Toward Statistical Predicate Invention

Stanley Kok & Pedro Domingos

Dept. of Computer Science and Eng. University of Washington

What is SPI?

ØMore powerful than learning from fix set of primitives

Benefits

ØMore compact and comprehensible model

ØReduce risk of overfitting

ØPotentially faster inference

ØLess memory

ØReduce # parameters from exponential to linear

ØInvented predicate used to learn new formulas

ØRepresent unobserved aspects => better accuracy

=> larger steps through search space

ØDiscovery of new concepts, relations, properties

ØCombines ILP and statistical learning approaches

ØInvented predicates →discover more predicates

Predicate Invention

- Ø Inductive Logic Programming (ILP) approach
- Ø Form predicates to represent
- a. Commonalities (interconstruction) [Wogulis & Langley, 1989] b. Differences (intraconstruction) [Muggleton & Buntine, 1988]
- § a. and b. prone to over-generating predicates
- c. Exceptions to rules [Srinivasan et. al., 1992]
- Ø Form predicates from 2nd-order templates [Silverstein & Pazzani, 1991] Ø Limited ability to handle noisy data

Ø Statistical learning approach

- \emptyset Form hidden variables from
 - a. Structural patterns in Bayesian networks [Elidan et. al., 2001]
 - b. Observed variables grouped by mutual information [Elidan & Friedman, 2005]
- Ø EM algorithm iteratively
- a. Creates hidden variables
- b. Hypothesizes hidden variables values
- c. Learns parameters of resulting Bayesian network
- Ø Assumes data independent and identically distributed

Proposed Approach

- 1a. Compute correlations of all pairs of predicates (all variabilizations)
- 1b. Discard low correlation pairs
- 2. Find clusters of predicates that are highly correlated Ø Express as weighted satisfiability problem
 - Ø Each pair of predicates is an atom and unit clause: Edge(P1,P2) with weight = log(|correlation(P1,P2)|) - *thresh* Ø Apply "soft" transitive closure:
 - Edge(P1,P2) \land Edge(P2,P3) => Edge(P1,P3) with weight v Higher v => Larger clusters of predicates
 - Ø Use MaxWalkSat [Kautz et. al. 1997] to solve sat. problem & select edges
- 3a. Invent a predicate for each clique of predicatesØ Arguments are (a subset of) the observed predicates' arguments
- 3b. Model correlation among predicates in clique
 Ø Associate a weight w_{ij} between invented predicate h_i and each of its observed predicate o_{ii}
- 4a. Define a potential f_{ijk} between the k^{th} grounding of invented predicate h_i and each of its observed predicate o_{ii}
- 4b. When the invented predicates are independent given the observables, we can sum them out and avoid using EM
- 5a. Init weights w_{ij} to the average (log) correlation between o_{ij} and other observed predicates of h_i
- 5b. Find locally optimal weights using gradient ascent
- 6. Iterate by treating the hidden predicates as observed predicates, and setting them to their MAP values

Applications	Invented Predicates
Activity Recognition	•High-level activity (e.g., cooking, taking medication)
	•Daily routines from high-level activities
Robotics	Corridors, doorways, etc.
Perception	Parts of objects
(speech/handwritg recognition)	•Objects as related set of parts
Molecular biology	Gene modules
	Metabolic pathways
	Cell substructures
Security	•Steps of criminals' plan
	Relations among steps
	•Criminal's roles
Many more	

O: Observed predicate

weight

4.1

1.3

high-correlation predicate pair

Clause

 $f_{ijk} = \{ \begin{array}{ll} 1 & \text{if } o_{ijk} = 1 \And h_{ik} = 1 \\ 0 & \text{otherwise} \end{array}$

 $Q_i(x, h_{ik}) = \exp(\sum_j w_{ij} f_{ijk})$

$$P(x) = \frac{1}{Z} \prod_{i \in IP} \prod_{k \in G_i} (Q_i(x, h_{ik} = 1) + 1)$$

where Z is a partition function,

IP is a set of invented predicates,

- G_i is a set of all groundings of invented predicate h_i and h_i is the universe field h_i and h_i is the universe field h_i are universe for h_i .
- h_{ik} is the value of the k^{th} grounding of h_i .