A Random Forest Approach to Relational Learning

Anneleen Van Assche
Celine Vens
Hendrik Blockeel

ANNELEEN.VANASSCHEQCS.KULEUVEN.AC.BE
CELINE.VENS@QCS.KULEUVEN.AC.BE
HENDRIK.BLOCKEEL@QCS.KULEUVEN.AC.BE

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

SaSo Dzeroski

SASO.DZEROSKIQIJS.SI

Department of Knowledge Technologies, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract

Random forest induction is an ensemble
method that uses a random subset of features
to build each node in a decision tree. The
method has been shown to work well when
many features are available. This certainly
is the case in relational learning, especially
when aggregate functions, combined with se-
lection conditions on the set to be aggregated,
are included in the feature space. This paper
presents an initial exploration of the use of
random forests in a relational context. We
experimentally validated our approach both
in a business domain, and on a structurally
complex data set.

1. Introduction

The motivation for this paper is based on two obser-
vations. First, random forest induction, an ensemble
method that builds decision trees using only a ran-
dom subset of the feature set at each node, has been
shown to work well when many features are available
(Breiman, 2001). Because relational learning typic-
ally deals with large feature sets, it seems worthwhile
to investigate whether random forests perform well in
this context. Second, using random forests allows an
extension of the feature space by including aggregate
functions, possibly combined with selection conditions.
So far, this combining has been considered a difficult
task (Blockeel & Bruynooghe, 2003), because the fea-
ture set grows quickly, and because the search space is
less well-behaved due to the non-monotonicity prob-
lem (Knobbe et al., 2002).

The paper is organized as follows. In Section 2, we
discuss random forests. Section 3 illustrates the prob-
lem of combining aggregates with selection conditions

in relational learning. Our method, which is a random
forest approach to relational learning, is presented in
Section 4. In Section 5, we experimentally evaluate
our method in both a structurally complex domain,
and a (highly non-determinate) business domain. Fi-
nally, we formulate conclusions and some ideas for fu-
ture research in Section 6.

2. Random Forests

Random forest induction (Breiman, 2001) is an en-
semble method. An ensemble learning algorithm con-
structs a set of classifiers, and then classifies new data
points by taking a vote of the predictions of each clas-
sifier. A necessary and sufficient condition for an en-
semble of classifiers to be more accurate than any of its
individual members, is that the classifiers are accurate
and diverse (Hansen & Salamon, 1990). An accurate
classifier does better than random guessing on new ex-
amples. Two classifiers are diverse if they make differ-
ent errors on new data points. There are different ways
for constructing ensembles: bagging (Breiman, 1996)
and boosting (Freund & Schapire, 1996) for instance,
introduce diversity by manipulating the training set.
Several other approaches attempt to increase variabil-
ity by manipulating the input features or the output
targets, or by introducing randomness in the learning
algorithm (Dietterich, 2000). Random forests try to
increase diversity among the classifiers by resampling
the data, and by changing the feature sets over the
different (tree) model induction processes. The exact
procedure is as follows:

e for i =1 to &k do:

— build dataset D; by sampling with replace-
ment from dataset D

— learn a decision tree T; from D; using ran-
domly restricted feature sets

e make predictions according to the majority vote
of the set of k trees

The part of the algorithm where random forests dif-
fer from the normal bagging procedure is emphasized.
When inducing a decision tree, the best feature is se-
lected from a fixed set of features F' in each node.
In bagging, this set of features does not vary over
the different runs of the induction procedure. In ran-
dom forests however, a different random subset of size
f(|F) is considered in each node (e.g. f(z) = 0.1z
or f(z) = v/, ...), and the best feature from this
subset is chosen. This obviously increases variability.
Assume for instance that f(z) = /z, and that two
tests 1 and to are both good features for the root of
the tree, say t; is the best and ¢, is the second best
feature. With a regular bagging approach ¢; is con-
sistently selected for the root, whereas with random
forests both ¢t; and t5 will occur in the root nodes of
the different trees respectively with frequency 1/+/|F|
and 1/1/|F|—1/|F|. So t» will occur only with slightly
lower frequency than t;.

Random forests have some interesting properties
(Breiman, 2001). They are more efficient since only
a sample of f(|F|) features needs to be tested in each
node, instead of all features. They also do not overfit
as more trees are added. Furthermore, they are relat-
ively robust to outliers and noise, and they are easily
parallellized.

The efficiency gain makes random forests especially
interesting for relational data mining, for which it is
typical that there is a large number of features, many
of which are expensive to compute. On the other
hand, relational data mining offers an interesting test
suite for random forests, exactly because the advant-
age of random forests is expected to become more clear
for very large feature spaces. In relational data min-
ing, such data sets abound. Moreover, using random
forests allows us to even enlarge the feature set by in-
cluding aggregate functions, possibly refined with se-
lection conditions. We discuss this in the next section.

3. Aggregates and Selection in
Relational Learning

When considering multi-relational learning, sets (or
more general, bags) need to be handled. They
are represented by one-to-many or many-to-many re-
lationships in or between relations. Blockeel and
Bruynooghe (2003) categorize current approaches to
relational learning with respect to how they handle
sets. Whereas ILP (Muggleton, 1992) is biased to-
wards selection of specific elements, other approaches,

such as PRM’s (Koller, 1999) or propositionalisation
approaches (e.g. the one by Krogel and Wrobel (2001))
use aggregate functions, which compute a feature of
the set that summarizes the set. The latter methods
are optimized for highly non-determinate (e.g. busi-
ness) domains, whereas the former is geared more to-
wards structurally complex domains, e.g. molecular
biology, language learning, etc.

Perlich and Provost (2003) present a hierarchy of re-
lational concepts of increasing complexity, where the
complexity depends on that of any aggregate func-
tions used. They argue that ILP is currently the only
approach that can explore all concepts in the hier-
archy. However, combining aggregates and selection
in ILP is not a trivial task. Until now ILP-like feature
construction and the use of aggregation features have
mostly been combined in relatively restricted ways,
e.g., without allowing complex conditions within the
aggregation operator.

There are several difficulties that arise. First of
all, while approaches such as ILP by themselves
already suffer from a large search space, integrat-
ing aggregation operators into them further increases
the hypothesis space (Blockeel & Bruynooghe, 2003).
Moreover, the search space is less well-behaved because
of the problem of non-monotonicity (Knobbe et al.,
2002), which renders traditional pruning methods in
ILP inapplicable. Clearly, the idea of performing a sys-
tematic search for a good hypothesis has to be given
up; the search will have to be more heuristic.

Let us explain the reduction in pruning opportunities.
Suppose refining a hypothesis h consists of adding a
condition into its body. Then refining h can only de-
crease its coverage, so if any h is unsuitable because it
has too low coverage, then any refinements of h must
be unsuitable as well; hence we can prune the search
space at h. If conditions are added within an aggreg-
ate, though, the coverage of the hypothesis may in-
crease instead of decrease, hence such pruning cannot
safely be applied any more.

We illustrate the above with an example:

a(X) :- count(Y, child(X,Y), C), C>2.

adding a literal inside the count aggregate gives

a(X) :- count(Y, (child(X,Y), female(Y)), C), C>2.
which must have at most the same coverage (people
with more than two daughters must be a subset of
people with more than two children). If we consider

a(X) :- count(Y, child(X,Y), C), C<=2.

and its refinement

a(X) :- count(Y, (child(X,Y), female(Y)), C), C<=2.

then the examples covered by the refinement are a su-
perset of the original set (people with at most two chil-
dren certainly have at most two daughters, but people
with at most two daughters may have more than two
children).

Knobbe et al. (2002) present an approach to combine
aggregates with reasonably complex selection condi-
tions by generalizing the selection graph pattern lan-
guage. Selection graphs are a graphical description of
sets of objects in a multi-relational database.

In this paper we explore an alternative approach which
is based on random forests and explores the same fea-
ture space as Knobbe et al. (2002).

4. A Random Forest Approach to
Relational Learning

Knobbe et al. (2002) provide some definitions that are
useful for our explanation. An aggregate condition is
a triple (f,0,v) with f being an aggregate function,
0 a comparison operator and v a value of the domain
of f. An aggregate condition is monotone if, given
sets of records S and S’, ' C S, f(S") ov = f(S) o
v. The example in the previous section showed that
(count, >,v) is a monotone aggregate condition, while
(count, <,v) is not.

As mentioned in Section 3, Knobbe et al. (2002) de-
scribe a method for including aggregate functions in
selection graphs. If an aggregate condition is mono-
tone, selection conditions on the set to be aggregated
are allowed.

We implemented a similar method in Tilde (Blockeel
& De Raedt, 1998), which is included in the ACE data
mining system (Blockeel et al., 2002). Tilde is a rela-
tional top-down induction of decision trees (TDIDT)
instantiation, and can be viewed as a first order up-
grade of C4.5 (Quinlan, 1993), using logical queries in
tree nodes.

We expanded the feature set considered at each node
in the tree to consist of the regular features (with
aggregate conditions included), augmented with any
refinements of aggregate conditions (such as the ones
discussed in the example of Section 3) used on the
path from the root to the current node, when the
“yes”- branch was taken.

Moreover, we built in a filter that allows only a
random subset of the tests to be considered at each

node!. Around this procedure we built a wrapper in
order to get bagging. These two mechanisms together
result in a random forest induction method.

We want to point out that the use of random forests
tackles the difficulties that arise when combining ag-
gregation and selection in ILP. First, the size of the
search space is limited because we only consider a
subset of the possible features at each node in a tree.
Second, using decision trees, the comparison operators
“<” and “>” are equivalent up to switching branches.
This means that we can restrict ourselves to using
monotone aggregate conditions. However, even if we
would allow non-monotone aggregate conditions, the
refinements of these aggregates wouldn’t be chosen to
split a node, because they don’t add any extra inform-
ation to the tree.

Another advantage of using random forests is that
more randomly generated features can be included in
the feature space. This includes the construction of
aggregate conditions, where the aggregate clause con-
sists of a number of conjuncts. This way, tests as

count (Y, (child(X,Y),female(Y),blonde(Y)), C), C>3

could be immediately considered at the root node,
while now they can only be found as a refinement of an
aggregate already occuring in the tree. Non-monotone
aggregate functions could then be refined by deleting
a number of conjuncts. This would lead to a bottom-
up search strategy included in our top-down approach,
and would be very interesting to explore. However this
is not yet implemented in our system.

5. Experimental results

The aim of our experiments is to investigate the be-
nefit of random forests in a relational setting where
the feature set is expanded with aggregates and even
refinements of aggregates, both in a business domain
and a structurally complex data set. In the following
sections we first describe our experimental setup, and
then present results on two well-known data sets: the
Mutagenesis data set (Srinivasan et al., 1999) and the
Financial data set (Berka, 2000).

5.1. Experimental setup

All experiments were performed using a 5-fold cross-
validation and were carried out five times (with the
same folds). Afterwards the results were averaged in
order to obtain a more reliable estimate of the per-

'This actually differs from the definition in (Breiman,
2001) where a random subset of the attributes, instead of
the tests, is chosen.

formance of the random forests. Different parameters
needed to be set. First of all, the number of random
features in each node: we chose to consider random
subsets of 100%, 75%, 50%, 25%, 10%, and the square
root of the number of tests at each node in the trees.
We have also examined the influence of the number
of trees in the random forests, experimenting with 3,
11, and 33 trees. To investigate the performance of
random forests in the context of aggregation, we have
performed experiments with and without the use of ag-
gregates, and also with refinement of aggregates, where
conditions on the set to be aggregated are added.

5.2. Mutagenesis

For our first experiment we used the Mutagenesis data
set. This ILP benchmark data set, introduced to the
ILP community by Srinivasan et al. (1999), consists of
structural descriptions of 230 molecules that are to be
classified as mutagenic (60%) or not. The description
consists of the atoms and the bonds that make up the
molecule. For this data set we expect only a slight
gain in accuracy using aggregates, since Mutagenesis
does not have many numerical attributes nor is it very
non-determinate.

Table 1 shows the results obtained on the Mutagen-
esis data. For each column the best result is in bold.
For the experiments with refined aggregates, we can
see that the best result is always one where random
subsets of tests are used. In fact, we see that applying
random forests using random samples with down to
25% of the possible tests gives either an improvement
or at least no significant decrease in accuracy over bag-
ging?, while it certainly results in an efficiency gain.
As expected it also clearly outperforms Tilde.

For the results without the use of aggregates we see
that random forests don’t seem to enhance accur-
acy over bagging, while still performing better than
Tilde. This may show that random forests indeed
profit from large feature sets. These results also sup-
port Breiman’s (2001) statement that random forests
do not tend to overfit. The average difference between
training and test set error for random forests using
randomly 10% of the tests at each node is 6% while
for Tilde (using all features) it is 16%. As was expec-
ted, we also found that adding more trees to the forest,
clearly increases accuracy in all cases. In Figure 1 the
results for a random forest with 33 trees either making
use of refined aggregates (RA) or aggregates without
refinement (WA) or using no aggregates (NA) are com-
pared for different sizes of random subsets in the nodes

In Table 1 bagging is corresponding to random forests
with 100% of the tests used in the node.

RF 33 trees testacc

RAWANA RAWANA RAWANA RAWANA RAWANA RAWANA
% features 100 75 50 25 10 sqrt

Figure 1. Accuracy for random forests consisting of 33
trees, either not using aggregates (NA), using aggregates
(WA) or refined aggregates (RA) on the Mutagenesis data.
Results are shown for different numbers of randomly chosen
features.

of the trees (100% down to square root of the number
of features at the node). As we can see from Figure
1 there is always (no matter which number of features
is used) an improvement when aggregates are added.
When we allow refinements of the aggregates in the
queries, in many cases another slight improvement is
observed. An example of a test which was frequently
found across the different trees was the following ag-
gregate

count (BId, (bond(BId,Mol,At1,At2,Tp)), C), C>28.
with refinement

count (BId, (bond(BId,Mol,At1,At2,Tp),
atom(Mol,At1,carbon)), C), C>28.

The first part of the example represents the set of all
molecules that have at least 28 bonds. This aggregate
was also found to be a good test by Knobbe et al.
(2002). The refinement of that aggregate describes all
molecules that have at least 28 bonds connected to an
atom of type carbon.

5.3. Financial Data Set

Our second experiment deals with the Financial data
set, from the discovery challenge organized at PKDD
’99 and PKDD ’00 (Berka, 2000). This data set in-
volves learning to classify bank loans into good (86%)
and bad loans. The data set consists of 8 relations
and contains for each loan customer information and
account information which includes permanent orders
and several hundreds of transactions per account. This

[I Tilde [RF 3 trees RF 11 trees [RF 33 trees |

[[RA T WA J NA | RA] WA | NA | RA] WA | NA [RA [WA | NA |
1 0.717 0.730 0.683 0.721 0.710 0.704 0.754 0.745 0.718 0.767 0.767 0.726
0.75 0.723 0.728 0.687 0.725 0.730 0.677 0.758 0.750 0.704 0.766 0.762 0.719
0.50 0.728 0.710 0.678 0.735 0.736 0.690 0.763 0.743 0.710 0.769 0.757 0.719
0.25 0.724 0.744 0.670 0.728 0.737 0.700 0.753 0.743 0.703 0.763 0.743 0.703
0.10 0.717 0.727 0.653 0.723 0.720 0.657 0.753 0.735 0.651 0.753 0.749 0.658
sqrt 0.701 0.719 0.654 0.693 0.700 0.638 0.707 0.710 0.668 0.728 0.714 0.653

Table 1. Accuracy results on the Mutagenesis data set.

The rows describe the different proportions of random test
subsets in the nodes. The columns compare accuracies for experiments using refined aggregates (RA), aggregates without

refinement (WA) and no aggregates (NA) for Tilde and random forests with different number of trees.

[I Tilde [RF 3 trees RF 11 trees [RF 33 trees |
[[RA' T WA [NA | RA] WA | NA | RA [WA [NA | RA | WA [NA |
1 0.978 0.978 0.746 0.978 0.985 0.839 0.988 0.986 0.849 0.987 0.988 0.853
0.75 0.980 0.984 0.768 0.981 0.980 0.833 0.985 0.984 0.847 0.987 0.988 0.853
0.50 0.985 0.981 0.766 0.983 0.983 0.823 0.990 0.989 0.854 0.987 0.988 0.862
0.25 0.978 0.984 0.752 0.991 0.990 0.847 0.990 0.986 0.855 0.992 0.990 0.859
sqrt 0.954 0.949 0.766 0.959 0.970 0.847 0.972 0.983 0.865 0.984 0.986 0.864
0.10 0.950 0.972 0.827 0.957 0.947 0.863 0.964 0.964 0.866 0.964 0.957 0.866

Table 2. Accuracy results on the Financial data set. The rows describe the different proportions of random test subsets in
the nodes. The columns compare accuracies for experiments using refined aggregates (RA), aggregates without refinement
(WA) and no aggregates (NA) for Tilde and random forests with different number of trees.

problem is thus a typical business data set which is
very non-determinate.

RF 33 trees testacc
10
0.98
0.96
0.94
0.92
3 0.9
8
0.88
0.86
0.84
0.82
RAWANA RAWANA RAWANA RAWANA RAWANA RAWANA
% features 100 75 50 25 sqrt 10

Figure 2. Accuracy for random forests consisting of 33
trees, either not using aggregates (NA), using aggregates
(WA) or refined aggregates (RA) on the Financial data.
Results are shown for different numbers of randomly chosen
features.

Table 2 provides the results obtained on the Finan-
cial data. For this data set we want to point out that
the data distribution is quite skewed; 86% of the ex-
amples are positive. We also note that in this case the
square root of the number of tests is on average lar-
ger than 10%, so we switched these two rows in Table
2. We observe that for all experiments, using only a

random part of the tests to select the best test (cer-
tainly down to 25% of the tests) seems to be advisable
since there is no drop in accuracy (no significant gain
either) and we profit from the efficiency gain by testing
fewer features in each node. Contrary to the results
on the Mutagenesis data, when no aggregates are used,
the accuracy seems to increase while adding more ran-
domness. This is actually due to the skewness of the
Financial data: without randomness the predictive ac-
curacy of the forests is below the accuracy of allways
predicting the default value (86%). When adding more
randomness, some trees tend to allways predict the de-
fault value, or at least predict a very small proportion
of the examples to be negative. So this might improve
accuracy up to the default, but the trees become cer-
tainly less informative.

Adding aggregates resulted in much more compact
trees, and, as can be seen in Figure 2, yielded a large
improvement of accuracy. Allowing refinements in
these aggregates didn’t seem to improve accuracy fur-
ther though. This may be due to the fact that the the-
ory that needs to be learned, can be represented very
well without complex selection within the aggregates.
We also found that among the trees aggregates were
rarely refined.

5.4. Experimental conclusions

For the experiments using aggregates, decreasing the
number of random tests considered in a node to a cer-
tain threshold slightly increases the predictive accur-
acy. If we go below that threshold the accuracy de-

creases again. However it seems quite difficult to de-
termine an optimal value for this threshold. For the
chosen data sets, sampling randomly around 25% of
the tests at each node, gives either an improvement or
at least no significant decrease in accuracy. Breiman
(2001) on the other hand, obtained improvements with
even much smaller proportions of features in the pro-
positional case. Also the average improvement was
much higher. This difference might be due to fact
that in our approach a random subset of tests is taken
while Breiman takes a random subset of the attributes,
and selects the best test using these attributes. Or it
might show that in relational learning random forests
do not work as well as in propositional learning.

We also found that the results without aggregates dif-
fer a lot over the two data sets: on Mutagenesis de-
creasing the random sample of tests decreases accuracy
while on the Financial data set the accuracy increases.
This last effect was because of the skewness of the data.

As was expected, adding more trees to the forest in-
deed increases accuracy. Of course more trees mean
longer runtimes, so there is always a trade-off between
efficiency and accuracy.

Concerning aggregation and selection, allowing ag-
gregate functions in the tests always gave an improve-
ment, whereas additional refinement of the aggregates
didn’t consistently increase accuracy.

While in general performing at least as well as bagging,
random forests are computationally more efficient than
bagging. If we compare random forests, consisting of
33 trees and using 25% of the features, with bagging
using 33 trees, we found an efficiency gain of factor
2.6 on the Mutagenesis data and a factor 1.3 on the
Financial data. Again this factor is smaller than in
the propositional case, where there is no need to gen-
erate tests at each node, since the set of tests remains
the same for all nodes. In the relational case on the
other hand constructing a new node in the tree con-
sists of two steps: first all possible refinement queries
need to be generated and then secondly those quer-
ies are executed on the remaining examples and for
each query a heuristic is computed. Afterwards, based
on those heuristics the best test is placed in the new
node. When using random forests the time for ex-
ecuting the queries and calculating the heuristics is re-
duced, since only a sample of all generated refinements
is considered. But in our current implementation the
time for the first step remains the same, because all
possible refinements are still generated and only after-
wards a random sample of that set is taken.

6. Conclusions and Future Work

In this paper, we have explored a random forest ap-
proach to relational learning. Random forests have
been shown to work well when many features are avail-
able. This is often the case in relational learning.
Thus the investigation of random forests in this con-
text seems worthwhile.

Moreover, when using random forests, we can further
enlarge the feature space by including aggregate con-
ditions and refining them with selection conditions on
the set to be aggregated. This combination of aggreg-
ation with selection conditions is not a trivial task, be-
cause the feature space grows quickly and the search
space is less well-behaved due to the non-monotonicity
problem. However, the use of random forests over-
comes these problems.

We experimentally validated the strength of random
forests and the use of (refined) aggregates in the re-
lational case. Our results show that, if we randomly
decrease the feature set at each node in a tree down to
a certain level, the classification performance is at least
as good as bagging, so we profit from the gain in effi-
ciency. In our chosen data sets, this level turned out to
be 25% of the features, below this threshold classifica-
tion performance decreased. The benefit of including
aggregate functions was clear from the results. Refine-
ments of aggregates sometimes yielded another slight
performance improvement. However, some effects are
still unclear and therefore, more data sets should be
explored.

Now we turn to three possible directions for future
work. As mentioned in Section 4, we would like to
introduce more randomly generated features, e.g. ag-
gregate functions with a number of selection condi-
tions on the set to be aggregated. At this moment,
these features can only be found as refinements of
other aggregate functions. These randomly generated
aggregate functions would increase diversity between
features, and could be refined by deleting some selec-
tion conditions, if the function is non-monotone. This
would lead to research into the benefits of bottom-up
search strategies included in a top-down approach.

Alternative search heuristics could also be explored.
Instead of always choosing the best feature (out of the
features in the randomly chosen subset) at each node
in a tree, features could be chosen according to a Boltz-
man distribution. This way, even less good features
would have a chance to be chosen; this chance be-
ing proportional to their quality. This would increase
diversity among the trees, and probably improve the
strength of the random forest.

It would also be interesting to investigate the effect
of autocorrelation and degree diversity (Jensen et al.,
2003) in the context of random forests, since these
may influence the extent to which different trees in
the forest are independent.

Acknowledgements

Anneleen Van Assche is supported by the Institute for
the Promotion of Innovation by Science and Techno-
logy in Flanders (I.W.T.-Vlaanderen). Celine Vens is
supported by the GOA/2003/08(B0516) on Inductive
Knowledge Bases. Hendrik Blockeel is Postdoctoral
Fellow of the Fund for Scientific Research - Flanders
(Belgium) (F.W.0O.-Vlaanderen).

References

Berka, P. (2000). Guide to the financial data set. The
ECML/PKDD 2000 Discovery Challenge.

Blockeel, H., & Bruynooghe, M. (2003). Aggregation
versus selection bias, and relational neural networks.
IJCAI-2003 Workshop on Learning Statistical Mod-
els from Relational Data, SRL-2003, Acapulco, Mex-
ico, August 11, 2003.

Blockeel, H., & De Raedt, L. (1998). Top-down induc-
tion of first order logical decision trees. Artificial
Intelligence, 101, 285-297.

Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G.,
Ramon, J., & Vandecasteele, H. (2002). Improv-
ing the efficiency of inductive logic programming
through the use of query packs. Journal of Arti-
ficial Intelligence Research, 16, 135-166.

Breiman, L. (1996). Bagging predictors. Machine

Learning, 24, 123-140.

Breiman, L. (2001). Random forests. Machine Learn-
mg, 49, 5-32.

Dietterich, T. (2000). Ensemble methods in machine
learning. Proceedings of the 1th International Work-
shop on Multiple Classifier Systems (pp. 1-15).

Freund, Y., & Schapire, R. E. (1996). Experiments
with a new boosting algorithm. Proceedings of
the Thirteenth International Conference on Machine
Learning (pp. 148-156). Morgan Kaufmann.

Hansen, L., & Salamon, P. (1990). Neural network
ensembles. IEEE Transactions on Patern Analysis
and Machine Intelligence, 12, 993-1001.

Jensen, D., Neville, J., & Hay, M. (2003). Avoiding
bias when aggregating relational data with degree
disparity. Proceedings of the 20th International Con-
ference on Machine Learning.

Knobbe, A., Siebes, A., & Marseille, B. (2002).
Involving aggregate functions in multi-relational
search. Principles of Data Mining and Knowledge
Discovery, Proceedings of the 6th European Confer-
ence (pp. 287-298). Springer-Verlag.

Koller, D. (1999). Probabilistic relational models. Pro-
ceedings of the Ninth International Workshop on In-
ductive Logic Programming (pp. 3-13). Springer-
Verlag.

Krogel, M.-A., & Wrobel, S. (2001). Transformation-
based learning using multi-relational aggregation.
Proceedings of the Eleventh International Confer-
ence on Inductive Logic Programming (pp. 142-155).

Muggleton, S. (Ed.). (1992). Inductive logic program-
ming. Academic Press.

Perlich, C., & Provost, F. (2003). Aggregation-based
feature invention and relational concept classes.
Proceedings of the ninth ACM SIGKDD interna-

tional conference on Knowledge discovery and data
mining (pp. 167-176). ACM Press.

Quinlan, J. R. (1993). C4.5: Programs for ma-
chine learning. Morgan Kaufmann series in Machine
Learning. Morgan Kaufmann.

Srinivasan, A., King, R., & Bristol, D. (1999). An as-
sessment of ILP-assisted models for toxicology and
the PTE-3 experiment. Proceedings of the Ninth In-
ternational Workshop on Inductive Logic Program-
ming (pp. 291-302). Springer-Verlag.

