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Abstract

Many social networks can be characterized by
the roles of the participants in the network.
Participants with similar roles exhibit simi-
lar patterns of link structure. For example,
a dentist has links to patients and other den-
tists, a PTA member has links to parents and
students at a local school. We extend exist-
ing methods of finding roles to include mul-
tiple role labels (e.g., dentists who are also
PTA members), and apply Gibbs sampling
methods to find the maximum likelihood role
labels and link probabilities on an unlabeled
graph. We use synthetic data to evaluate the
accuracy of this method compared to meth-
ods which assume a single role labeling.

1. Introduction
1.1. Why find roles?

The idea of modeling graph structure in social net-
works by finding “roles” of nodes in the graph was first
introduced by Lorrain and White [13]. The basic idea
is that two entities have the same role if they both are
related to other entities in the same pattern (see figure
1). For example, a dentist usually has links to patients
and hygenists, where a PTA (Parent-Teacher Associ-
ation) member generally has links to parents and stu-
dents at a local school. Ideally, good role labels on
nodes in the graph would provide sufficient informa-
tion to predict the link structure of the graph.

Many algorithms look for specific type of structure in
the graph — highly connected subcomponents, or clus-
ters. While clusters are interesting, we will focus in-
stead on the role of a node. In some cases, the la-
bel being found does not cluster, for example, dentists
are in general more connected to their patients and
hygenists than other dentists. Note, however, that a
cluster can be represented as a role with high proba-

bility of linking to itself and low probability of linking
to other roles.

There are many precise mathematical definitions of
what it means to have the same role, stochastic equiv-
alence is the version used here:

Let X be a random adjacency array. We say
two nodes i and i’ are stochastically equiva-
lent if and only if the probability of any event
about X is unchanged by interchanging nodes
iandi. [9]

In the simplest case “events” consist only of the links
between nodes. In this case, two nodes are equivalent
if they have the same probability of linking to nodes
of each role label.

While attribute information can be added to this
model, in its simplest form it only attempts to capture
the link structure of the graph. We will use this fact
to explore the effects of changes in the link generation
model on role label prediction, in order to carefully
isolate and analyse the effects of modifying the model
to include multiple role labels.

Role induction allows the creation of a small abstract
model of our graph. The model is a homomorphic im-
age of the original graph, which contains summary in-
formation about the role labels and their relationships
[17], as shown in figure 2. This model can be used
to classify nodes into role types, predict links between
nodes based on role label, summarize the properties
of relationships among nodes, make predictions about
similar graphs, and compare graphs to each other.

1.2. Multiple Role Labels

Existing work in social networks on finding roles as-
sumes that an entity plays only one role in the graph.
However, many situation require multiple roles to ad-
equately model link structure. For example, a dentist
may also be a PTA member, with links generated by
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Figure 1. Nodes A and B have similar links to other nodes, and therefore the same role, whereas C shows a different link

pattern. Only links connected to A, B and C are shown.

both roles. Methods which attempt to find only one
set of role assignments in such a graph may be misled
by the overlapping labels and end up finding neither
correctly. If the number of labels used in the algorithm
is appropriate for just one of the sets of role labels, the
“noise” from the alternate role label can obscure both.
For example, one might approximate the number of ca-
reers at 8 and attempt to find them, however, if there
are 4 volunteer position roles which are also affecting
the generation of links, the effective number of roles in
the network is 32.

One adaptation of existing techniques to this problem
would be to increase the number of role labels until
each combination of roles has its own label, using the
full 32 labels in our example. However, while this can
find accurate results, it loses important information
— we would really like to find a group containing all
dentists, not all dentist-PTA members. This requires
multiple labels on each node.

Using multiple labels provides a second benefit, as well,
due to the overlapping labels on each node. The data
provided by the graph is used more efficiently by this
model, which means it can be learned from smaller
graphs.

2. Modeling Multiple Roles

We assume that roles are separated into catagories,
and that each entity has one label from each catagory.
In our earlier example, one catagory would be “career”
(dentist) another might be “volunteer position” (PTA
member). It is always possible to include a “null”
placeholder label in a catagory, if, for example, not
all entities have volunteer roles.

We also assume that links are generated by each role
catagory independently — there is a set of links gener-
ated by the fact that an entity is a dentist, another by
the fact that they are a PTA member. The total set of
links for an entity is the union of all such sets of gener-

ated links. The total probability of a link between two
nodes is therefore the “or” of the probabilities that the
role labels in each type generated a link.

It is therefore straightforward to calculate the total
probability of a link between two nodes u and v with
composite role labels I and J. If there are T role types,
composite label I = {ig,41,...i7}, and J = {jo...j7}-
Label the probability of a link being generated between
u and v by the t*" role label elements i; and j;, p;, j, -
These p;, ,;, values will be the parameters of our model.
The total probability of a link from node u to v is the
“or” of the probabilities that each role type ¢ generated
a link:

prr=1-]]1-pi;. (1)
teT

The parameters prs, along with priors on the role la-
bels, can be used to find the total probability of a
particular labeling, parameters, and graph structure
by combining the likelihood of each edge (present or
absent) in the graph.

A graph G consists of V, the set of nodes, and E, the
edge matrix with non-zero entries e,,, = 1 if and only if
there is a link from node u to node v. If R is the set of
role labels, where R,, € R is the label for node u, then
the joint probability of the entire graph G = (V, E)
with labeling R and parameters © = { P(R,,) }U{pi, ;, }
is:

p(G,R,0) = H P(R,) - H pbinom(eyy, PR, ,R.)
ueV veV

where pbinom(sample, probability) is the probability
of a particular sample of 0’s and 1’s being drawn from
a binomial distribution with the specified probability.

This model can be used find the maximum likelihood
role labelling and parameters given a graph, using
Gibbs sampling.
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Figure 2. A multiple roles model of a graph. The image of the graph includes two types of role, one with 3 role labels,

and one with two. Links can be generated by either role type.

3. Finding Multiple Roles

Snijders and Nowicki [16, 14] tackle the problem of
finding both role labels and parameters for a graph
with a single set of labels. They use EM, and, when
that becomes intractible for larger graphs, Gibbs sam-
pling. The unknown variables are the role labels of the
nodes, and the parameters of the model are the link
probabilities between role labels and priors for role la-
bels. We extend their method by including multiple
role labels using the model (and modeling assump-
tions) from the previous section.

Given an unlabeled graph G, the goal is to find the
combination of role labels and parameters which is
most likely. Gibbs sampling is one effective method
of doing so, though as with many algorithms it may
end up in a local extrema.

The entire algorithm is separated into two phases:
burn in and sampling. Each phase consists of many
incremental iterations of model estimation, each of
which generates a sample labeling of the graph. The
iteration steps in each of the two phases are identical,
however, the samples generated by the burn in phase
are assumed to be biased by the initial settings of the
parameters, and are discarded. The sample labelings
generated in the second phase are used to generate
probabilities over labels for each node. The number of
burn in and sampling steps necessary depends on the
properties of the specific graph and model.

procedure Gibbs — Sampling — Algorithm

Initialize parameters randomly

Initialize labels randomly

for numBurnInIters do
RelabelGraph

end for

for numSamplelters do
RelabelGraph
for allv € V do
county gr, = count, r, +1
end for
end for
for allv € V do
for all 7 € R do
P(R, = I) = count, 1 /numSamplelters
end for
end for

procedure RelabelGraph
Part 1: Sample Labels
for all v € V do
R, = sample from P(R, = I|{Ry,u # v}, 0)
end for
Part 2: Maximum Likelihood Parameters
for all T € R do
P(I) = argmazp)P(G,V,R,0)
for all J € R do
for ¢t from 1 to T do
Di,.j, = argmazy, ;. P(G,V,R,0)
end for
end for
end for

The Gibbs sampling algorithm is a general framework
which can be applied with a variety of models. The al-
gorithm can be adapted to a specific model (in our case
the model from section 2) by inserting the appropriate
formulae for the conditional distributions for the miss-
ing variables (R), as well as the maximum likelihood
values of the parameters (©).



3.1. Labeling Nodes

In the first part of each iteration, the algorithm gener-
ates a new value for each missing variable (role labels
in this case) by sampling from the conditional distribu-
tion of the variable, given the rest of the graph, with
its current labels. Since each node’s role label is in-
dependent of the labels on nodes more than one link
away, the conditional for the composite role label a
single node v can be written as:

P(R, = I|{Ry,u # v},0) x
P(I) - [, ey pbinom(eyy, PR, 1) - Pbinom(eyy, p1,Rr,,)

The algorithm samples from this conditional distribu-
tion to generate a new label for each node in turn until
the entire graph has been re-labeled.

3.2. Maximum Likelihood Parameters

Part 2 of each Gibbs sampling iteration calculates the
maximum likelihood value of our model parameters,
given a labeled graph. The parameters of our model
consist of the link probabilities for each role pairing,
and the priors for role labels. The priors for role labels
can be estimated directly from counts over the data:

cr, = number of nodes labeledR;
n = number of nodes
P(Rk) = CR; /n

The remaining parameters to estimate are the link gen-
eration probabilities. Conveniently, these are factored
according to the role elements. This will enable us
to make more efficient use of the data in our social
network, since each probability estimation for a role
element includes information from a larger subset of
the nodes in the network than if flat role labels were
used. However, it also complicates our calculation of
expected link probability values.

In the case where there is a single set of role labels, the
new value of each link probability is easily calculated
from simple counts. If ¢;; is the count of links between
nodes of role I and nodes of role J, and ny; is the
number of pairs of nodes labeled (I, J), the estimated
link probability is simply pr; = ¢15/n17.

However, finding the parameters when there are multi-
ple role labels is slightly more complex. Consider two
nodes, u and v. If there are T role labels on each node,
each of the links between the nodes could have been
generated by any one (or more) of the T pairs of role
label elements on the nodes, as shown in figure 2. If a
dentist /PTA member has a link to a hygenist/student,
we must decide how much of the responsibility for the

link to assign to the dentist-hygenist role pair, and how
much to the PTA-student role pair.

This value is not immediately available, though it
could be calculated from the actual parameters for the
model. Instead, we create T' “missing” variables on
each link, {my,...mr}. Each m; contains an estimate
of the probability that a particular pair of role labels
(in catagory t) generated the link.

Each m; can be estimated from the parameter esti-
mates from the last iteration. If v and v are the nodes
at the ends of the link, and I and J are their role
labels, then:

My = Piy,js /PIJ

When the new value for p;, j, is calculated, all links
between nodes that contain the labels ¢; and j; must
be considered. If each link is weighted with the prob-
ability that it was generated by i; and j;, and the sum
over all links taken, the result is a count of the number
of links that should be attributed to the i; and j; pair.
Dividing number of such pairs gives us the new link
probability:

Cis,ge = E : mg-Crg
IJ|is€INj: €T
= Z i, /P17 - 1y
IJll'tEI/\jteJ
N
Dis v Cis,jo [Mvig o (2)

pr1y is simply a function of the p;, ;, values, as we saw
in equation 1.

An alternative solution to this problem would be to
create unknown labels on each link indicating the (hy-
pothetical) set of role catagories which generated it.
The sampling phase of the Gibbs sampler would then
generate these labels, and counts could be taken over
the set of links which have been labeled as being gen-
erated by a particular role catagory.

3.3. Reintroducing Lost Labels

If at the end of an iteration a label no longer appears
anywhere in the graph, it is assigned to a random node
before the begining of the next iteration.

4. Results on synthetic data

4.1. Synthetic Experiments

For our synthetic data experiments, graphs were con-
structed based on our modeling assumptions from sec-
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Figure 3. In the left chart, we can see the difference that ignoring one or more of the role catagories can make. For a
graph with C role catagories, the multiple roles labeler was run with C catagories, and the results matched to the true
labeling. It was then run with only 1, and again compared to the true labels. CRI values are the best match with any
one of the C true role catagories, averaged over 20 runs. In the right chart, we see the advantage of using multiple roles
over flattened roles when the data set is small. The multiple role labeler finds the true role structure, two roles with 3
values each, while the flat role labeler uses one role catagory with 9 values. CRI values are calculated with respect to the

“flattened” correct role labelling, averaged over 20 runs.

tion 2. These graphs were used to evaluate the per-
formance of the multiple roles Gibbs sampling algo-
rithm and compare it to the same algorithm using a
single role label. When the number of labels in each
role catagory is the same, our experiments performed
as expected, allowing the algorithm to find more ac-
curate, expressive models and requiring less data to
do so. However, there were also interesting problems
when the number of values in different role catagories
was not uniform, as we will see in section 4.5.

Each generated graph was constructed with a fixed
number of role catagories, and a fixed number of role
values in each catagory. Role priors and link gener-
ation probabilities were generated uniformly between
0.0 and 1.0. The graph labels and links were then
assigned according to the model in section 2.

4.2. Evaluating Results on Labeled Data: the
Corrected Rand Index

Since these experiments were run on generated data,
the correct role labels, which generated the graph, were
available. Therefore the roles found were evaluated
with respect to this “correct” labeling using the Cor-
rected Rand Index.

The Rand Index [15] evaluates the percentage of pairs
of vertices which are correctly located either in the
same set or different sets. [11] correct this measure for
chance, with a resulting measure which has a mean
of 0 for a randomly chosen partition, and a maximum

value of 1.0 (complete agreement). If we define, for a
correct labeling C and algorithmic labeling A:

n = number of nodes
ni;; = count of nodes labelediin C and jin A
n;. = count of nodes labeled i in C
nj = count of nodes labeled j in A

The CRI measure is then:
o () -2 (8)%, (%) 1)
o (1) = (3)] =), (%))

4.3. Insufficient Model Complexity: Single
Role Label v Multiple Role Labels

If there are in fact C role catagories with 4 possible
labels in each, the expectation would be that the ef-
fective number of roles in the graph would be 4¢, and
therefore any model which uses only 4 labels to model
the graph would perform poorly. Figure 3 demon-
strates that this is in fact the case — a model with
only 4 labels rarely matches any one of the C original
role catagories.

The multiple roles labeling algorithm is also expected
to generate two catagories of roles which match the two
actual role catagories individually. Figure 3 is an also
illustration that this property holds — each learned role
catagory matches one of the true role catagories very



closely (though it is not shown in the chart, they each
match distinct role catagories from the actual graph).

4.4. Efficient Data Use: Multiple Roles vs Flat
Labels

The underlying role structure can be better modeled
with a single “flattened” label. In this case, if our
graph has 2 role catagories with 3 values in each
catagory, the single role labeler is allowed to use the
full 9 role labels. When the graph is large this en-
ables the model to compete with the multiple, how-
ever, when the graph is small the multiple roles model
still has an advantage, as shown in figure 3. This stems
from the fact that the multiple roles model has fewer
parameters and reuses the data in the graph more ef-
ficiently.

4.5. Asymmetric Label Counts

In some cases, the fact that there is more than one
label on each node can cause problems with the Gibbs
sampling algorithm. Take a case in which there are 2
role catagories, with 3 elements in the first catagory,
and 2 in the second. The algorithm simply assigns two
labels to each node — it does not care whether a label is
in the first catagory or the second. It may, therefore,
model the 3 element catagory with 2 elements, and
vice versa. In the experiments in figure 4 56 out of
100 trials had this type of problem. In most cases,
the overall accuracy of the labeling is still moderately
good, though the matches to individual labels are not
as good.

However, one can do better. If the number of la-
bels given to the algorithm for each role catagory is
identical, the role catagories once again become truly
interchangeable, and it does not matter which gets
mapped to which true role catagory. In the experi-
ments shown here, the Gibbs sampler was given two
role catagories, each of which had the maximum num-
ber of labels across true role catagories (in the case of
our graph with 3 and 2 labels in each catagory, the
labeler would be asked to find two catagories with 3
labels in each). This model improved accuracy over
all 100 trials, as we cans see in the first set of bars in
figure 4. The surprising result here was that it does
not cause a noticable drop in accuracy when the orig-
inal results were correct. When the original algorithm
would have mapped the 3 role catagory to 3 roles, and
the 2 role catagory to 2 roles, resulting in very high ac-
curacy, the model with 3 roles in each catagory barely
changes the results (see the third set of bars in fig-
ure 4). The key here is that typically the algorithm
almost completely eliminates the “extra” label in one

catagory, which leads to a very close match in CRI
values.

5. Discussion and Future Work

5.1. Finding Information in Real Data Sets

Role labels provide an interesting summary of the be-
havior of each node, which can then be treated as an
attribute and used in other tasks such as classifica-
tion. Using multiple roles provides an second level of
complexity which gives us additional accuracy and in-
formation.

If part of the role label for a node is known (e.g., ca-
reer but not volunteer postition), it becomes easier not
just to infer the values of the other role, but to infer
the existance of such a role. The model will have a
more accurate labeling for careers when the role for
volunteer position is added.

5.2. Alternate Inference Procedures

The model used here can be thought of as a bayes net
consisting of many repeats of the structure in figure
5, in which two nodes and a single link variable are
shown. “Link A” is true if a link is generated by role
catagory A, “Link B” is true for links generated by
role catagory B, and “link” is the or of these two val-
ues. Approximate inference procedures such as mean
field, loopy belief propagation, generalized belief prop-
agation should be compared to the sampling algorithm
used here.

5.3. Interacting Roles

Independent link generation is convienient, since it
leads to a simple model, however, in general, in may
not be the case that roles generate links independently.

One interesting example of this type of role interaction
is geographical location. Residents of the same town
or neighborhood are likely to link to each other — they
may attend the same schools, use the same dentist, or
run into each other at the supermarket. A dentist in
one town looks much like a dentist in another town,
however, and still has links to the same other types —
hygenists and patients. Geographical location does not
so much generate additional links as determine which
hygenists and patients the dentist will link to — those
with similar locations.
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5.4. Adding in Attribute Information on
Nodes and Links

The model can easily be extended to include labeled
links, by placing each link type in a separate graph and
combining the likelihood of entity labels across these
graphs.

Any attribute information which has only local effects
(to the node or link on which it is located) can sim-
ply be added to the distribution over labels for the
node. More complex interactions can introduced into
the model, however, once the complexity reaches a cer-
tain point it may make more sense to treat the role
labels as attribute inputs to another algorithm.

The role label on a node provides summary informa-
tion about the link pattern for the node. It would be
interesting to see if this summary information could at
least partially replace or augment the “aggregation”
functions used in some models. Aggregation func-
tions compute a mathematical summary of a variable
which exists on multiple neighbors of a node (using
ave, mode, etc). Certainly the current role model at a
first glance seems well suited to replacing aggregators
which compute the count of related nodes with partic-
ular labels, and could perhaps be extended to compute
summaries of other variables.
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