Expressivity Analysis for PL-Languages

Manfred Jaeger Aalborg University Kristian Kersing, Luc De Raedt Freiburg University

Semantics-based

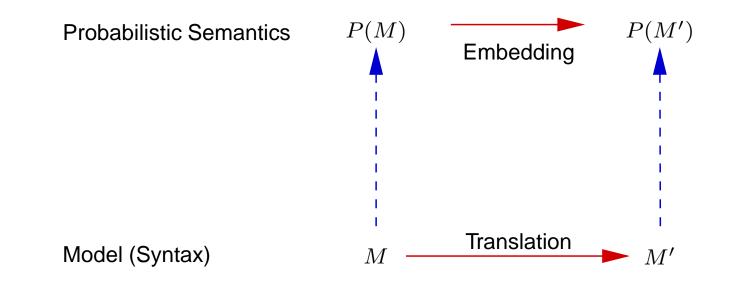
Expressivity Analysis

The Problem

"Alphabet soup" (L.Getoor): Prism, SLP, RBN, PRM, BLP, MLN, Blog, ... Questions:

- Where are these languages similar?
- Where are these languages different?
- What are the particular strengths/weaknesses of language XYZ?

First issue to investigate:


• What is the expressive power of the different languages?

Later:

- What is the complexity of inference?
- What is the complexity of learning?

Elements of a Solution

- Goal: establish general framework with re-usable components for expressivity analysis
- Find common semantic ground
- Consider *translations* of (syntactic) models and *embeddings* of their semantics.
- A language L' is at least as expressive as a language L, if each L-model M can be translated into an L'-model M', so that the semantics of M' "contains" the semantics of M.

Common Semantic Ground: Multi-valued Herbrand Interpretations

PL-languages define distributions for random variables that can be written as ground atoms:

blood_pressure(tom)	sister(susan,tom)	genotype(mother(paul))
blood_pressure(susan)	sister(susan,paul)	genotype(father(paul))

. . .

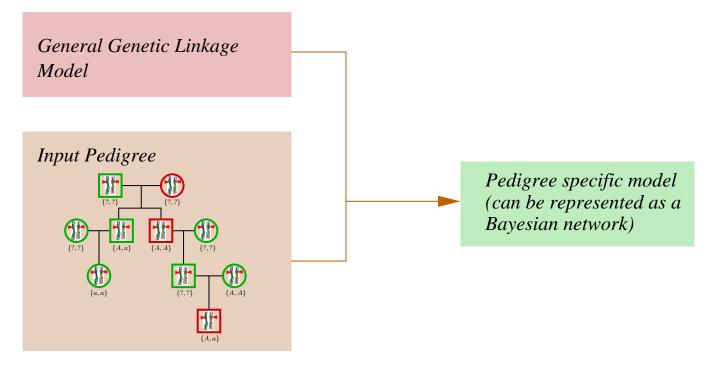
With each relation symbol is associated a (finite) state space:

. . .

. . .

```
states(blood_pressure)={high, normal, low}
states(sister)={true, false}
states(genotype)={AA, Aa, aa}
```

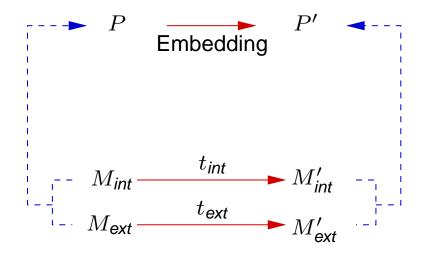
Herbrand Interpretation: assignment of a truth value to all ground atoms constructible from a vocabulary S of relation, function, and constant symbols.


Multi-valued Herbrand Interpretation: assignment of a state to all ground atoms constructible from a vocabulary *S* of relation, function, and constant symbols.

PL-model: defines a probability distribution over all Multi-valued Herbrand Interpretations for a given vocabulary *S*.

Any PL-model can be represented by an ordinary Bayesian network. Are PL-languages just shorthand notations for large Bayesian networks?

Modularity of Representations


The power and usefulness of PL-languages derives from the fact that they split the specification of a complex model into a generic (*intensional*) and a domain-specific (*extensional*) part:

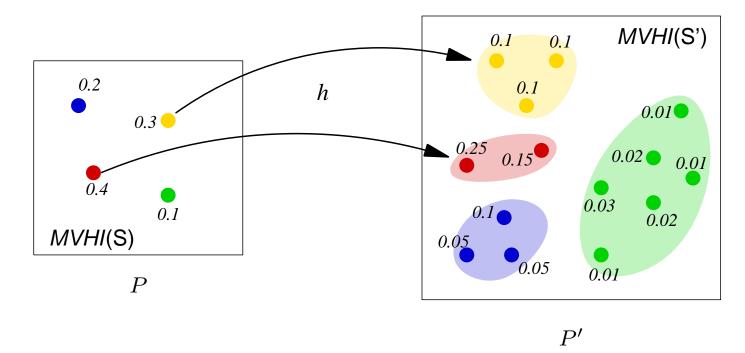
A (preliminary) analysis of several languages:

	Intensional	Extensional	
RBN	rbn	Input Structure	
PRM	prm	Skeleton Structure	
BLP	intensional part	extensional part	
MLN	mln	constants	
	ground atoms		
Prism	with	without	
	msw's in SLD tree		

Updated plan:

Formalization

Embeddings


P: probability distributions over MVHI(S)*P'*: probability distributions over MVHI(S')An embedding of *P* in *P'* is a mapping

 $h: MVHI(S) \mapsto 2^{MVHI(S')}$

such that for all $w, w' \in MVHI(S)$:

$$P(w) = P'(h(w))$$
 and $h(w) \cap h(w') = \emptyset$

Write $P \preceq P'$ if there is such an embedding.

If $P \leq P'$, then every probabilistic query about P can be answered from the model P' (one can consider weaker forms of embeddings, so that only restricted types of queries for P are supported by P').

Putting Everything Together...

Language L' is at least as expressive as $L, L \leq L'$, if

 $\exists t_{int} \forall M_{int} \exists t_{ext} \forall M_{ext} \quad P(M_{int}, M_{ext}) \preceq P(t_{int}(M_{int}), t_{ext}(M_{ext}))$

Example Result

 $MLN \preceq RBN$ (precisely: $MLN \preceq_c RBN$)