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Semantics-based

Expressivity Analysis
The Problem
“Alphabet soup” (L.Getoor): Prism, SLP, RBN, PRM, BLP, MLN, Blog, . . .
Questions:

• Where are these languages similar?
• Where are these languages different?
• What are the particular strengths/weaknesses of language XYZ?

First issue to investigate:
• What is the expressive power of the different languages?

Later:
• What is the complexity of inference?
• What is the complexity of learning?
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Elements of a Solution

• Goal: establish general framework with re-usable components for expressivity analysis
• Find common semantic ground
• Consider translations of (syntactic) models and embeddings of their semantics.

• A language L′ is at least as expressive as a language L, if each L-model M can be
translated into an L′-model M ′, so that the semantics of M ′ “contains” the semantics
of M .
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Common Semantic Ground: Multi-valued Herbrand Interpretations

PL-languages define distributions for random variables that can be written as ground atoms:

blood_pressure(tom) sister(susan,tom) genotype(mother(paul))
blood_pressure(susan) sister(susan,paul) genotype(father(paul))
. . . . . . . . .

With each relation symbol is associated a (finite) state space:

states(blood_pressure)={high, normal, low}

states(sister)={true, false}
states(genotype)={AA, Aa, aa}

Herbrand Interpretation: assignment of a truth value to all ground atoms constructible from a
vocabulary S of relation, function, and constant symbols.

Multi-valued Herbrand Interpretation: assignment of a state to all ground atoms constructible
from a vocabulary S of relation, function, and constant symbols.

PL-model: defines a probability distribution over all Multi-valued Herbrand Interpretations for
a given vocabulary S.
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Any PL-model can be represented by an ordinary Bayesian
network. Are PL-languages just shorthand notations for large
Bayesian networks?
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Modularity of

Representations

The power and usefulness of PL-languages derives from the fact that they split the
specification of a complex model into a generic (intensional) and a domain-specific
(extensional) part:

Input Pedigree
Pedigree specific model
(can be represented as a
Bayesian network)

Model
General Genetic Linkage  
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A (preliminary) analysis of several languages:

Intensional Extensional

RBN rbn Input Structure

PRM prm Skeleton Structure

BLP intensional part extensional part

MLN mln constants

ground atoms
Prism with without

msw’s in SLD tree

Updated plan:
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Formalization

Embeddings

P : probability distributions over MVHI(S)
P ′: probability distributions over MVHI(S’)
An embedding of P in P ′ is a mapping

h : MVHI(S) 7→ 2MVHI(S′)

such that for all w, w′ ∈ MVHI(S):

P (w) = P ′(h(w)) and h(w) ∩ h(w′) = ∅

Write P � P ′ if there is such an embedding.
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If P � P ′, then every probabilistic query about P can be answered from the model P ′ (one
can consider weaker forms of embeddings, so that only restricted types of queries for P are
supported by P ′).
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Putting Everything Together. . .

Language L′ is at least as expressive as L, L � L′, if

∃tint∀Mint∃text∀Mext P (Mint, Mext)�P (tint(Mint), text(Mext))

Example Result

MLN � RBN (precisely:MLN �c RBN)
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