Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction

Amy McGovern, Adrianna Kruger, Derek Rosendahl, Kelvin Droegemeier School of Computer Science and School of Meteorology University of Oklahoma

## Severe storm damage

 Severe (tornados, hail, thunderstorms, floods, etc) weather causes:

– Loss of life

– More than \$13 Billion in damage annually!





### **NWS Operational Performance**



*NWS GOAL: Reduce the national average tornado warning false alarm rate from 0.80 (1998) to 0.69 or lower and increase the probability of detection from 0.64 (1998) to 0.73 or higher and the lead time from 11 minutes (1998) to 13 minutes (2005).* 

Source: NWS Office of Science and Technology

![](_page_3_Figure_0.jpeg)

# Our goals

- Improve understanding of tornadogenesis through knowledge discovery
  - Many simulated storms (instead of single storms)
- Reduce the false alarm rate
- Increase warning lead time
- Save lives!

# Raw data

![](_page_5_Figure_1.jpeg)

#### Wind velocity

Reflectivity

May 29, 2004 OKC tornado

# **Assimilated Data**

#### Reflectivity

- 4-dimensional large dynamic data
- Can obtain meteorological variables not observed by radar
- Data & algorithms not tied to radar hardware

![](_page_6_Figure_5.jpeg)

#### Pressure

![](_page_6_Figure_7.jpeg)

![](_page_6_Figure_8.jpeg)

### Temperature

![](_page_6_Figure_10.jpeg)

### Algorithms Applied to Assimilated Data

![](_page_7_Picture_1.jpeg)

![](_page_7_Picture_2.jpeg)

#### NEXRAD, TDWR, FAA, NETRAD Radars

![](_page_7_Picture_4.jpeg)

Other Observations

Forecast Model Output

![](_page_7_Picture_7.jpeg)

Data Assimilation System

High-Resolution, Physically Consistent Gridded Fields of all Meteorological Variables

**Detection Algorithms Applied to Gridded Fields** 

**Features and Relationships** 

# A New Way of Thinking...

![](_page_8_Figure_1.jpeg)

**Mid-Level** 

![](_page_8_Figure_3.jpeg)

**Just Above Ground** 

- No simple solutions to detecting these features!
- NEXRAD concepts likely won't work!!
- May need advanced data mining, image processing and pattern recognition techniques

![](_page_8_Picture_8.jpeg)

# **Current Approach**

### View the data propositionally (Ack!)

![](_page_9_Figure_2.jpeg)

# **Relational Challenges**

![](_page_10_Figure_1.jpeg)

© 1993 Oxford University Press -- From: Bluestein, *Synoptic-Dynamic Meteorology -- Volume II: Observations and Theory of Weather Systems* 

# Future Work

Relational approach (hooray!)
Develop new PRMs for this data

Large, dynamic data

Applications to other severe weather

Flash flooding
Many more possible!

Input welcomed!

## Come see our posters!

Dynamic Relational Models for Improved Hazardous Weather Prediction and The Thing That we Tried That Worked: Utile Distinctions for Relational

Reinforcement Learning