

Aron Culotta Information Extraction & Synthesis Lab University of Massachusetts

joint work with advisor Andrew McCallum

Toward High-Order Representat Identity Uncertainty	ions
Combinatorial Explosion!	
$SamePerson(x_1, x_2, x_3, x_4, x_5, x_6) \bigcirc \bigcirc$	C_6^n
$SamePerson(x_1, x_2, x_3, x_4, x_5) \bigcirc \bigcirc$	$\dots C_5^n$
$SamePerson(x_1,x_2,x_3,x_4) \bigcirc \bigcirc$	$\dots C_4^n$
$SamePerson(x_1,x_2,x_3) \bigcirc \bigcirc$	$\dots C_3^n$
$SamePerson(x_1,x_2) \bigcirc \bigcirc$	C_2^n
0 0 0 0	\bigcirc
Dean Martin Howard Dean Howard Martin Dino Howie	e Martin

Learning in First-Order Models

- Sampling
- Pseudo-likelihood
- Voted Perceptron
- We propose:
 - Conditional model to rank configurations
 - Intuitive objective function for Metropolis-Hastings

Model

$$P(Y|X) = \frac{1}{Z_X} \prod_{y_i \in Y} f_w(y_i, \mathbf{x}_i) \prod_{y_i, y_j \in Y} f_b(y_{ij}, \mathbf{x}_{ij})$$

Z_x: Sum over all possible configurations!

Inference with Metropolis-Hastings $\alpha(y'|y) = \frac{p(y')}{p(y)} \cdot \frac{q(y'|y)}{q(y|y')}$ • y : configuration • p(y')/p(y) : likelihood ratio - Ratio of P(Y|X) - Z_x cancels • q(y'|y) : proposal distribution - probability of proposing move y \Rightarrow y'

Learning the Likelihood Ratio $P(Y|X) \propto S(Y) = \prod_{y_i \in Y} f_w(y_i, \mathbf{x}_i) \prod_{y_i, y_j \in Y} f_b(y_{ij}, \mathbf{x}_{ij})$ S*(Y) = true evaluation of configuration (e.g. F1) $Z_{p>q} = 1 \Leftrightarrow S^*(Y_p) > S^*(Y_q)$ $P(Z_{p>q} = 1) = \frac{S(Y_p)}{S(Y_p) + S(Y_q)}$

Tying Parameters with Proposal Distribution

- Proposal distribution q(y'|y) "cheap" approximation to p(y)
- Reuse subset of parameters in p(y)
- E.g. in identity uncertainty model
 - Sample two clusters
 - Stochastic agglomerative clustering to propose new configuration

	First-Order	Pairwise
constraint	82.3	76.7
reinforce	93.4	78.7
face	88.9	83.2
reason Citeseer p	81.0 aper coreference	84.9 e results (pai
reason Citeseer p	81.0 aper coreference First-Order	84.9 e results (pai Pairwise
reason Citeseer p miller_d	81.0 aper coreference First-Order 41.9	84.9 e results (pai Pairwise 61.7
reason Citeseer p miller_d li_w	81.0 aper coreference First-Order 41.9 43.2	84.9 e results (pai Pairwise 61.7 36.2

Related Work

- MLNs [Richardson et al 2006]
- BLOG [Milch et al 2005]
- Lifted Inference [Poole '03] [Braz et al '05]
 - Inference over populations to avoid grounding network
 - Difficult to answer queries about one specific input
- SEARN [Daume et al 2005]:
 - Learns distribution over possible moves in search-based inference
 - Assumes can enumerate all local moves
- Reinforcement learning for combinatorial search
 - [Zhang and Dietterich '95] [Boyan '98]