

Making inferences in a Bayesian network is the task of
computing posterior probabilities given some observed
values. That is, given a set of query variables X, and a
set of evidence X, = x., we compute P (X,|X. = x.)
which, with continuous distributions, is proportional
to the marginalisation of the joint probability over
variables X, where X, = X\ (X, UX,):

P (x4|x) x /HP(:CAPa(xi)) dx.

Algorithms for inference in these models are discussed
in (Lauritzen, 1992; Murphy, 1998; Lerner, 2002).
These algorithms describe Gaussian distributions us-
ing canonical characteristics and perform message-
propagation in a juction tree (Huang & Darwiche,
1996) to calculate marginal distributions. A limitation
exists when there are deterministic relations between
variables since the covariance matrix ¥ is not invert-
ible, and the canonical form needs to invert the cov-
ariance matrix to calculate one of its terms. To over-
come this problem, it is possible to use conditional
forms (Lauritzen & Jensen, 1999) which are also more
numerically stable than canonical forms when the net
has both discrete and continuous variables. A deeper
discussion of inference with linear Gaussian distribu-
tions is beyond the scope of this paper.

In a frequentist approach, the parameters of lin-
ear Gaussian models can be learnt using Maximum-
Likelihood techniques. See (Murphy, 2002; Lauritzen,
1996) for details.

3. Unsupervised Feature Classification

We start our discussion about learning motion struc-
tures by analysing the problem of feature association.
Given a set of features extracted by an algorithm like
KLT, the first step towards structure reconstruction is
to associate features from different frames. In a com-
plex environment with changes in luminosity, occlu-
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Figure 1. The Naive Bayes classifier to cluster features.

sions, rotations and translations of objects, features
can appear and disappear from frame to frame. If
there is no predefined dynamic model describing the
behaviour of such features, the problem of predicting
the position of a particular occluded feature becomes
very complex. In the same way, association of that
feature fails due to lack of observability. In this work,
instead of trying to track individual features fixed in an
object, features are clustered using probabilistic meth-
ods and only the created clusters are tracked. We ad-
vocate that this method is more robust in dealing with
occlusions and inaccurate information from the feature
extraction algorithm than methods that try associate
features individually.

To classify and cluster features we use the well-known
Naive Bayes classifier. The Naive Bayes classifier
(Friedman et al., 1997) assumes that the attributes
are conditionally independent given the class. This
assumption is quite reasonable in our problem whose
attributes are positions and velocities for the features
extracted. Note that at this point, there is no asso-
ciation between features in consecutive frames so that
velocities and positions are independent. In the Naive
Bayes model, the probability of a specific label ¢ given
the observed attributes is given by:

P(cl,y,&,9) = P (x|c) P (yle) P (ilc) P (g]c) P (c).

A feature will belong to the label that maximises the
posterior probability. Figure 1 shows the Bayesian net-
work representing the Naive Bayes classifier used to
cluster features.

An alternative way to classify features is through a
dynamic Naive Bayes classifier. In this case it is as-
sumed that the class describes a stochastic process
{C(t),t € T} where t is a time slice - or a frame -
in the stream. If assumed that this process is sta-
tionary, the dynamic classifier can be represented as
a dynamic Bayesian network with transitions given by
P(C@)|C(t—1)).

In the unsupervised approach, a Naive Bayes classifier
can be learnt using maximum-likelihood techniques

Figure 2. An example of a sequence of frames from a person
walking from the right to the left side of the scene.

such as the EM algorithm (Dempster & Rubin, 1977;
Neal & Hinton, 1993). The main idea of the EM al-
gorithm is to apply the Jensen’s inequality (Cover &
Thomas, 1991) to simplify the computation of the log-
likelihood. At each interaction, the EM computes the
expected value of the hidden variables given the cur-
rent data and parameters (E-Step). Then, it finds new
values for the parameters that maximise the likelihood
(M-Step). The only parameter that has to be defined
a priori is the number of categories that the class vari-
able can have. This value is equal or larger than the
number of clusters identified with EM - it is larger if
EM finds no feature for a particular cluster. 10 cat-
egories are used in our experiments.

Using EM the classifier can be trained with the fea-
tures extracted by the KLT algorithm whose attributes
are positions and velocities for all features detected, re-
gardless of which frame they come from. To do so, it
is necessary to remove possible translations from the
position variables. For example, suppose that the mo-
tion recorded in a video is of a person walking from the
left to the right side of the screen, with the camera re-
maining fixed during the whole video acquisition. Fig-
ure 2 shows five frames of this example grabbed with
a camera of 320 x 240 pixel resolution. As the person
walks, the = position of the detected features changes
accompanying the body motion. In order to make the
Gaussian assumption reasonable, the translation is re-
moved by subtracting the mean of the x positions of
all features detected in a particular frame from the z
position of each feature in that frame. For each feature
i detected in the frame ¢ its corrected x;(t) position is
given by:

zi(t) = zi(t) — pa(t),

where p,, (t) is the mean of the = position of all features
detected in frame ¢.

The data set for the Naive Bayes classifier is thus a set
D = {di1,dip,...,di,n,,...,dr1,dre2, ..., drNg )y



Figure 3. Features clustered using the learnt Naive Bayes.
Features represented with the same symbol belong to the
same cluster.

where T is the number of frames in the stream and N;
is the number of features detected in the frame 7 with
each sample d; ; € R* and d;; = {z,y, 4,7} " .

With all parameters determined, features are clustered
by making inferences on the Bayes net of Figure
1. Resulting clustered features are classified with a
unique label. Figure 3 shows the result of this pro-
cess on the sequence of Figure 2. Note that features
with velocities close to nil are represented with light
gray unfilled squares. They move to the foot in contact
with the ground since velocities in this region are zero.
Another interesting cluster is the one represented by
dark gray unfilled squares. Features of this cluster are
associated with the movement of the head and remain
accompanying it during the whole sequence.

By making inferences with evidence from features de-
tected across frames, it is possible to associate clusters
in the whole stream. The samples in the data set
are then modified to incorporate one more dimen-
sion representing their labels. Thus, d;; € R and

d;; ={z,y, 2,9, ¢} "where c is the label or cluster that
the feature belongs.

4. Learning the Motion Structure

With a group of samples for each cluster, in each frame
(time slice) the motion structure can be learnt using
structure learning algorithms for Bayesian networks.
However, complex motions may have non-linear de-
pendencies, and a linear Gaussian network may not be
directly applicable. Our strategy to tackle this prob-
lem is to approximate non-linear relations to linear
relations, learning a different structure for each time
slice, until structures start repeating. Our assumption
is that, even in complex motions like a human body
walking, there exists a pattern that is repeated over
some (unknown) time interval. The idea is to try to
learn this pattern and then construct a Bayesian net-
work to describe it. As conditional probabilities and

dependencies change with time, a dynamic Bayesian
network, as it is normally defined, would not be appro-
priate to represent the model. Nonetheless, it is pos-
sible to consider the whole motion pattern learnt with
a Bayesian network as the structure repeated in a dy-
namic Bayesian network. Thus, with a slight change in
the definition of DBNs, the problem can be described
in the form of DBN structure learning.

Given the data set with labelled samples, the al-
gorithm works as follows. Suppose that in the frame
t there are n clusters, C},...CP, identified with at
least m features per cluster, using the procedure de-
scribed in Section 3. In the next frame t + 1, the
same n clusters are identified, C},,,...,Cy,, with m
samples per cluster'. The first step of the algorithm
is to learn the structure represented by the clusters
in the first frame. Structure learning in a Bayes net
involves a search over the set of all possible directed
acyclic graphs, scored by a determined scoring func-
tion. As the number of possible graphs grows super-
exponentially with the number of variables, a heuristic
strategy must be used. In this work, the scoring func-
tion used is the well known Bayesian Information Cri-
terion (BIC) (Heckerman, 1996) which is equivalent
to the Minimum Description Length (MDL) approach
(Suzuki, 1998). Essentially the BIC has one term that
is exactly the likelihood, measuring how well the model
predicts the data, and one term to penalise the com-
plexity of the model:

BIC(G) =) > logP (Xi|Pa (X,) .6, D”) _”gi log N,

K2 n

where np; is the number of parameters in the distribu-
tion of X; and N is the number of samples. A greedy
search is used to find the graph that maximises the
scoring function. The search starts with a fully con-
nected graph and operations of adding, removing and
reverting edges are performed until a local maximum
is obtained.

Having learnt the structure for frame ¢, the same pro-
cedure is repeated for frame ¢ + 1, and another struc-
ture is learnt. With two consecutive structures, cor-
relations between clusters in different frames are dis-
covered. This can be done using the same greedy
search heuristic, under the constraint that clusters in
frame ¢ + 1 cannot be parents of clusters in frame
t. This ensures a Markov assumption where vari-
ables are independent of the past given the present.

In the case that more than m features were identified,
some of them can be excluded by selecting the m features
that have higher probability of belonging to that particular
cluster.



Algorithm 1 A pseudo-code for Motion Structure Al-
gorithm.
Inputs: A set of labelled features D;
KL threshold, k.

Output: Learnt BN encoding the motion pattern, 5.
While stop > k do

B; «greedy search(D,t)

B;11 «greedy search(D,t+ 1)

Bt —greedy search(D,t,t+ 1) //inter dep.

B~ B + <Bt, BtJrl, B€+l>

t—t+1

stop < K L(By; By,)
End

Figure 4 shows an example of a learnt structure for
two consecutive frames. Note that in contrast to a
Dynamic Bayesian Network where the net has the
same structure for every time step ¢t with ¢t # t,
the network structure of Figure 4 differs in the two
consecutive frames. The algorithm continues learn-
ing structures and inter-frame dependencies until the
new learnt structures start being similar to those pre-
viously learnt, indicating that the cycle has finished.
Similar in this case is understood in terms of relat-
ive entropy or Kullback-Leibler divergence (Cover &
Thomas, 1991). Thus, the learning process stops when
a defined threshold of KL divergence is achieved. A
sketch of the algorithm is shown in Algorithm 1.

Results from the complete algorithm are presented in
Figure 5 for the first five frames of a motion pat-
tern. The motion pattern has 19 inter-connected struc-
tures representing the whole cycle of a typical human
gait. Edges represented with solid lines indicate con-
ditional dependencies between clusters in the same
frame, while edges represented with dash lines show
the inter-frame correlation. From this figure it is pos-
sible to note that clusters associated with the trunk,
such as C'4, C'5 and C6, are normally the parents of
other clusters in inter-frame correlations. They rep-
resent, the centre of the body where the movement of
other parts are based on and therefore, tend to have
more correlations. Besides, the trunk has a movement
closer to linear than other parts such as the limbs.
Thus, it is expected that they have similar inter-frame
correlations between themselves.

5. Conclusions and Future Work

The algorithm described in this paper provides a gen-
eral methodology to learn complex motion structures
that have specific patterns. With a set of features
extracted from a video, clusters are identified and
tracked. These represent characteristics of the object
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Figure 4. Structure learnt from samples of 10 clusters into
2 consecutive frames.

being tracked whose dependencies can be analysed and
learnt. Once a sequence of structures and their cor-
relations are obtained, the built network can be used
to predict positions and velocities or the general be-
haviour of the model. Experiments were undertaken
using a video of a walking human, however the tech-
niques presented here can be used for more general
proposes such as recovering the behaviour of a group
of robots whose actions have some coordination. The
learning algorithm can be implemented online and can
incorporate techniques to select samples - similar to
that presented in Section 3.

One of the drawbacks of the proposed algorithm is
that it is necessary to store the whole BN encoding
the pattern. If the cycle of the motion is long, then
the network will grow, possibly becoming intractable
for exact inference algorithms. Alternatives to tackle
this problem are non-linear regression methods that,
by learning non-linear correlations, can incorporate se-
quences of motions in one structure.
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