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Overview

• Review of maximum margin structured labeling.

• Theoretical justifications (or lack thereof).

• Consistency.



Decoding

We wish to “decode” or “interpret” a code x as a signal y.

Decoding:

fw(x) = argmax
y

wTΦ(x, y)

Examples:

• x might be a pair of images and y a stereo depth map.

• x might be a sentence and y a parse tree (or logical form).

• x might be a database and y a set of inferred statements.



Graph Example

Take x to be a directed graph with labeled edges and take y to be a labeling
of the nodes of x.

For example x might be a web site and y a labeling of each page as “pro-
fessor”, “student”, “project” or “other”.

Define a “feature” to be an arc L1
L2→ L3 where L1 and L3 are node labels,

L2 is an arc label and
L2→ represents an unspecified arc in the graph with

label L2. Note that if there are Le possible edge labels and Ln node labels
then there are LeL

2
n features.

Φ(x, y) assigns a count to each feature.

w assigns a weight to each feature.

fw(x) can be computed with the junction tree algorithm or approximated
with loopy BP.



Training

We can consider different top level objectives in selecting w.

w∗ = argmin
w

E〈x, y〉∼D
[d(y, fw(x))] (1)

w∗ = argmin
w

E〈x, y〉∼D

[

log
1

P (y|x, w)

]

(2)

P (y|x,w) =
1

Z(x,w)
exp(wTΦ(x, y))

(1) seems to reflect what actually matters in many applications.

(2) is convex and therefore possibly easier to optimize.

We focus on (1).



Maximum Margin Training

Taskar Guestrin and Koller proposed the following M 3 hinge loss:

w∗ = argmin
w

∑

i

max
ŷ

(H(yi, ŷ)−m(xi, yi, ŷ, w))+ + λ||w||2

H(y, y′) is the Hamming distance between y and y′.

m(x, y, ŷ, w) is the margin wTΦ(x, y)− wTΦ(x, ŷ)



Computing w∗ Efficiently

minimize α + λ||w||2

subject to α ≥
∑

i

max
ŷ

(H(yi, ŷ)−m(xi, yi, ŷ, w))+

The constraint

α ≥ max
ŷ

(H(yi, ŷ)−m(xi, yi, ŷ, w))+

can be represented by a linear program encoding the junction tree algo-
rithm.



The Linear Program

We want to represent:

α ≥ max
ŷ

(H(yi, ŷ)−m(xi, yi, ŷ, w))+

or equivalently:

α ≥ 0, α ≥ max
ŷ

H(yi, ŷ)−m(xi, yi, ŷ, w)

For a tree the second inequality can be represented as follows.

αn,L = I [L 6= yi(n)] +
∑

n
γ
→m

αn,L,γ,m

αn,L,γ,m ≥ αm,L′ −
(

w
yi(n)

γ
→yi(m)

− w
L

γ
→L′

)

α ≥ αr=L



Hinge Loss Alternatives

Multiclass Hinge Loss (Collins):

w∗ = argmin
w

∑

i

max
ŷ 6=yi

(1−m(xi, yi, ŷ, w))+ + λ||w||2 (3)

Altun and Hoffman Hinge Loss:

w∗ = argmin
w

∑

i

max
ŷ

d(yi, ŷ) (1−m(xi, yi, ŷ, w))+ + λ||w||2 (4)

M 3 Hinge Loss (Taskar Guestrin and Koller):

w∗ = argmin
w

∑

i

max
ŷ

(H(xi, yi, ŷ)−m(xi, yi, ŷ, w))+ + λ||w||2 (5)

These all generalize binary hinge loss.



Theorem 1

Parameters `, r, and s are defined by Φ(x, y) ∈ <`, |Y(x)| ≤ r, and
||Φ(x, y)||1 ≤ s.

In the structured case r is exponentially larger than s.

Theorem 1:

L(Q(w), D) ≤
L1(w, S)

m
+
||w||2

m
+

√

√

√

√

2s2||w||2 ln
(

rm
||w||2

)

+ ln
(

m
δ

)

(m− 1)

L1(w, S) =

m
∑

i=1

max
ŷ∈Y(x)

d(yi, ŷ)I [m(xi, fw(xi), ŷ, w) ≤ 1]



PAC-Bayesian Proof

Theorem:

L(Q(w), D) ≤
L1(w, S)

m
+
||w||2

m
+

√

√

√

√

2s2||w||2 ln
(

rm
||w||2

)

+ ln
(

m
δ

)

(m− 1)

This is derived from the PAC-Bayesian Theorem: For any data distribution
D and loss function L with values in [0, 1] with probability 1− δ over the
choice of an IID sample S of m pairs we have

L(Q,D) ≤ L(Q,S) +

√

KL(Q,P ) + ln m
δ

2(m− 1)



Theorem 2

L(Q(w), D) ≤
LH(w, S)

m
+
||w||2

m
+

√

√

√

√

||w||2 ln
(

2`m
||w||2

)

+ ln
(

m
δ

)

2(m− 1)

LH(w, S) =

m
∑

i=1

max
ŷ∈Y(x)

d(yi, ŷ)I [m(xi, fw(xi), ŷ, w) ≤ H(xi, fw(xi), ŷ)]

H(x, y, ŷ) = ||Φ(x, y)− Φ(x, ŷ)||1



Camparing the Two Theorems

mL(Q(w), D) ≤

m
∑

i=1

max
ŷ

d(yi, ŷ)I [m(xi, fw(xi), ŷ, w) ≤ 1] + f (||w||2)

mL(Q(w), D) ≤

m
∑

i=1

max
ŷ

d(yi, ŷ)I [m(xi, fw(xi), ŷ, w) ≤ H(xi, fw(xi), ŷ)] + g(||w||2)

mL(Q(2sw), D) ≤

m
∑

i=1

max
ŷ

d(yi, ŷ)I

[

m(xi, fw(xi), ŷ, w) ≤
H(xi, fw(xi), ŷ)

2s

]

+ g(||2sw||2)

g(||2sw||2) < f (||w||2)



Simplifying the Regularization

w∗ = argmin
w

m
∑

i=1

max
ŷ

d(yi, ŷ)I [m(xi, fw(xi), ŷ, w) ≤ H(xi, fw(xi), ŷ)] + λ||w||2

= argmin
w

m
∑

i=1

max
ŷ

d(yi, ŷ) (H(xi, fw(xi), ŷ)−m(xi, fw(xi), ŷ, w))
+ + λ||w||2

Compare to M 3 hinge loss:

w∗ = argmin
w

m
∑

i=1

max
ŷ

(H(x, yi, ŷ)−m(xi, yi, ŷ, w))+ + λ||w||2

(x)+ = I [x ≥ 0]

(x)+ = max(0, x)



Convexity

The generalization bound suggests the following convex hinge loss.

w∗ = argmin
w

m
∑

i=1

max
ŷ

d(yi, ŷ) (H(xi, yi, ŷ)−m(xi, yi, ŷ, w))+ + λ||w||2



Consistency

Consider the top level goal:

d∗ = inf
w
calE(w)

E(w) = E〈x, y〉∼D
[d(y, fw(x))]

Let A be an algorithm taking as input a sample S and producing a weight
vector as output.

Let S be an infinite sample and let Sm be the first m elements of S.

I will call algorithm A is consistent if E(A(Sm)) → d∗ (the sequence ap-
proaches d∗ in probability).



Consistency of the Generalization Bound

There exists a regularization schedule λm under which the following gener-
alization bound algorithm is consistent:

w∗ = argmin
w

m
∑

i=1

max
ŷ

d(yi, ŷ) (H(xi, fw(xi), ŷ)−m(xi, fw(xi), ŷ, w))
+ + λm||w||

2



Inconsistency of Multiclass Hinge Loss

Consider the case where all x values are the same and there is an indepen-
dent weight for each ŷ.

The multiclass margin mi can now be written as follows.

mi = wi −max
j 6=i

wj

In the limit of infinite training data we have the following.

w∗ = argmin
w

∑

i

pi (1−mi)+ (6)

Assume pi < 1/2 forall i.

In this case one can show that w∗ is uniform — all weights are the same.

For example, if we increase the weight of the most likely label then we
increase the margin for that label but decrease the margin of every other
label by the same amount.



Kernels and Semi-Supervised Learning

In some applications x may be contain vectorial data. Consider speech
recognition or sequential character recognition.

In this case we take Φi(x, y) to be a vector.

wTΦ(x, y) = Ff(x, y) =
∑

i

f (Φi(x, y))

f ∗ = argmin
f

∑

t

max
ŷ

(H(ŷ, yt)−m(x, yt, ŷ, f ))+ + λ||f ||2

m(x, yt, ŷ) = Ff(x, yt)− Ff(x, ŷ)

Here f in an RKHS defined by a kernel on the vectors Φi(x, y).

In semi-supervised learning we can use unlabeled data to construct a graph
kernel (Altun and McAllester 05).



Summary

• The most effective choice of hinge loss remains unclear.

• There is a fundamental conflict between consistency and convexity.


