
4. Challenges and Open Problems
 
• Evaluate different components of the learned model
• Efficient sampling strategies
• Efficient planning techniques

Given:
• set of possible states S
• set of possible actions A
• unknown transition function

• unknown reward function 

Find policy                    , 
maximizing

2. Model-Assisted Approaches for RRL

• The (full or fully correct) MDP is not always available
 Learning extra information can be useful

• Learn a model of the world while performing RL
 Knowing world dynamics        exploiting this knowledge

 Learning good models might require a policy that reach important places
 Knowledge of the world may be essential to learn a good policy

• Relational domains
 Learning a (good) model is more challenging

• Even impossible             how to handle this uncertainty?

• First indirect RRL approach
• Learn transition and reward probability distributions
• Improve policy by performing a (small) local search starting in 
current state
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3.1. Learning the transition function

• Represent as a Relational Dynamic Bayesian Network
 Assume that random variables describing the next state only depend 
on the current state and the action

• Only parameter learning
• Conditional probability distribution modeled as a relational 
probability tree for every state predicate

• Learned with the TG-algorithm

3.2. Q-Learning with Lookahead

3.3. Preliminary Experiments
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5. Conclusions

• First model-assisted RRL approach
• Incrementally learn a RDBN to model the transition function
• Improved convergence speed by looking some steps ahead

stack

on(A,B) in blocks world with 5 blocks

logistics

st+1

rt+1

When an action needs to 
be chosen, instead of 
using the Q-values for 
the current state, the 
agent can look some 
steps ahead to obtain 
more informative Q-
values.

Probability tree showing the probability 
that block A will be clear, given the fact 
that action move(X,Y) is executed in 

state State.

Example grounded RDBN showing the 
dependencies between two successive 
states for the move(a,b) action.


